×
25.08.2017
217.015.bd09

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ СПЕКТРАЛЬНОГО СОСТАВА ИЗЛУЧЕНИЯ СОБСТВЕННЫХ И ПРИМЕСНЫХ ДЕФЕКТОВ В КВАРЦЕВОМ СЫРЬЕ

Вид РИД

Изобретение

Аннотация: Использование: для предварительной оценки качества кварцевого сырья. Сущность изобретения заключается в том, что выполняют отбор проб кварцевого сырья, прокаливание, получение спектров люминесценции приготовленных проб при рентгеновском возбуждении (спектры рентгенолюминесценции). Прокаливание производят до 500°С, получают спектры люминесценции приготовленных проб при рентгеновском возбуждении в оптическом диапазоне длин волн 200-800 нм, сравнивают спектральный состав излучения проб в прокаленных и непрокаленных пробах при различном времени рентгенизации (облучения) и определяют спектральный состав излучения собственных дефектов по усилению интенсивности излучения в полосах рентгенолюминесценции (λ, нм) 280, 320-340, 360-380, 390-400, 450-470 в прокаленных пробах; определяют спектральный состав излучения примесных дефектов по усилению интенсивности излучения в полосах рентгенолюминесценции (λ, нм) 330-360, 370-390, 390-420, 420-440, 470-520, 510-570 после повторного облучения. Технический результат: обеспечение возможности повышения экспрессности и надежности предварительной оценки качества кварцевого сырья. 6 ил.

Изобретение относится к области геологии, разработки и использования месторождений полезных ископаемых и может быть использовано на ранних этапах геолого-разведочных работ для предварительной оценки качества кварцевого сырья. Природное кварцевое сырье и получаемые из него особо чистые кварцевые концентраты находят широкое применение в различных отраслях промышленности высоких технологий – радиоэлектронной, полупроводниковой, светотехнической, оптической и др. Вопросы оценки качества сырья на ранних этапах геолого-разведочных работ остаются одними из самых актуальных. Важнейшими качественными показателями кварцевого сырья, пригодного для получения высокочистых кварцевых концентратов, являются концентрации элементов-примесей. Именно они создают примесные дефекты (структурные примеси) в кварце. Известно, что кварц характеризуется большим разнообразием структурных примесей или примесных дефектов (Al, Ge, Ti, ионы щелочных металлов, гидроксильные группировки и др.) и собственных дефектов. Для типизации природного кварцевого сырья по свойствам, определяющим качество концентрата, необходимо определение видового состава собственных и примесных дефектов в кварце. Известен люминесцентный способ исследования структурного несовершенства кварца, т.е. способ определения спектрального состава излучения примесных дефектов в кварцевом сырье, заключающийся в том, что по данным рентгено- и термолюминесцентного анализов судят о содержании SiO4/Na+ и AlO4/Li+ центров (Вотяков С.Л., Крохалев В.Я., Пуртов В.К., Краснобаев А.А.. Люминесцентный анализ структурного несовершенства кварца // Екатеринбург: УИФ "Наука", 1993. - с. 30-33). Положительным в известном способе является то, что в работе детально освещены центры люминесценции, отражающие степень микродефектности кварца. Недостатком является тот факт, что недоучтена роль AlO4/Na+ - центров и не учтена роль собственных дефектов в кварце (возбужденные кислородные состояния), которые могут интенсивно проявляться в спектрах рентгенолюминесценции особо чистого кварца. Известен способ определения состава собственных и примесных дефектов в кварцевом сырье, заключающийся в том, что проводят отбор мономинеральных образцов кварца, подвергают их термической обработке, облучают гамма-квантами дозой, переводящей изоморфный алюминий в парамагнитное состояние, измеряют методом электронного парамагнитного резонанса (ЭПР) концентрации структурных центров в отобранных образцах (Раков Л. Т. и др. "Новый метод оценки качества кварцевого сырья", Разведка и охрана недр, 1993, N 7, с. 36-38). Недостатком известного способа является то, что он включает ряд сложных операций: облучение образцов кварца гамма-квантами, измерение методом ЭПР концентраций структурных алюминиевых центров, высокотемпературную обработку образцов и значительные затраты исследуемого материала.

