×
29.05.2018
218.016.5998

Результат интеллектуальной деятельности: СТЕНД ДЛЯ МОДЕЛИРОВАНИЯ ПРОЦЕССА ДЕСУБЛИМАЦИИ КОМПОНЕНТОВ ГАЗОВОЙ СМЕСИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к моделированию сложных технологических процессов, протекающих, например, при очистке гексафторида урана от летучих компонент. При использовании в производственных целях установка может быть использована при очистке гексафторида урана от легколетучих примесей, для улучшения качества и снижения себестоимости продукции газоразделительных производств. Стенд для моделирования процесса десублимации компонентов газовой смеси содержит теплоизолированный сосуд охлаждения (5), который может быть заполнен жидким охлаждающим агентом и в котором размещена осадительная ёмкость (3), снабженная патрубком подачи газовой смеси (9) и отсосным патрубком (10), соединённым с системой откачки (8) и оборудованным блоком контрольно-измерительных приборов (7). Сосуд охлаждения дополнительно оборудован воздушным теплообменником (4), выполненным в виде спирального трубопровода, примыкающего к стенкам осадительной емкости и соединенного теплоизолированными трубопроводами (2) с воздушно-холодильной машиной ВХМ (1) для подачи холодного воздуха. Патрубок подачи газовой смеси (9) дополнительно оборудован патрубком подачи имитатора газовой смеси (13), соединенным с мерной емкостью (6). Имитатор газовой смеси представляет собой газовую смесь известной концентрации. Воздушный теплообменник снабжен патрубком подачи отепленного воздуха (12) для проведения процесса сублимации конденсата в осадительной емкости. Технический результат: нахождение оптимальных технологических параметров десублимации, расширение функциональных возможностей конденсационно-испарительной установки, упрощение и удешевление технологического процесса. 4 ил.

Изобретение относится к моделированию сложных технологических процессов, протекающих, например, при очистке гексафторида урана от экологически опасных летучих компонент. Получаемые на стенде экспериментальные данные могут быть использованы для моделирования газодинамических процессов течения хладоносителя (охлажденного воздуха), процессов теплообмена воздуха со стенками емкости, тепло- и массообмена при конденсации газа в емкостях, построения математической модели тепло- и массообменных процессов при десублимации компонентов газовой смеси и т.п. При использовании в производственных целях установка может быть использована при очистке гексафторида урана от легколетучих примесей, для улучшения качества и снижения себестоимости продукции газоразделительных производств.

В технологии получения обогащенного по U235 гексафторида урана существуют достаточно жесткие ограничения на содержание легких летучих примесей (компоненты воздуха, F2, HF, гексафториды молибдена и вольфрама и др.) в сырьевом и в товарном продукте. Суммарное содержание примесей в сырьевом ГФУ не должно превышать 0,05 мас.%. Примеси негативно сказываются на работе газоразделительного оборудования, влияя на его долговечность и качество товарного продукта.

Известна установка для очистки гексафторида урана от легколетучих примесей по патенту RU 2472710 (2013 г.). Газовую смесь, содержащую гексафторид урана, переводят в жидкое состояние с специальном контейнере, жидкий гексафторид урана при температуре 80÷100°С выдерживают в этом контейнере в течение времени, достаточного для сосредоточения легколетучих примесей в поверхностном слое жидкости и формирования в нижних слоях очищенного гексафторида урана, после чего очищенный гексафторид урана переливают в другой контейнер. Недостатком установки и способа, который на ней реализуется, является длительность процесса, недостаточная степень очистки, при которой часть продукта остается загрязненной, а токсичные примеси сложно утилизировать.

Известна конденсационно-испарительная установка КИУ К-09 [1]. Система К-09, предназначенная для конденсации примесей производства, представляет собой сложную конфигурацию технологических линий, скомпонованных в установку по признаку использования криогенной температуры хладоносителя.

