×
09.08.2018
218.016.79f8

НАНОКОМПОЗИТНЫЙ МАГНИТНЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области нанокомпозитных материалов на основе электроактивных полимеров с системой сопряжения и магнитных наночастиц FeO, закрепленных на углеродных нанотрубках. Нанокомпозитный магнитный материал включает полимер - полидифениламин-2-карбоновую кислоту (ПДФАК) и одностенные углеродные нанотрубки (ОУНТ), на которых закреплены наночастицы FeO при содержании в материале наночастиц FeO 1-53 масс. % от массы ПДФАК и ОУНТ 1-3 масс. % от массы мономера. В способе получения нанокомпозитного магнитного материала in situ окислительной полимеризацией мономера на поверхности нанокомпозита FeO/ОУНТ в присутствии водного раствора окислителя, в качестве мономера используют дифениламин-2-карбоновую кислоту (ДФАК). Наночастицы FeO закрепляют на поверхности ОУНТ путем гидролиза смеси солей железа (II) и (III) в мольном соотношении 1:2 в растворе гидроксида аммония в присутствии ОУНТ. Указанный мономер растворяют в смеси органического растворителя - хлороформа и NHOH, взятых в объемном соотношении 12:1, до концентрации мономера в растворе 0.05-0.2 моль/л и перед окислительной полимеризацией добавляют к раствору наночастицы FeO, закрепленные на поверхности ОУНТ. Нанокомпозитный материал по изобретению обладает одновременно электропроводящими и суперпарамагнитными свойствами, высокой однородностью и термостабильностью и намагниченностью насыщения, а также способностью образовывать стабильные магнитные жидкости, что позволяет эффективно использовать его в органической электронике и электрореологии, для создания датчиков и нанозондов, электрохимических источников тока, перезаряжаемых батарей, сенсоров и биосенсоров, суперконденсаторов, солнечных батарей и других электрохимических устройств. 2 н.п. ф-лы, 1 табл., 12 ил.
Реферат Свернуть Развернуть

Изобретение относится к области создания новых нанокомпозитных материалов на основе электроактивных полимеров с системой сопряжения и магнитных наночастиц Fe3O4, закрепленных на углеродных нанотрубках, и может быть использовано в органической электронике и электрореологии, для создания датчиков и нанозондов, электрохимических источников тока, перезаряжаемых батарей, сенсоров и биосенсоров, суперконденсаторов, солнечных батарей и других электрохимических устройств, в системах магнитной записи информации, медицине, гипертермии, для электромагнитных экранов, для очистки воды, как антистатические покрытия и материалы, поглощающие электромагнитное излучение в различных диапазонах длины волны, электрокатализаторы и др.

Современный уровень развития технологий требует создания материалов нового поколения с улучшенными функциональными характеристиками. Такими материалами являются гибридные наноматериалы, сочетание органических и неорганических компонентов в которых обеспечивает комплекс требуемых свойств. Особое место среди них занимают гибридные наноматериалы, в которых органический компонент представляет собой проводящий полимер с системой сопряжения, а неорганическим компонентом являются магнитные наночастицы. Гибридные наноматериалы, включающие полимеры с системой сопряжения [1, 2], благодаря электронному взаимодействию органического и неорганического компонентов способны проявлять замечательные электрические, оптические, магнитные, электрохимические свойства. Интерес к таким материалам растет, о чем свидетельствует большой поток научной литературы, посвященной различным аспектам создания и исследования гибридных наноматериалов.

Также не ослабевает интерес исследователей к углеродным нанотрубкам (УНТ) [3] благодаря присущим им замечательным физико-химическим свойствам. Перспективы создания полимерных композитных материалов, включающих УНТ, связаны с возможным проявлением синергетического эффекта и, как следствие, расширением областей практического применения. Сферы использования УНТ: космические технологии и авиастроение, медицинские технологии, оборонная промышленность, энергоэффективность и энергосбережение.

В литературе рассматриваются два класса гибридных нанокомпозитов: нанокомпозиты, в которых магнитные наночастицы диспергированы в матрице полимера с системой сопряжения, и магнитные нанокомпозиты, представляющие собой дискретные композитные наночастицы со структурой ядро-оболочка, в которых ядром является магнитная наночастица, а оболочка представляет собой полимер с системой сопряженных связей. При этом полимерная оболочка играет роль стабилизатора, предотвращая агрегирование наночастиц.

Наиболее близкими к предложенным являются металлополимерный нанокомпозитный магнитный материал на основе полианилина (ПАНи) и наночастиц Fe3O4 и способ получения этого магнитного материала окислительной полимеризацией анилина в присутствии наночастиц Fe3O4 в кислой среде (рН 2.5) под действием Н2О2 в качестве окислителя [4]. Магнитные наночастицы имеют размеры 10-12 нм.

Недостатком известного материала и способа является низкая намагниченность насыщения - MS не выше 6.2 Гс⋅см3/г. При этом реакцию полимеризации проводят в течение 20 ч. Кроме того, термостойкость (термостабильность) материала является недостаточной.

Задача предлагаемого изобретения заключается в создании нанокомпозитного дисперсного магнитного материала, обладающего одновременно электрическими (электропроводящими) и суперпарамагнитными свойствами, высокой однородностью, термостойкостью (термостабильностью) и намагниченностью насыщения, и разработке простого и эффективного способа его получения.

Поставленная задача решается тем, что предложен нанокомпозитный магнитный материал, включающий полимер и наночастицы Fe3O4, причем материал дополнительно содержит одностенные углеродные нанотрубки (ОУНТ), на которых закреплены наночастицы Fe3O4, а в качестве полимера - полидифениламин-2-карбоновую кислоту (поли-N-фенилантраниловую кислоту) при содержании в материале наночастиц Fe3O4 1-53%масс. от массы полимера (ПДФАК) и ОУНТ 1-3% масс. от массы мономера - дифениламин-2-карбоновой кислоты (ДФАК).

Одностенные углеродные нанотрубки (ОУНТ) производства "ООО Углерод Чг" получают электродуговым процессом с катализатором Ni/Y. Характеристики ОУНТ: диаметр d=1.4-1.6 нм, длина l=0.5-1.5 мкм.

Поставленная задача также решается тем, что в способе получения нанокомпозитного магнитного материала in situ окислительной полимеризацией мономера на поверхности нанокомпозита Fe3O4/OУHT в присутствии водного раствора окислителя, для получения указанного материала в качестве мономера используют дифениламин-2-карбоновую кислоту (ДФАК), наночастицы Fe3O4 закрепляют на поверхности ОУНТ путем гидролиза смеси солей железа (II) и (III) в мольном соотношении 1:2 в растворе гидроксида аммония в присутствии ОУНТ, указанный мономер растворяют в смеси органического растворителя - хлороформа и NH4OH, взятых в объемном соотношении 12:1, до концентрации мономера в растворе 0.05-0.2 моль/л и перед окислительной полимеризацией добавляют к раствору наночастицы Fe3O4, закрепленные на поверхности ОУНТ.