Наиболее близким по технической сущности является способ оценки качества кварцевого сырья (патент RU № 2400736, опубл. 27.09.2010, МПК GO1N23/223) (прототип), включающий отбор монофракций кварца, предварительное прокаливание до температуры 350-4500°С, получение спектра рентгенолюминесценции прокаленного кварца в спектральном диапазоне длин волн 350-550 нм с последующей оценкой дефектности структуры и качества кварцевого сырья по соотношению высвечивания примесных и собственных дефектов. Недастатком данного способа является тот факт, что люминесценция собственных и примесных дефектов определяется в узком диапазоне длин волн. Задачей настоящего изобретения является разработка способа определения спектрального состава излучения собственных и примесных дефектов в кварцевом сырье с целью повышения экспрессности и надежности предварительной оценки качества кварцевого сырья. Поставленная задача решается тем, что согласно прототипу осуществляется отбор монофракций кварца, прокаливание с последующим возбуждением рентгенолюминесценции, но в отличие от прототипа рентгенолюминесценцию возбуждают в более широком диапазоне длин волн 200-900 нм в не рокаленных и прокаленных пробах, используя различное время рентгенизации (облучения), и определяют наличие собственных дефектов (возбужденных кислородных состояний) по усилению после прокаливания полос рентгенолюминесценции (или любой из них) с максимальным излучением при (λ, нм): 280, 320-340, 360-380, 390-400, 450-470, 620, 670-680; и наличие примесных дефектов по наличию полос рентгенолюминесценции (или любой из них), усиливающихся после повторного облучения с максимальным излучением при (λ, нм): 330-360, 370-390, 390-420, 420-440, 470-520, 510-570.

Изобретение поясняется иллюстрациями.

Фиг. 1 – Центры люминесценции в кварце;

Фиг. 2 – Спектры рентгенолюминесценции кварца (Аргазинское месторождение, образец № Ар-151-12): влияние повторного облучения (РЛ1-1) и прокаливания (РЛ2) на люминесценцию кварца;

Фиг. 3 – Спектры рентгенолюминесценции кварца (Кузнечихинское месторождение, образец №1): РЛ1 – рентгенолюминесценция непрокаленного образца (время облучения – 8 минут); РЛ1-1 - рентгенолюминесценция того же образца, повторно облученного (повторная рентгенизация) (время облучения – 16 минут);

Фиг. 4 – Спектры рентгенолюминесценции кварца (Кузнечихинское месторождение, образец №1): РЛ1 – рентгенолюминесценция непрокаленного образца; РЛ2 - рентгенолюминесценция образца, прокаленного до 500°С;

Фиг. 5 – Спектры рентгенолюминесценции кварца (Уфимское месторождение, образец № Уф-133-12): влияние повторного облучения (РЛ1-1) и прокаливания (РЛ2) на люминесценцию кварца;

Фиг. 6 – Спектры рентгенолюминесценции кварца (Уфимское месторождение, образец № Уф-122-12): влияние повторного облучения (РЛ1-1) и прокаливания (РЛ2) на люминесценцию кварца.

В таблице на фигуре 1 дана интерпретация возможных центров люминесценции в кварце. Авторами предлагаемого изобретения экспериментально установлено, что отличительной особенностью люминесцентного способа определения спектрального состава излучения собственных и примесных дефектов в кварцевом сырье является предварительное прокаливание и использование различного по времени рентгеновского облучения, что позволяет выделить собственные и примесные дефекты, определить их долевое участие в люминесценции. Интенсивность люминесценции, связанной с собственными дефектами в кварце, растет после предварительного прокаливания, а люминесценция, связанная со структурной примесью в кварце, растет с ростом времени облучения при повторной рентгенизации. Без дополнительных лабораторных воздействий спектр люминесценции кварца чаще всего представляет собой широкую неэлементарную полосу излучения в оптическом диапазоне длин волн с перекрывающими друг друга спектральными характеристиками от различных центров излучения (фиг. 2, кривая РЛ1).