Известная установка представляет собой разветвленную централизованную сеть коммуникаций и емкостей. Конденсация осуществляется в емкостях объемом 24 литра, охлаждаемых жидким азотом. Система охлаждения емкостей децентрализованная. Заправка азота в индивидуальный сосуд охлаждения (дьюар), имеющий экранно-вакуумную изоляцию, производится вручную. Всего в составе установки 64 емкости. В работе постоянно находится до 18 емкостей. Осадители V=24 л (черт. Т-3924-00), являющиеся элементами отсосной системы, устанавливаются в стационарные дьюары и охлаждаются до температуры минус 196°С жидким азотом, который заливается из переносных дьюаров. Уровень жидкого азота при работе осадителей поддерживается не ниже 1/3 высоты емкости.

Для эксплуатации системы функционирует производство по получению и хранению жидкого азота. Суточный расход жидкого азота до 2000 кг. Годовое потребление жидкого азота составляет 547500 кг. Потери при транспортировке, хранении и переливах жидкого азота составляют около 15%, что приводит к существенным финансовым затратам.

Применение жидкого азота в качестве холодоносителя энергетически и материально затратно. В пересчете на тепловые затраты потребление азота для работы установки эквивалентно 2528 ккал/ч. Такое количество тепловой энергии можно отвести с применением холодного воздуха, вырабатываемого воздушно-холодильной машиной ВХМ-0,54/0,6 (производительность 5000 ккал/ч с рабочей температурой 133 К). При этом эксплуатационные затраты при генерации холода в несколько раз ниже, чем при использовании сжиженных газов (выбрано за прототип).

Аналог описан в рабочей инструкции по эксплуатации конденсационно-испарительных установок КИУ К-09. Сибирский химический комбинат. 1998. 168 л.

Технической задачей является расширение функциональных возможностей десублиматора, упрощение и удешевление технологического процесса.

Задача решается новой конструкцией стенда для моделирования процесса десублимации компонентов газовой смеси. Стенд, как и прототип, содержит теплоизолированный сосуд охлаждения (5), который может быть заполнен жидким охлаждающим агентом и в котором размещена осадительная емкость (3), снабженная патрубком подачи газовой смеси (9) и отсосным патрубком (10), соединенным с системой откачки (8) и оборудованным блоком контрольно-измерительных приборов (7). Стенд может быть смонтирован на действующей производственной линии и использован как в виде локального участка производственного оборудования, так и в виде самостоятельно изготовленного устройства.

Новым является то, что сосуд охлаждения дополнительно оборудован воздушным теплообменником (4), выполненным в виде спирального трубопровода, примыкающего к стенкам осадительной емкости и соединенного теплоизолированными трубопроводами (2) с воздушно-холодильной машиной (1) для подачи холодного воздуха, а патрубок подачи газовой смеси (9) дополнительно оборудован мерной емкостью (6) с газовой смесью известного состава (с имитатором газовой смеси), которая патрубком (13) соединена с патрубком подачи газовой смеси (9), при этом воздушный теплообменник снабжен патрубком подачи отепленного воздуха (12) для проведения процесса сублимации конденсата в осадительной емкости (3) и перегонки его в исходную мерную емкость (6).

Для осуществления процесса моделирования можно использовать воздушную холодильную машину, известную из патента RU №148542 (2014 г.). При заполнении сосуда охлаждения (5) жидким азотом через устройство для заправки (11) и отключении мерной емкости (6) стенд работает в составе конденсационно-испарительной установки в режиме прототипа.

Согласно изобретению моделирование тепломассообменных процессов, протекающих в производственном процессе, обеспечивается введением в состав стенда мерной емкости (6) с имитатором газовой смеси. При исследовании тепломассообменных процессов в десублиматор подают не реальную газовую смесь, параметры которой неизвестны, а перекрывают вход в патрубок (9) и подают газовую смесь известной концентрации из мерной емкости (6), то есть «вариант» газовой смеси.

На фиг. 1 показана схема испытательного стенда.

Цифрами обозначены:

1 - воздушная холодильная машина;

2 - теплоизолированные трубопроводы подачи холодного или отепленного воздуха;

3 - осадительная емкость сублиматов (осадитель, десублиматор);

4 - воздушный теплообменник;

5 - теплоизолированный сосуд охлаждения осадительной емкости;

6 - мерная емкость (объем с газовой смесью, моделирующей тепло-массообменные процессы – имитатором газовой смеси);

7 - блок контрольно-измерительных приборов;

8 - система откачки;

9 - патрубок подачи газовой смеси в осадитель;

10 - отсосный патрубок;

11 - устройство для заправки сосуда охлаждения жидким хладоагентом;

12 - патрубок для подачи отепленного воздуха;

13 - патрубок подачи исследуемой газовой смеси (имитатора газовой смеси).