Мономер представляет собой гетероциклическое соединение, имеющее в своей структуре активную карбоксильную группу и атом азота, соединяющий два фенильных кольца:

Полимер-металл-углеродные гибридные дисперсные наноматериалы представляют собой одностенные углеродные нанотрубки (ОУНТ) (d=1.4-1.6 нм, l=0.5-1.5 мкм) с закрепленными на их поверхности наночастицами магнетита, покрытые полимером дифениламин-2-карбоновой кислоты (N-фенилантраниловой кислоты). Формирование трехкомпонентного гибридного дисперсного наноматериала Fe3O4/ОУНТ/ПДФАК включает: синтез наночастиц Fe3O4, закрепленных на ОУНТ, путем гидролиза смеси солей железа (II) и (III) в мольном соотношении 1:2 в растворе гидроксида аммония в присутствии ОУНТ; закрепление мономера на поверхности полученных нанокомпозитов Fe3O4/ОУНТ с последующей in situ полимеризацией ДФАК в присутствии персульфата аммония в качестве окислителя.

В качестве органического растворителя используют хлороформ. В качестве щелочи - NH4OH, NaOH или КОН. В качестве окислителя - персульфат аммония, пероксид водорода или FeCl3. В качестве солей железа (II) могут использовать, например, FeSO4 × 7Н2O, FeCl2 × 4Н2O, а в качестве солей железа (III) - FeCl3 × 6Н2O, Fе(NO3)3 × 6Н2O или ацетилацетонат железа (III).

Синтез наночастиц Fe3O4, закрепленных на поверхности ОУНТ, осуществляют путем гидролиза смеси солей железа (II) и (III) в мольном соотношении 1:2 в растворе гидроксида аммония в присутствии ОУНТ при 60°С. Для этого 0.86 г FeSO4 × 7Н2O и 2.35 г FeCl3 × 6Н2O растворяют в 20 мл дистиллированной воды. В полученный раствор добавляют 3%масс. ОУНТ (0.03 г) (d=1.4-1.6 нм, l=0.5-1.5 мкм) относительно массы мономера (ДФАК) (1.0 г), нагревают до 60°С, затем добавляют 5 мл гидроксида аммония NH4OH. Полученную суспензию нагревают на водяной бане до 80°С и перемешивают в течение 0.5 ч. Охлаждение суспензии проводят при комнатной температуре при постоянном интенсивном перемешивании в течение 1 ч. Полученный нанокомпозит Fe3O4/OУHT отфильтровывают, промывают дистиллированной водой до нейтральной реакции фильтрата и сушат под вакуумом над КОН до постоянной массы.

Получение нанокомпозитного магнитного материала (нанокомпозита) Fe3O4/ОУНТ/полидифениламин-2-карбоновой кислоты (Fe3O4/ОУНТ/ПДФАК) проводят следующим образом. Сначала осуществляют синтез наночастиц Fe3O4 требуемой концентрации (Табл. 1), закрепленных на поверхности ОУНТ, путем гидролиза смеси солей железа (II) и (III) в мольном соотношении 1:2 в растворе гидроксида аммония в присутствии ОУНТ при 55°С. Для закрепления мономера (ДФАК) на поверхности нанокомпозита Fe3O4/ОУНТ к полученной водно-щелочной суспензии нанокомпозита Fe3O4/ОУНТ добавляют раствор ДФАК требуемой концентрации (0.05-0.2 моль/л) в смеси органического растворителя - хлороформа (60 мл) и NH4OH (5 мл) (объемное соотношение 12:1). Содержание углеродных нанотрубок [ОУНТ]=1-3% масс. относительно массы мономера (ДФАК). Процесс ведут при 40-55°С при постоянном интенсивном перемешивании в течение 0.5-1 ч. Охлаждение суспензии проводят при комнатной температуре при постоянном интенсивном перемешивании в течение 1 ч. Затем для проведения межфазной окислительной полимеризации in situ ДФАК на поверхности Fe3O4/ОУНТ, к суспензии Fe3O4/ОУНТ/ДФАК, термостатированной при постоянном перемешивании при -10-50°С, добавляют водный раствор окислителя (например, персульфата аммония) (0.05-1.0 моль/л). Растворы органической и водной фаз смешивают сразу без постепенного дозирования реагентов. Соотношение объемов органической и водной фаз составляет 1:1 (Vобщ.=120 мл). Реакцию полимеризации проводят в течение 1-6 ч при постоянном интенсивном перемешивании при -10-50°С. По окончании синтеза реакционную смесь осаждают в трехкратный избыток 1 М H2SO4. Полученный продукт отфильтровывают, многократно промывают дистиллированной водой до нейтральной реакции фильтрата и сушат под вакуумом над KОН до постоянной массы.

Для получения магнитных жидкостей готовят суспензию гибридных магнитных нанокомпозитов Fe3O4/ОУНТ/ПДФАК в этиловом спирте. За устойчивостью суспензии наблюдали в течение 6 месяцев.

Образование нанокомпозита Fe3O4/ОУНТ/ПДФАК подтверждено данными просвечивающей (ПЭМ) и сканирующей (СЭМ) электронной микроскопии, ИК Фурье спектроскопии и рентгеноструктурного исследования, представленными на фиг. 1-8, где I - интенсивность, 2θ - угол, I/I° - соотношение интенсивностей падающего и прошедшего излучения, ν - частота излучения.

На фиг. 1 представлена дифрактограмма нанокомпозита Fe3O4/ОУНТ.

На фиг. 2 представлен ИК-спектр нанокомпозита Fe3O4/ОУНТ.

На фиг. 3 представлены ИК-спектры ПДФАК (а) и нанокомпозита Fe3O4/ОУНТ/ПДФАК (б).

На фиг. 4 представлена дифрактограмма нанокомпозита Fe3O4/ОУНТ/ПДФАК.

На фиг. 5 представлено распределение по размерам кристаллитов Fe3O4 в нанокомпозите Fe3O4/ОУНТ/ПДФАК, полученном при [Fe]=14 (1) и 36% (2). (3) - Fe3O4/OУHT.

На фиг. 6 представлена микрофотография нанокомпозита Fe3O4/OУHT.

На фиг. 7 представлена микрофотография нанокомпозита Fe3O4/ОУНТ/ПДФАК.

На фиг. 8 представлены СЭМ изображения нанокомпозита Fe3O4/ОУНТ/ПДФАК.