Ниже приведены примеры конкретного осуществления изобретения.

Исследования проводились на образцах кварца, взятых из кварцевых жил Уральских месторождений. В качестве источника возбуждения люминесценции использовался аппарат УРС-55 и рентгеновская трубка БСВ. Получаемые при этом возбуждении спектры рентгенолюминесценции снимались с помощью монохроматора МДР-12. Интенсивность излучения дана в относительных единицах. Причем 1 относительная единица в данном случае примерно равна 10-3 нит. Для всех проб снимались спектры рентгенолюминесценции в диапазоне длин волн 200-800 нм и проводился сравнительный анализ спектров рентгенолюминесценции, полученных до и после прокаливания до 500°С с различным временем облучения и с последующим определением спектрального состава излучения собственных и примесных дефектов в кварцевом сырье с учетом данных таблицы на фигуре 1. Для подтверждения данных люминесцентного анализа структурные примеси определяли в ФГУП «ЦНИИгеолнеруд» и в ЦКП геолого-географического факультета Томского государственного университета с помощью ICP-MS анализа.

Пример №1.

Готовили монофракцию кварца весом 20 мг (образец №1 из Кузнечихинского месторождения Уральской кварценосной провинции). Разделили монофракцию на две части. Для одной части снимали спектр рентгенолюминесценции в оптическом диапазоне длин волн 200-800 нм (без предварительного прокаливания) – РЛ1. Затем, не выключая рентгеновского возбуждения, для той же половины навески повторно снимали спектр рентгенолюминесценции в оптическом диапазоне длин волн 200-800 нм – РЛ1-1 (тем самым увеличивая время облучения образца в 2 раза) (фиг. 3). По отсутствию усиления свечения после повторного облучения в диапазонах длин волн (λ, нм) 330-360, 370-390, 390-420, 420-440, 470-500, 540-580 сделали вывод о том, что в образце №1 не обнаружены примесные дефекты (структурная примесь). Для другой половины приготовленной навески снимали спектр рентгенолюминесценции в оптическом диапазоне длин волн 200-800 нм после предварительного прокаливания проб до 500°С – РЛ2. Далее сравнили полученные спектры рентгенолюминесценции непрокаленных образцов (РЛ1) и прокаленных до 500°С (РЛ2) и по заметному усилению интенсивности излучения в прокаленных пробах по отношению кне прокаленным в диапазонах длин волн (λ, нм) 280-340, 360-380, 390-500, 500-700 сделали заключение о наличии собственных дефектов и их влиянии на люминесценцию кварца (фиг. 4). Используя таблицу на фигуре 1, сделали вывод о том, что спектральный состав излучения образца №1 обязан, в основном, центрам излучения, связанным с возбужденными кислородными состояниями (собственные дефекты). Чистота Кузнечихинского кварца в отношении структурных примесей и практически их отсутствие подтверждается рядом работ (Быдтаева Н.Г., Киселева P.A., Милеева И.М. Предварительная оценка качества кварцевого сырья с целью прогноза его технологических показателей // Результаты фундаментальных и прикладных исследований. Петрозаводск: КарНЦ. - 2006. - С. 117,118; Быдтаева Н.Г., Киселева P.A., Милеева И.М. Прогнозно-поисковые модели месторождений особо чистого кварца // Отечественная геология, 2006, № 4. С. 57-63; Белковский А.И. Минерагения месторождений особо чистого кварца “уфалейского” типа (Центрально-Уральское поднятие, Уфалейский метаморфический блок, Средний Урал) // Литосфера, №6. 2013. С. 78,79).