Устройство 11 для заправки сосуда охлаждения жидким азотом предусмотрено на случай аварийного отключения подачи холодного воздуха в воздушный теплообменник. Элементы установки приведены на фиг. 2 и фиг. 3.

Пример. Мерная емкость V=0,5 л с безводным фтористым водородом была подсоединена к экспериментальному стенду посредством патрубка (13), стенд вакуумирован до давления не более 50 мкм рт. ст. и проверен на вакуумную плотность. Путем троекратного напуска и откачки безводного фтористого водорода были пропассивированы внутренние поверхности стенда. Фиксируется изменение во времени массы газа в мерном объеме. Фиксируется изменение во времени давления газа в емкости и в мерном объеме. Фиксируются все температуры с датчиков температуры.

Измерялось давление насыщенного пара безводного фтористого водорода. Эксперимент проводился в следующем порядке (см. фиг. 1):

1. Осадитель (3) промораживался холодным воздухом, подаваемым от ВХМ (1), от Т=88 К до Т=93 К, не менее 2 часов.

2. После достижения рабочей температуры в осадительной емкости включается подача газовой смеси (HF) из мерного объема. Исходное вещество из пробоотборной мерной емкости (6) подавалось в осадительную емкость (3) приоткрытием вентиля емкости (6), при этом вход в патрубок (9) перекрыт.

3. После 10-минутной выдержки регистрировалось давление в емкостях стенда по показаниям приборов, а также температура холодного воздуха, подаваемого от ВХМ в теплообменник.

4. Увеличивалась уставка (задаваемое значение) температуры охладителя на 10 К.

5. После выдержки в течение одного часа и отепления посредством патрубка 12 осадителя (3) фиксировалось давление в емкостях стенда, а также в линиях газопроводов. Температура подаваемого от ВХМ воздуха снова ступенчато увеличивалась на 10 К.

6. Регистрация давления в осадителе производилась в интервале температур от Т=88 К до Т=198 К с шагом в 10 К. При необходимости в осадитель подавалось дополнительное количество фтористого водорода для обеспечения его насыщения.

7. После отепления стенда до температуры минус 60°С производилась прокачка стенда вакуумным насосом (8) до минимального давления.

8. Осадитель вновь промораживался аналогично пункту 1 и процесс измерения повторялся.

На фиг. 4. приведены результаты эксперимента по фтористому водороду, в том числе с примесью воздуха, позволяющие провести модернизацию оборудования, что показывает работоспособность и эффективность предложенного стенда без использования сжиженного азота или другого дорогостоящего охладителя.

Появляется возможность моделировать тепломассообменные процессы химического производства не только на экологически опасных смесях (фтористый водород, газообразный фтор), но и с использованием безопасных имитаторов, например этилового спирта, фреона-R22 и др.

Источники информации

1. Патент RU 2472710 (2013 г.).

2. Инструкция (рабочая) по эксплуатации оборудования. ТОМ 1 (Эксплуатация конденсационно-испарительных установок - КИУ К-09). Сибирский химический комбинат. 1998. 168 л.

3. Патент RU 148542 (2014 г.).