Особенностью разработанного метода синтеза композитного наноматериала Fe3O4/ОУНТ/ПДФАК является то, что закрепление наночастиц магнетита (Fe3O4) на ОУНТ, а также закрепление мономера (ДФАК) на поверхности нанокомпозита Fe3O4/ОУНТ с последующей in situ полимеризацией осуществляется непосредственно в щелочной реакционной среде синтеза наночастиц Fe3O4. При гидролизе смеси солей железа (II) и (III) в растворе гидроксида аммония в присутствии ОУНТ одновременно происходит синтез наночастиц Fe3O4 и закрепление образовавшегося магнетита на поверхности ОУНТ.

Химическая окислительная полимеризация ДФАК in situ осуществляется в межфазном процессе, когда мономер, закрепленный на ОУНТ с иммобилизованными на их поверхности наночастицами Fe3O4, находится в органической фазе (хлороформе), а окислитель (персульфат аммония) в водном растворе аммиака и полимеризация протекает на границе раздела водной и органической фаз.

Проведенное методом РФА исследование структуры Fe3O4/ОУНТ позволило установить, что единственной металлсодержащей фазой в составе нанокомпозита является фаза Fe3O4, четко идентифицированная по пикам отражения в области углов рассеяния 2θ=45.97°, 54.1°, 66.69°, 84.57°, 90.97°, 102.16° (фиг. 1). Отсутствие на дифрактограммах пика отражения углеродной фазы объясняется невозможностью получения дифракционной картины от единичной плоскости ОУНТ. Рентгеноструктурные исследования проводят при комнатной температуре на рентгеновском дифрактометре «Дифрей» с фокусировкой по Бреггу-Брентано на СrKα-излучении.

Закрепление наночастиц магнетита на поверхности ОУНТ осуществляется за счет взаимодействия железа с карбоксилат-ионом, что подтверждается появлением в ИК-спектре полосы валентных колебаний Fe-ООС в области 556 см-1, наряду с полосой в области 430 см-1, характеризующей валентные колебания связи Fe-O магнетита (фиг. 2). При этом увеличение содержания Fe3O4 в нанокомпозите приводит к значительному росту интенсивности этой полосы. По данным ПЭМ наночастицы Fe3O4 имеют размеры 6<d<15 нм (фиг. 6). Электронно-микроскопические исследования осуществляют на просвечивающем электронном микроскопе LEO912 АВ OMEGA и растровом электронном автоэмиссионном микроскопе Supra 25 производства Zeiss с рентгеноспектральной энергодисперсионной приставкой INCA Energy производства Oxford Instruments для определения элементного состава образцов. Разрешение на получаемых изображениях составляет величину 1-2 нм.

Анализ результатов спектральных исследований методами ИК Фурье, электронной, рентгенофотоэлектронной спектроскопии, ЯМР 13С твердого тела высокого разрешения ВМУ позволяет представить химическую структуру полидифениламин-2-карбоновой кислоты (поли-N-фенилантраниловой кислоты) следующим образом:

ПДФАК представляет собой поликислоту, в структуре которой карбоксильные группы образуют внутримолекулярные водородные связи с аминогруппами вдоль всей полимерной цепи [5]. ПДФАК впервые получена в условиях химической окислительной полимеризации ДФАК в гетерофазной системе в присутствии органического растворителя - хлороформа. При интенсивном перемешивании формируется дисперсионная реакционная среда, в которой непрерывной фазой является водный щелочной раствор, содержащий окислитель, а дисперсионной фазой являются капли раствора мономера в хлороформе. В рассматриваемом процессе на границе раздела фаз происходит только инициирование полимеризации. В силу того, что мономер растворяется не только в хлороформе, но и в водном растворе щелочи, рост полимерной цепи протекает в водной фазе, с постепенным переходом мономера из органической фазы в водную.

Максимальный выход ПДФАК 72-79%. По данным ГПХ молекулярная масса полимера достигает Mw=2.6×104, степень полимеризации более 120, индекс полидисперсности 2.2. ММ полимеров ДФАК измеряют методом ГПХ на приборе "Water's 150С", оснащенном колонками PLgel 5um MIXED-С, используя N-метилпирролидон в качестве элюента, при Т=60°С. Скорость потока элюента 1 мл/мин. Объем вводимого образца 150 мкл. Калибровка проведена по полистиролу. В качестве детектора используют RI-детектор. Точность определения ММ ~ 5% [5].

Полученные гетероциклические полимеры ДФАК являются аморфными, электроактивными и термостабильными. Потеря массы при 168°С связана с удалением групп СООН. ПДФАК теряет половину первоначальной массы на воздухе при 520°С. В инертной атмосфере 50%-ная потеря массы полимера наблюдается при 660°С. При 800°С остаток составляет 31% [5]. ПДФАК способна обратимо окисляться-восстанавливаться при изменении знака приложенного потенциала.

Закрепление мономера (ДФАК) на поверхности нанокомпозита Fe3O4/OУНТ происходит путем связывания карбоксилат-иона с железом с образованием связи Fe-OOC, что подтверждено данными ИК-Фурье спектроскопии по появлению полосы поглощения при 578 см-1, отвечающей валентным колебаниям связи Fe-OOC и длинноволновому сдвигу полосы поглощения валентных колебаний связей νC=O в карбоксильной группе в область 1672 см-1 по сравнению с положением этой полосы в полимере при 1683 см-1 (фиг. 3). При этом увеличение содержания Fe3O4 в нанокомпозите приводит к росту интенсивности этой полосы.

Сравнение ИК-спектров полимера и нанокомпозита показало, что в ИК-спектрах нанокомпозита Fe3O4/ОУНТ/ПДФАК сохраняются все основные полосы, характеризующие химическую структуру ПДФАК (фиг. 3). Наличие в ИК-спектрах нанокомпозита Fe3O4/ОУНТ/ПДФАК полос поглощения в области 830 и 750 см-1, обусловленных неплоскими деформационными колебаниями связей δC-H 1,2,4- и 1,2-замещенных бензольных колец, указывает на то, что полимерное покрытие образуется путем С-С - присоединения в 2- и 4-положениях фенильных колец по отношению к азоту [5, 6]. Регистрацию ИК-спектров выполняют на ИК Фурье спектрометре «IFS 66v» в области 4000-400 см-1 и обрабатывают по программе Soft-Spectra. Образцы готовят в виде таблеток, прессованных с KВr.

Образование нанокомпозита на основе Fe3O4 подтверждено методом РФА. На дифрактограмме нанокомпозита Fe3O4/ОУНТ/ПДФАК четко идентифицируются пики отражения Fe3O4 в области углов рассеяния 2θ=46.1°, 54.3°, 66.8°, 84.8°, 91.2°, 102.2° (СrKα-излучение) (фиг. 4) [7, 8]. По данным ПЭМ в нанокомпозите Fe3O4/ОУНТ/ПДФАК наночастицы Fe3O4 имеют размеры 2<d<12 нм (фиг. 7), тогда как магнитные наночастицы по прототипу имеют размеры 10-12 нм. При этом в предложенном материале 90% наночастиц Fe3O4 имеют размеры d=4-7 нм (фиг. 5). По данным СЭМ полимер формируется на поверхности Fe3O4/ОУНТ в виде сплошного полимерного покрытия (фиг. 8). По данным РФА полимерное покрытие является аморфным. Рентгеноструктурные исследования проводят при комнатной температуре на рентгеновском дифрактометре «Дифрей» с фокусировкой по Бреггу-Брентано на СrKα-излучении.

Как видно на фиг. 5, в нанокомпозите Fe3O4/ОУНТ кривая распределения по размерам ОКР более широкая. Только около 85% кристаллитов Fe3O4 имеют размеры до 8 нм. Это связано с тем, что сплошное полимерное покрытие на поверхности Fe3O4/OУHT обеспечивает снижение агрегирования наночастиц в ходе синтеза наноматериала Fe3O4/ОУНТ/ПДФАК. По данным атомно-абсорбционной спектроскопии содержание Fe=1-40% масс. Содержание металла в нанокомпозите Fe3O4/ОУНТ/ПДФАК количественно определяют методом атомно-абсорбционной спектрометрии на спектрофотометре AAS 30 фирмы "Carl Zeiss JENA". Погрешность определения содержания Fe составляла ±1%.

Исследование магнитных свойств при комнатной температуре показало, что наноматериал Fe3O4/ОУНТ/ПДФАК проявляет гистерезисный характер перемагничивания. На фиг. 9 представлена намагниченность нанокомпозита Fe3O4/ОУНТ/ПДФАК как функция приложенного магнитного поля при комнатной температуре, где Fe3O4/ОУНТ/ПДФАК получен при [Fe]=14 (7) и 36% (2). Независимо от концентрации железа остаточная намагниченность материала MR и коэрцитивная сила НС равны нулю и, следовательно, коэффициент прямоугольности петли гистерезиса кп=MR/MS=0, что свидетельствует о суперпарамагнитном поведении гибридного наноматериала [7, 8]. Для сравнения приведены характеристики Fe3O4/ОУНТ (фиг. 9). Остаточная намагниченность нанокомпозита Fe3O4/ОУНТ MR составляет 0.45 Гс⋅см3/г, коэрцитивная сила НС - 6 Э. Коэффициент прямоугольности петли гистерезиса кп=MR/MS=0.0095.

Намагниченность насыщения заявленного материала - MS=11-65 Гс⋅см3/г, тогда как по прототипу она не превышает 6.2 Гс⋅см3/г. Константа прямоугольности петли гистерезиса кп, представляющая собой отношение остаточной намагниченности MR к намагниченности насыщения Ms, равна нулю, что подтверждает его суперпарамагнитные свойства. Полученная величина MR/MS характерна для одноосных, однодоменных частиц. Для измерения магнитных характеристик систем используют вибрационный магнитометр. Ячейка вибрационного магнитометра представляет собой проточный кварцевый микрореактор, позволяющий исследовать химические превращения в условиях in situ. Проводят измерения удельной намагниченности J в зависимости от величины магнитного поля Н и на их основании определяют магнитные характеристики образцов при комнатной температуре.

Такие нанокомпозитные материалы могут быть использованы в системах магнитной записи информации, медицине, гипертермии, для создания контрастирующих материалов для магниторезонансной томографии, электромагнитных экранов, для каталитического удаления органических загрязнителей воды в комбинации с магнитным сепарированием для очистки воды, как антистатические покрытия и материалы, поглощающие электромагнитное излучение в различных диапазонах длины волны, электрокатализаторов и др.

Нанокомпозит Fe3O4/ОУНТ/ПДФАК характеризуется высокой термостабильностью. Термическая стабильность нанокомпозита исследована методами ТГА и ДСК.

На фиг. 10 показана температурная зависимость уменьшения массы ПДФАК (1, 2) и нанокомпозита Fe3O4/ОУНТ/ПДФАК, полученного при [Fe]=36% (3, 4) при нагревании до 1000°С со скоростью 10°С/мин в токе аргона (1, 3) и на воздухе (2, 4).

На фиг. 11 показаны ДСК-термограммы нанокомпозита Fe3O4/ОУНТ/ПДФАК, полученного при [Fe]=36%, при нагревании в токе азота до 350°С со скоростью 10°С/мин (1 - первое нагревание, 2 - второе нагревание).

Потеря массы при низких температурах (~105°С) связана с удалением влаги, что также подтверждается данными ДСК (фиг. 11). Потеря массы при ~168°С в ПДФАК связана с удалением групп СООН [5, 6]. На термограммах ДСК в этой области температур присутствует экзотермический пик, связанный с разложением. Отсутствие потери массы в дисперсном наноматериале Fe3O4/ОУНТ/ПДФАК при 168°С связано с тем, что карбоксилатные группы полимера закреплены на наночастицах Fe3O4 с образованием связи Fe-OOC.

Полученный гибридный наноматериал характеризуется высокой термостабильностью, значительно превышающей термостабильность ПДФАК. Нанокомпозит Fe3O4/ОУНТ/ПДФАК теряет половину первоначальной массы в инертной атмосфере при 910°С, что на 250°С выше этой температуры для ПДФАК. При 1000°С в инертной атмосфере остаток Fe3O4/ОУНТ/ПДФАК составляет 48%. Процессы термоокислительной деструкции начинаются при 320°С; 50%-ная потеря массы полимера наблюдается при 522°С, а нанокомпозита - при Т>1000°С. Термический анализ осуществляют на приборе TGA/DSC1 фирмы "Mettler Toledo" в динамическом режиме в интервале 30-1000°С на воздухе и в токе азота. Навеска полимеров - 100 мг, скорость нагревания 10°С/мин, ток азота - 10 мл/мин. В качестве эталона используют прокаленный оксид алюминия. Анализ образцов проводят в тигле АI2O3. ДСК-анализ проводят на калориметре DSC823e фирмы "Mettler Toledo". Нагрев образцов осуществляют со скоростью 10°С/мин, в атмосфере аргона при его подаче 70 мл/мин. Обработка результатов измерения проводят с помощью сервисной программы STARe, поставляемой в комплекте с прибором.