Стенд для моделирования процесса десублимации компонентов газовой смеси, содержащий теплоизолированный сосуд охлаждения (5), который может быть заполнен жидким охлаждающим агентом, в котором размещена осадительная ёмкость (3), снабженная патрубком подачи газовой смеси (9) и отсосным патрубком (10), соединённым с системой откачки (8) и оборудованным блоком контрольно-измерительных приборов (7), отличающийся тем, что сосуд охлаждения дополнительно оборудован воздушным теплообменником (4), выполненным в виде спирального трубопровода, примыкающего к стенкам осадительной емкости и соединенного теплоизолированными трубопроводами (2) с воздушно-холодильной машиной (1) для подачи холодного воздуха, а патрубок подачи газовой смеси (9) дополнительно оборудован патрубком подачи имитатора газовой смеси (13), соединенным с мерной емкостью (6), при этом воздушный теплообменник снабжен патрубком подачи отепленного воздуха (12) для проведения процесса сублимации конденсата в осадительной емкости и перегонки его в исходную мерную емкость имитатора газовой смеси.
СТЕНД ДЛЯ МОДЕЛИРОВАНИЯ ПРОЦЕССА ДЕСУБЛИМАЦИИ КОМПОНЕНТОВ ГАЗОВОЙ СМЕСИ
СТЕНД ДЛЯ МОДЕЛИРОВАНИЯ ПРОЦЕССА ДЕСУБЛИМАЦИИ КОМПОНЕНТОВ ГАЗОВОЙ СМЕСИ
СТЕНД ДЛЯ МОДЕЛИРОВАНИЯ ПРОЦЕССА ДЕСУБЛИМАЦИИ КОМПОНЕНТОВ ГАЗОВОЙ СМЕСИ
СТЕНД ДЛЯ МОДЕЛИРОВАНИЯ ПРОЦЕССА ДЕСУБЛИМАЦИИ КОМПОНЕНТОВ ГАЗОВОЙ СМЕСИ
Источник поступления информации: Роспатент

Showing 21-30 of 173 items.
10.05.2016
№216.015.3c12

Улучшенный способ аэрации водоемов

Изобретение относится к способам аэрации водоемов в морозный период. Способ включает нагнетание атмосферного воздуха под лед, вывешивание части ледового покрытия на расстоянии 5-20 см от водной поверхности путем откачивания воды из водоема на берег или сброса части воды через водопропускное...
Тип: Изобретение
Номер охранного документа: 0002583458
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3cbf

Способ получения нанокомпозита с двойным эффектом памяти формы на основе монокристаллов ферромагнитного сплава nifegaco

Изобретение относится к области металлургии, а именно к деформационно-термомеханической обработке монокристаллов ферромагнитных сплавов Ni-Fe-Ga-Co. Способ получения нанокомпозита с двойным эффектом памяти формы на основе монокристаллов ферромагнитного сплава NiFeGaCo включает отжиг...
Тип: Изобретение
Номер охранного документа: 0002583560
Дата охранного документа: 10.05.2016
27.05.2016
№216.015.42a7

Средство, стимулирующее нейрогенез при ишемических повреждениях головного мозга

Изобретение относится к медицине, а именно к фармакологии, и касается стимуляции нейрогенеза при ишемических повреждениях головного мозга. Для этого вводят п-тирозол в эффективном количестве. Это обеспечивает стимуляцию нейрогенеза и восстановление исходного уровня нейронов в гиппокампе в...
Тип: Изобретение
Номер охранного документа: 0002585094
Дата охранного документа: 27.05.2016
10.06.2016
№216.015.46ef

Полупроводниковый детектор с внутренним усилением на основе полуизолирующего арсенида галлия и способ его изготовления

Изобретение относится к радиографии, в частности к системам цифрового изображения в рентгеновских и гамма-лучах с помощью многоканальных полупроводниковых детекторов на основе полуизолирующего арсенида галлия. Предложенные конструкция и способ ее изготовления позволяют реализовать принцип...
Тип: Изобретение
Номер охранного документа: 0002586081
Дата охранного документа: 10.06.2016
20.08.2016
№216.015.4b06

Способ зажигания твердого химически активного топлива в жидкой среде

Изобретение относится к средствам механизации при проведении подводно-технических, аварийно-спасательных и судоподъемных работ с использованием топливного газогенератора. Способ зажигания твердого химически активного топлива (ТХАТ) в жидкой среде включает использование нагревательного элемента...
Тип: Изобретение
Номер охранного документа: 0002594935
Дата охранного документа: 20.08.2016
10.08.2016
№216.015.53a6

Способ получения мезопористого композитного сорбента

Изобретение относится к получению сорбентов, используемых для разделения органических веществ методом газовой хроматографии. Способ включает формирование на поверхности пористого носителя слоя мезопористого оксида кремния. Упомянутый слой получают путем растворения гексадецилтриметиламмония...
Тип: Изобретение
Номер охранного документа: 0002593768
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.5f04