Включение в состав наноматериала Fe3O4/ОУНТ/ПДФАК электропроводящих нанотрубок приводит к значительному повышению его электропроводности по сравнению с электропроводностью исходного полимера, а также с МУНТ/ПАНи (по прототипу). При этом повышается стабильность электрических свойств, так как при использовании электропроводящих нанотрубок электропроводность наноматериала в целом практически не зависит от степени допирования полисопряженного полимера. Включение в состав наноматериалов ~ 1-3% электропроводящих нанотрубок приводит к увеличению на 4-6 порядков величины электропроводности нанокомпозитов Fe3O4/ОУНТ/ПДФАК (от 3.6×10-5 См/см до 1.4×10-3 См/см) по сравнению с электропроводностью исходного полимера ПДФАК (8.4×10-9 См/см). Электропроводность МУНТ/ПАНи (по прототипу) [9], полученного при МУНТ=10% масс, σ=5.9×10-5 См/см, что тоже на 2 порядка величины меньше электропроводности Fe3O4/ОУНТ/ПДФАК (1.4×10-3 См/см, ОУНТ=3% масс). При этом содержание УНТ в нанокомпозите МУНТ/ПАНи (по прототипу) значительно выше (МУНТ=10% масс). Удельную электропроводность образцов измеряли стандартным четырехточечным методом на приборе Loresta-GP, МСР-Т610 (Япония).

Полученный дисперсный магнитный наноматериал Fe3O4/ОУНТ/ПДФАК образует в воде и этиловом спирте стабильные (по крайней мере более шести месяцев) суспензии - магнитные жидкости -уникальные системы, сочетающие в себе свойства магнитного материала и жидкости, тогда как наночастицы Fe3O4/ОУНТ, диспергированные в этиловом спирте, начинают оседать на дно с первых минут (фиг. 12).

На фиг. 12 представлены суспензии нанокомпозитов Fe3O4/ОУНТ (а) и Fe3O4/ОУНТ/ПДФАК (б) в этиловом спирте.

В выбранных условиях формируется термостойкий гибридный полимер-металл-углеродный наноматериал на основе полидифениламин-2-карбоновой кислоты (поли-N-фенилантраниловой кислоты) и наночастиц Fe3O4 с размерами 2<d<12 нм, закрепленных на поверхности ОУНТ (d=1.4-1.6 нм, l=0.5-1.5 мкм), тогда как магнитные наночастицы по прототипу имеют размеры 10-12 нм. При этом в нанокомпозите Fe3O4/ОУНТ/ПДФАК 90% наночастиц Fe3O4 имеют размеры d=4-7 нм. Электропроводность наноматериала Fe3O4/ОУНТ/ПДФАК выше электропроводности исходного полимера и нанокомпозита МУНТ/ПАНи (по прототипу) и зависит от количественного содержания нанотрубок. Коэффициент прямоугольности петли гистерезиса кп=MR/MS=0, что свидетельствует о суперпарамагнитном поведении гибридного наноматериала. Нанокомпозитный материал Fe3O4/ОУНТ/ПДФАК представляет собой черный порошок, нерастворимый в органических растворителях. Благодаря сочетанию электрических и магнитных свойств полученные гибридные наноматериалы представляются весьма перспективными для современных технологий. Такие мультифункциональные нанокомпозитные материалы, демонстрирующие хорошие термические, электрические и магнитные свойства и способные образовать стабильные магнитные жидкости, могут быть использованы в органической электронике и электрореологии, для создания микроэлектромеханических систем, тонкопленочных транзисторов, нанодиодов, модулей памяти, преобразователей энергии, плоских панелей дисплеев, датчиков и нанозондов, электрохимических источников тока, перезаряжаемых батарей, сенсоров и биосенсоров, суперконденсаторов, солнечных батарей и других электрохимических устройств, а также в системах магнитной записи информации, медицине, гипертермии, для создания контрастирующих материалов для магниторезонансной томографии, электромагнитных экранов, для каталитического удаления органических загрязнителей воды в комбинации с магнитным сепарированием для очистки воды, как антистатические покрытия и материалы, поглощающие электромагнитное излучение в различных диапазонах длины волны, электрокатализаторов и др.

Новизна предлагаемых методов и подходов к созданию гибридного нанокомпозитного материала определяется тем, что впервые полимерный компонент нанокомпозита представляет собой термостойкую электроактивную гетероциклическую поликислоту - полидифениламин-2-карбоновую кислоту (поли-N-фенилантраниловую кислоту). Уникальность предложенных гибридных термостойких (термостабильных) трехкомпонентных нанокомпозитов состоит в том, что они демонстрируют одновременно хорошие электрические и магнитные свойства. При этом магнитные свойства обеспечиваются присутствием магнитных наночастиц, а электрические свойства обусловлены природой полимерного компонента гибридного наноматериала и присутствием углеродных нанотрубок.

Преимущества предложенного материала и способа:

1. Предлагаемый метод синтеза гибридного нанокомпозитного материала в условиях окислительной полимеризации in situ позволяет получать мультифункциональный гибридный термостойкий (термостабильный) трехкомпонентный наноматериал Fe3O4/ОУНТ/ПДФАК, обладающий электрическими и магнитными свойствами.

2. Предлагаемый метод формирования полимер-металл-углеродного нанокомпозитного материала в условиях окислительной полимеризации in situ позволяет получать наночастицы Fe3O4 различного состава, размеры которых отвечают критерию однодоменности (2<d<12 нм), обусловливающие суперпарамагнитное поведение наноматериала. При этом 90% наночастиц Fe3O4 имеют размеры d=4-7 нм. Магнитные наночастицы Fe3O4 по прототипу имеют размеры 10-12 нм. Константа прямоугольности петли гистерезиса кп представляющая собой отношение остаточной намагниченности MR к намагниченности насыщения MS, равна нулю. Остаточная намагниченность материала MR составляет 0 Гс⋅см3/г, коэрцитивная сила - НC=0 Э. Намагниченность насыщения заявленного материала - MS=11-65 Гс⋅см3/г, тогда как намагниченность насыщения материала по прототипу - не более 6.2 Гс⋅см3/г.

3. Закрепление наночастиц магнетита (Fe3O4) на ОУНТ, а также закрепление мономера (ДФАК) на поверхности нанокомпозита Fe3O4/ОУНТ с последующей полимеризацией in situ осуществляется в одном реакционном сосуде непосредственно в щелочной реакционной среде синтеза наночастиц Fe3O4. При этом формирование гибридного трехкомпонентного нанокомпозитного материала Fe3O4/ОУНТ/ПДФАК осуществляется в условиях окислительной полимеризации in situ при -10-50°С в течение 1-6 ч - вместо более, чем 20 ч в способе по прототипу - что позволяет исключить сложное оборудование и существенно снизить энергозатраты.

4. Так как ПДФАК является электроактивной, а электропроводность наноматериала Fe3O4/ОУНТ/ПДФАК на 2 порядка величины выше электропроводности МУНТ/ПАНи (по прототипу) и зависит от количественного содержания нанотрубок, нанокомпозит Fe3O4/ОУНТ/ПДФАК может быть использован в микро- и наноэлектронике, для создания электрохимических устройств, например сенсоров и биосенсоров, перезаряжаемых батарей, суперконденсаторов, тонкопленочных транзисторов, нанодиодов, модулей памяти, преобразователей энергии, плоских панелей дисплеев, датчиков и нанозондов.

5. Высокая термостойкость (термостабильность) полимер-металл-углеродного нанокомпозита Fe3O4/ОУНТ/ПДФАК определяется высокой термической и термоокислительной стабильностью ПДФАК. Высокая термостабильность полимерной матрицы на воздухе (до 300-320°С) и в инертной атмосфере (при 1000°С остаток составляет 48-67%) обеспечивает возможность использования предложенного нанокомпозитного материала Fe3O4/ОУНТ/ПДФАК в высокотемпературных процессах, например в качестве конструкционных материалов, защитных покрытий, носителей катализаторов в топливных элементах, наноэлектропроводов, электрохимических источников тока, перезаряжаемых и солнечных батарей.

Авторами предложенного изобретения впервые получены полимер-металл-углеродные гибридные нанокомпозитные магнитные материалы, представляющие собой одностенные углеродные нанотрубки (d=1.4-1.6 нм, l=0.5-1.5 мкм) с закрепленными на их поверхности наночастицами магнетита, покрытые термостойким (термостабильным) полимером дифениламин-2-карбоновой кислоты (N-фенилантраниловой кислоты). Полученные трехкомпонентные наноматериалы являются мультифункциональными и демонстрируют хорошие термические, электрические и магнитные свойства и образуют стабильные магнитные жидкости.

Примеры получения полимер-металл-углеродного нанокомпозитного материала Fe3O4/ОУНТ/ПДФАК. Характеристики полученных по примерам нанокомпозитных материалов: содержание ОУНТ и Fe, размеры наночастиц Fe3O4, термостойкость (термостабильность) и электропроводность, а также магнитные характеристики (намагниченность насыщения MS, остаточная намагниченность MR, константа прямоугольности петли гистерезиса кп=MR/MS, коэрцитивная сила НC) приведены в таблице 1.

Пример 1

Получение нанокомпозита Fe3O4/ОУНТ/полидифениламин-2-карбоновой кислоты (Fe3O4/ОУНТ/ПДФАК) проводят следующим образом. Сначала осуществляют синтез наночастиц Fe3O4, закрепленных на поверхности ОУНТ, путем гидролиза смеси солей железа (II) и (III) в мольном соотношении 1:2 в растворе гидроксида аммония в присутствии ОУНТ при 55°С. Для этого 0.86 г FeSO4 × 7Н2O и 2.35 г FeCl3 × 6Н2O растворяют в 20 мл дистиллированной воды (содержание [Fe]=40% от общей массы). К полученному раствору добавляют 3%масс.относительно массы мономера (0.03 г) ОУНТ (d=1.4-1.6 нм, l=0.5-1.5 мкм), нагревают до 55°С, затем добавляют 5 мл NH4OH. Для закрепления мономера на поверхности нанокомпозита Fe3O4/ОУНТ к полученной водно-щелочной суспензии нанокомпозита Fe3O4/ОУНТ добавляют раствор ДФАК (1.0 г) в смеси хлороформа (60 мл) и NH4OH (5 мл) (объемное соотношение 12:1). Процесс ведут при 55°С при постоянном интенсивном перемешивании в течение 0.5 ч. Охлаждение суспензии проводят при комнатной температуре при постоянном интенсивном перемешивании в течение 1 ч. Затем для проведения межфазной окислительной полимеризации in situ ДФАК на поверхности Fe3O4/OУHT, к суспензии Fe3O4/ОУНТ/ДФАК, термостатированной при постоянном перемешивании при 0°С, добавляют водный раствор (1.96 г) персульфата аммония (30 мл). Содержание мономера в растворе - 0.1 моль/л. Растворы органической и водной фаз смешивают сразу без постепенного дозирования реагентов. Соотношение объемов органической и водной фаз составляет 1:1 (Voбщ=120 мл). Реакцию полимеризации проводят в течение 3 ч при постоянном интенсивном перемешивании при 0°С. По окончании синтеза реакционную смесь осаждают в трехкратный избыток 1 М H2SO4. Полученный продукт отфильтровывают, многократно промывают дистиллированной водой до нейтральной реакции фильтрата и сушат под вакуумом над КОН до постоянной массы. Выход Fe3O4/ОУНТ/ПДФАК составляет 1.058 г.

Пример 2

Способ получения нанокомпозита проводят аналогично примеру 1, но берут 0.172 г FeSO4 × 7Н2O и 0.47 г FeCl3 × 6Н2O (содержание [Fe]=8% от общей массы).

Пример 3

Способ получения нанокомпозита проводят аналогично примеру 1, но синтез проводят в течение 6 ч.

Пример 4

Способ получения нанокомпозита проводят аналогично примеру 1, но берут 0.722 г FeSO4 × 7Н2O и 1.974 г FeCl3 × 6Н2O (содержание [Fe]=34% от общей массы), а также 0.01 г ОУНТ (содержание нанотрубок [ОУНТ]=1%масс. относительно массы мономера).

Пример 5

Способ получения нанокомпозита проводят аналогично примеру 2, но синтез проводят при 40°С.

Пример 6

Способ получения нанокомпозита проводят аналогично примеру 1, но берут 0.43 г FeSO4 × 7Н2O и 1.175 г FeCl3 × 6Н2O (содержание [Fe]=20% от общей массы), а также 0.02 г ОУНТ (содержание нанотрубок [ОУНТ]=2% масс. относительно массы мономера).

Пример 7

Способ получения нанокомпозита проводят аналогично примеру 2, но берут 4.9 г персульфата аммония ([окислитель]:[мономер]=5).

Пример 8

Способ получения нанокомпозита проводят аналогично примеру 1, но синтез проводят при -10°С.

Пример 9

Способ получения нанокомпозита проводят аналогично примеру 1, но синтез проводят при 50°С.

Пример 10

Способ получения нанокомпозита проводят аналогично примеру 3, но синтез проводят при -10°С°С.

Пример 11

Способ получения нанокомпозита проводят аналогично примеру 10, но берут 4.9 г персульфата аммония ([окислитель]:[мономер]=5).

Пример 12

Способ получения нанокомпозита проводят аналогично примеру 1, но синтез проводят в течение 1 ч.