Способ получения каллусной культуры болиголова пятнистого (conium maculatum l)

Изобретение относится к области биотехнологии. Изобретение представляет собой способ получения каллусной культуры болиголова пятнистого (Conium maculatum L), включающий в себя посадку семян в стерильный грунт, выращивание интактных растений в течение 1-2 месяцев с интенсивностью освещения 150...
Тип: Изобретение
Номер охранного документа: 0002590586
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.70a9

Полупроводниковый излучатель ик-диапазона

Изобретение относится к полупроводниковым источникам электромагнитного излучения, в частности к импульсным излучателям ИК-диапазона, и предназначено для использования в оптоэлектронных системах различного назначения. В S-диоде, содержащем π-ν-n структуру на основе арсенида галлия,...
Тип: Изобретение
Номер охранного документа: 0002596773
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7107

Сорбент для очистки сточных вод от соединений хрома(vi)

Изобретение относится к разработке состава сорбента, используемого для сорбции соединений хрома(VI). Сорбент для очистки сточных вод от соединений хрома(VI) представляет собой смесь оксидов церия(IV) и олова(IV). Изобретение позволяет увеличить сорбционную емкость и скорость сорбции дихромат...
Тип: Изобретение
Номер охранного документа: 0002596744
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.711a

Способ культивирования бактерий рода pseudomonas

Изобретение относится к биотехнологии и может быть использовано при производстве биотехнологических продуктов в экологической и сельскохозяйственной биотехнологии. Способ культивирования бактерий рода Pseudomonas предусматривает приготовление жидкой питательной среды, содержащей пептон,...
Тип: Изобретение
Номер охранного документа: 0002596405
Дата охранного документа: 10.09.2016
Showing 1-5 of 5 items.
20.01.2013
№216.012.1c30

Способ очистки гексафторида урана

Изобретение относится к технологии очистки гексафторида урана от легколетучих примесей и может быть использовано для улучшения качества и снижения себестоимости продукции газоразделительных производств. Способ очистки гексафторида урана от легколетучих примесей включает переведение гексафторида...
Тип: Изобретение
Номер охранного документа: 0002472710
Дата охранного документа: 20.01.2013
20.09.2015
№216.013.7cdf

Способ охлаждения газовой смеси

Изобретение относится к технологии раздельного извлечения компонент газовых смесей, в частности очистки гексафторида урана от легколетучих примесей. Способ охлаждения газовой смеси включает предварительную очистку сжатого атмосферного воздуха, предварительное захолаживание сжатого атмосферного...
Тип: Изобретение
Номер охранного документа: 0002563564
Дата охранного документа: 20.09.2015
13.01.2017
№217.015.776e

Аппарат для раздельного извлечения компонент газовой смеси

Изобретение относится к технологии раздельного извлечения компонент газовых смесей, в частности санитарной очистки фторсодержащих газовых смесей от гексафторида урана и фтористого водорода, и может быть использовано для улучшения качества и снижения себестоимости продукции газоразделительных...
Тип: Изобретение
Номер охранного документа: 0002599686
Дата охранного документа: 10.10.2016
10.05.2018
№218.016.4517

Способ фракционной разгонки газовой смеси, состоящей из гексафторида урана, фтористого водорода и примесей

Изобретение относится к химической и атомной областям промышленности и может быть использовано при производстве гексафторида урана в технологии обогащения урана. Способ фракционной разгонки газовой смеси, состоящей из гексафторида урана, фтористого водорода и примесей, включает...
Тип: Изобретение
Номер охранного документа: 0002650134
Дата охранного документа: 09.04.2018
29.11.2019
№219.017.e7d7

Рекуперативный способ наполнения метаном баллонов высокого давления и устройство для его осуществления

Изобретение относится к газовой энергетике и позволяет осуществлять наполнение метансодержащим газом высокого давления емкостей (баллонов, передвижных газовых реципиентов), пригодных для использования в качестве источника газомоторного топлива в транспортных средствах. Природный газ из...
Тип: Изобретение
Номер охранного документа: 0002707349
Дата охранного документа: 26.11.2019
+ добавить свой РИД