Пример 13

Способ получения нанокомпозита проводят аналогично примеру 12, но берут 0.378 г FeSO4 × 7Н2O и 1.034 г FeCl3 × 6Н2O (содержание [Fe]=18% от общей массы), а также 0.01 г ОУНТ (содержание нанотрубок [ОУНТ]=1% масс. относительно массы мономера).

Пример 14

Способ получения нанокомпозита проводят аналогично примеру 6, но синтез проводят в течение 3 ч.

Пример 15

Способ получения нанокомпозита проводят аналогично примеру 7, но берут 0.825 г FeSO4 × 7Н2O и 2.256 г FeCl3 × 6Н2O (содержание [Fe]=38% от общей массы), а также синтез проводят при 15°С.

Пример 16

Способ получения нанокомпозита проводят аналогично примеру 3, но берут 2.0 г ДФАК ([мономер]=0.2 моль/л).

Пример 17

Способ получения нанокомпозита проводят аналогично примеру 2, но берут 0.5 г ДФАК ([мономер]=0.05 моль/л), а также 0.01 г ОУНТ (содержание нанотрубок [ОУНТ]=1% масс. относительно массы мономера).

Пример 18

Способ получения нанокомпозита проводят аналогично примеру 1, но берут 0.258 г FeSO4 × 7Н2O и 0.705 г FeCl3 × 6Н2O (содержание [Fe]=12% от общей массы).

Пример 19

Способ получения нанокомпозита проводят аналогично примеру 15, но берут 2.94 г персульфата аммония ([окислитель]:[мономер]=3), а также 0.01 г ОУНТ (содержание нанотрубок [ОУНТ]=1% масс. относительно массы мономера).

Пример 20

Способ получения нанокомпозита проводят аналогично примеру 1, но берут 0.98 г персульфата аммония ([окислитель]:[мономер]=1).

Пример 21

Способ получения нанокомпозита проводят аналогично примеру 1, но берут 0.504 г FeSO4 × 7Н2O и 2.115 г FeCl3 × 6Н2O (содержание [Fe]=36% от общей массы), а также синтез проводят при 15°С.

Пример 22

Способ получения нанокомпозита проводят аналогично примеру 1, но берут 0.378 г FeSO4 × 7Н2O и 1.034 г FeCl3 × 6Н2O (содержание [Fe]=18% от общей массы).

Пример 23

Способ получения нанокомпозита проводят аналогично примеру 2, но берут 0.309 г FeSO4 × 7Н2O и 0.846 г FeCl3 × 6Н2O (содержание [Fe]=14% от общей массы).

Пример 24

Способ получения нанокомпозита проводят аналогично примеру 2, но берут 0.464 г FeSO4 × 7Н2O и 1.269 г FeCl3 × 6Н2O (содержание [Fe]=22% от общей массы).

Пример 25

Способ получения нанокомпозита проводят аналогично примеру 22, но берут 0.02 г ОУНТ (содержание нанотрубок [ОУНТ]=2% масс. относительно массы мономера).

Источники информации

1. Герасин В.А., Антипов Е.М., Карбушев В.В. и др. Новые подходы к созданию гибридных полимерных нанокомпозитов: от конструкционных материалов к высокотехнологичным применениям. // Успехи химии. 2013. Т.82. №4. С. 303-332.

2. Карпачева Г.П. Гибридные магнитные нанокомпозиты, включающие полимеры с системой сопряжения. // Высокомолек. соед.С. 2016. Т. 58. №1. С. 142-158.

3. Iijima S. Helical microtubules of graphitic carbon. // Nature. 1991. V. 354. №7. P. 56-58.

4. Yang C, Du J., Peng Q. et al. Polyaniline / Fe3O4 Nanoparticle Composite: Synthesis and Reaction Mechanism. // J. Phys. Chem. B. 2009. V. 113. №15. P. 5052-5058.

5. Ozkan S.Zh., Eremeev I.S., Karpacheva G.P. et al. Oxidative polymerization of N-phenylanthranilic acid in the heterophase system. // Open J. Polym. Chem. 2013. V. 3. №3. P. 63-69.

6. Озкан С.Ж., Еремеев И.С., Карпачева Г.П. и др. Полимеры дифениламин-2-карбоновой кислоты: синтез, структура и свойства. // Высокомолек. соед. Б. 2013. Т. 55. №3. С. 321-329.

7. Еремеев И.С., Озкан С.Ж., Карпачева Г.П. и др. Гибридный дисперсный магнитный наноматериал на основе полидифениламин-2-карбоновой кислоты и Fe3O4 // Российские нанотехнологии. 2014. Т. 9. №1-2. С. 49-54.

8. Karpacheva G.P., Ozkan S.Zh., Eremeev I.S. et al. Synthesis of hybrid magnetic nanomaterial based on polydiphenylamine-2-carboxylic acid and Fe3O4 in the interfacial process. // Eur. Chem. Bull.2014. V. 3. №10. P. 1001-1007.

9. Suckeveriene R.Y., Zelikman E., Mechrez G. et al. Synthesis of Hybrid Polyaniline / Carbon Nanotube Nanocomposites by Dynamic Interfacial Inverse Emulsion Polymerization Under Sonication. // J. Appl. Polym. Sci. 2011. V. 120. №2. P. 676-682.


НАНОКОМПОЗИТНЫЙ МАГНИТНЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ
НАНОКОМПОЗИТНЫЙ МАГНИТНЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ
НАНОКОМПОЗИТНЫЙ МАГНИТНЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ
НАНОКОМПОЗИТНЫЙ МАГНИТНЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ
НАНОКОМПОЗИТНЫЙ МАГНИТНЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ
НАНОКОМПОЗИТНЫЙ МАГНИТНЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ
НАНОКОМПОЗИТНЫЙ МАГНИТНЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ
НАНОКОМПОЗИТНЫЙ МАГНИТНЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ
НАНОКОМПОЗИТНЫЙ МАГНИТНЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ
НАНОКОМПОЗИТНЫЙ МАГНИТНЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ
НАНОКОМПОЗИТНЫЙ МАГНИТНЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ
НАНОКОМПОЗИТНЫЙ МАГНИТНЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ
Источник поступления информации: Роспатент

Showing 61-70 of 141 items.
29.12.2017
№217.015.fe80

Интегрированный мембранно-каталитический реактор и способ совместного получения синтез-газа и ультрачистого водорода

Изобретение относится к области получения перспективных энергоносителей, в частности к реактору и способу совместного получения синтез-газа и ультрачистого водорода путем конверсии различного органического сырья, и может быть использовано при получении топливных элементов, полупроводников, в...
Тип: Изобретение
Номер охранного документа: 0002638350
Дата охранного документа: 13.12.2017
20.01.2018
№218.016.143d

Способ переработки горючего сланца

Изобретение относится к способу получения из горючих сланцев топливно-энергетических и химических продуктов, в частности моторных топлив. Измельченный горючий сланец (ГС) смешивают с измельченным твердым органическим компонентом, температура максимальной скорости разложения вещества которого...
Тип: Изобретение
Номер охранного документа: 0002634725
Дата охранного документа: 03.11.2017
20.01.2018
№218.016.1452

Аддитивный сополимер 3,3,4-трис(триметилсилил)трициклононена-7 и 3-триметилсилилтрициклононена-7, способ его получения и способ разделения газовых смесей с его применением

Изобретение относится к синтезу новых аддитивных сополимеров на основе трициклононенов и разделению газовых смесей с помощью мембран на основе этих сополимеров. Предложен аддитивный сополимер 3,3,4-трис(триметилсилил)трициклононена-7 и 3-триметилсилилтрициклононена-7 формулы (I), где n и m –...
Тип: Изобретение
Номер охранного документа: 0002634724
Дата охранного документа: 03.11.2017
20.01.2018
№218.016.1631

Нанокомпозитный магнитный материал на основе поли-3-амино-7-метиламино-2-метилфеназина и наночастиц feo, закрепленных на одностенных углеродных нанотрубках, и способ его получения

Изобретение относится к области создания новых нанокомпозитных материалов на основе электроактивных полимеров с системой сопряжения и магнитных наночастиц FeO, закрепленных на одностенных углеродных нанотрубках, и может быть использовано в органической электронике и электрореологии для создания...
Тип: Изобретение
Номер охранного документа: 0002635254
Дата охранного документа: 09.11.2017
20.01.2018
№218.016.16c6

Гибридный материал на основе поли-3-амино-7-метиламино-2-метилфеназина и одностенных углеродных нанотрубок и способ его получения

Изобретение предназначено для органической электроники, электрореологии, медицины и может быть использовано при изготовлении микроэлектромеханических систем, тонкопленочных транзисторов, нанодиодов, наноэлектропроводов, модулей памяти, электрохимических источников тока, перезаряжаемых батарей,...
Тип: Изобретение
Номер охранного документа: 0002635606
Дата охранного документа: 14.11.2017
20.01.2018
№218.016.171b

Интегрированный мембранно-каталитический реактор и способ совместного получения синтез-газа и ультрачистого водорода

Изобретение относится к области получения синтез-газа и ультрачистого водорода путем конверсии различного органического сырья и интегрированному мембранно-каталитическому реактору для осуществления способа и может быть использовано в получении топливных элементов, полупроводников, химическом...
Тип: Изобретение
Номер охранного документа: 0002635609
Дата охранного документа: 14.11.2017
13.02.2018
№218.016.1fa7

Способ получения наноразмерного катализатора синтеза фишера-тропша и способ синтеза фишера-тропша с его применением

Изобретение относится к нефтехимической промышленности, а именно к способам получения алифатических углеводородов из оксида углерода и водорода, и может быть использовано в нефтепереработке и нефтехимии. Способ получения наноразмерного катализатора трехфазного синтеза Фишера-Тропша, содержащего...
Тип: Изобретение
Номер охранного документа: 0002641299
Дата охранного документа: 17.01.2018
10.05.2018
№218.016.446b

Способ получения синтетической нефти из природного или попутного нефтяного газа (варианты)

Настоящее изобретение относится вариантам способа получения синтетической нефти из природного или попутного нефтяного газа. Один из вариантом способа включает стадию синтеза оксигенатов из исходного синтез-газа, полученного из указанного сырья, в присутствии металлооксидного катализатора, с...
Тип: Изобретение
Номер охранного документа: 0002649629
Дата охранного документа: 05.04.2018
10.05.2018
№218.016.4703

Способ измерения скорости циркуляции мелкодисперсного катализатора

Изобретение относится к химической технологии и может быть использовано в процессах с циркулирующим потоком мелкодисперсного катализатора. Способ определения скорости циркуляции мелкодисперсного катализатора в линии циркуляции между реактором и регенератором, включающей подъемник катализатора,...
Тип: Изобретение
Номер охранного документа: 0002650623
Дата охранного документа: 16.04.2018
10.05.2018
№218.016.4c18

Способ получения винилиденовых олефинов

Изобретение относится к области промышленного получения ненасыщенных углеводородов с заданной структурой, а именно к способу получения винилиденовых олефинов. Способ включает димеризацию альфа-олефинов, таких как гексен-1, октен-1, децен-1, в присутствии продукта взаимодействия...
Тип: Изобретение
Номер охранного документа: 0002652118
Дата охранного документа: 25.04.2018
Showing 11-14 of 14 items.
20.02.2019
№219.016.c03a

Способ получения термостабильного нанокомпозита cu/полиакрилонитрил

Изобретение относится к нанотехнологии изготовления термостабильного нанокомпозита Cu/полиакрилонитрил (ПАН). Описан способ получения термостабильного нанокомпозита Cu/ПАН, включающий приготовление смеси CuCl, HNO (С=37%) и ПАН (М=1×10), выдерживание до растворения CuCl и ПАН в HNO, выпаривание...
Тип: Изобретение
Номер охранного документа: 0002330864
Дата охранного документа: 10.08.2008
24.06.2020
№220.018.2998

Нанокомпозитный магнитный материал на основе полидифениламина и наночастиц co-fe и способ его получения

Изобретение относится к области создания новых структурированных гибридных нанокомпозитных магнитных материалов на основе электроактивных полимеров. Гибридный нанокомпозитный магнитный материал включает полимерную матрицу - полидифениламин (ПДФА) и диспергированные в ней металлические...
Тип: Изобретение
Номер охранного документа: 0002724251
Дата охранного документа: 22.06.2020
17.06.2023
№223.018.7fb2

Нанокомпозитный магнитный материал на основе полисопряженного полимера и смеси магнитных наночастиц и способ его получения

Настоящее изобретение относится к группе изобретений: нанокомпозитный магнитный материал; способ получения нанокомпозитного магнитного материала. Нанокомпозитный магнитный материал включает полимерную матрицу из полисопряженного полимера, в которой диспергированы кобальт- и железосодержащие...
Тип: Изобретение
Номер охранного документа: 0002768158
Дата охранного документа: 23.03.2022
17.06.2023
№223.018.7fb5

Нанокомпозитный электромагнитный материал и способ его получения

Настоящее изобретение относится к группе изобретений: полимер-металл-углеродный нанокомпозитный электромагнитный материал, способ получения полимер-металл-углеродного нанокомпозитного электромагнитного материала. Полимер-металл-углеродный нанокомпозитный электромагнитный материал включает...
Тип: Изобретение
Номер охранного документа: 0002768155
Дата охранного документа: 23.03.2022
+ добавить свой РИД