Пример №2

Готовили монофракцию кварца весом 20 мг (образец № Уф-133-12 из Уфимского месторождения Уральской кварценосной провинции). Разделили монофракцию на две части. Для одной части снимали спектр рентгенолюминесценции в оптическом диапазоне длин волн 200-800 нм (без предварительного прокаливания) – РЛ1. Затем, не выключая рентгеновского возбуждения, для той же половины навески повторно снимали спектр рентгенолюминесценции в оптическом диапазоне длин волн 200-800 нм – РЛ1-1 (тем самым увеличивая время облучения образца в 2 раза) (фиг. 5). По усилению свечения после повторного облучения в диапазонах длин волн (λ, нм) 330-360, 420-440, 470-500 сделали вывод о том, что в образце Уф-№133-12 присутствуют примесные дефекты (структурная примесь), образующие центры излучения TiO4/Li+ (330-360 нм), AlO44-/Na+ (420-440 нм), АlО44-/Li+ (470-500 нм) (фиг. 1). Для другой половины приготовленной навески снимали спектр рентгенолюминесценции в оптическом диапазоне длин волн 200-800 нм после предварительного прокаливания проб до 500°С – РЛ2. Далее сравнили полученные спектры рентгенолюминесценции не прокаленных образцов (РЛ1) и прокаленных до 500°С (РЛ2) и по заметному усилению интенсивности излучения в прокаленных пробах по отношению к не прокаленным в диапазоне длин волн 360-380 нм, сделали заключение о наличии собственных дефектов и их влиянии на люминесценцию кварца. Используя таблицу на фигуре 1, сделали вывод о том, что спектральный состав излучения образца № Уф-133-12 обязан как центрам излучения, связанным с возбужденными кислородными состояниями (360-380 нм), так и со структурными примесями: TiO4/Li+, AlO44-/Na+, АlО44-/Li+. Заключение о наличии структурных примесей Al, Ti, Li, Na в образце № Уф-133-12 подтверждено методом масспектрометрии, по которому в образце кварца № Уф-133-12 из Уфимского месторождения присутствуют примеси Al, Ti, Li, Na в количестве до 13,5 ppm (структурные примеси определяли в ФГУП «ЦНИИгеолнеруд» и в ЦКП геолого-географического факультета Томского государственного университета с помощью ICP-MS анализа).

Пример №3

Готовили монофракцию кварца весом 20 мг (образец №Уф-122-12 из Уфимского месторождения Уральской кварценосной провинции). Разделили монофракцию на две части. Описанным выше способом для двух приготовленных частей монофракции снимали спектры рентгенолюминесценции (фиг. 6). По очень слабому усилению свечения после повторного облучения (РЛ1-1) в диапазе длин волн 360-450 нм сделали вывод о том, что в образце № Уф-122-12 обнаружена незначительная доля примесных дефектов (структурной примеси). Используя таблицу на фигуре 1, сделали вывод о том, что за диапазон 360-450 нм в спектре люминесценции могут отвечать структурные примеси, образующие центры свечения AlO44-/Na+, АlО44-/Li+ (фиг. 1). Далее сравнили полученные спектры рентгенолюминесценции непрокаленных образцов (РЛ1) и прокаленных до 500°С (РЛ2) и по заметному усилению интенсивности излучения в прокаленных пробах по отношению к не прокаленным в диапазонах длин волн (λ, нм) 360-380, 390-500 сделали заключение о наличии собственных дефектов и их влиянии на люминесценцию кварца. Используя таблицу на фигуре 1, сделали вывод о том, что спектральный состав излучения образца № Уф-122-12 обязан, в основном, центрам излучения, связанным с возбужденными кислородными состояниями (360-380 нм, 390-500), то есть с собственными дефектами. Заключение о наличии незначительной доли структурных примесей Al, Li, Na в образце № Уф-122-12 подтверждено методом масспектрометрии, по которому в данном образце кварца из Уфимского месторождения присутствуют эти примеси в количестве до 8 ppm (структурные примеси определяли в ФГУП «ЦНИИгеолнеруд» и в Томском государственном университете).

Пример №4

Готовили монофракцию кварца весом 20 мг (образец №Ар-151-12 из Аргазинского месторождения Уральской кварценосной провинции). Разделили монофракцию на две части. Описанным выше способом для двух частей монофракции снимали спектры рентгенолюминесценции (фиг. 2). По усилению свечения после повторного облучения в диапазонах длин волн (λ, нм) 330-360, 420-440, 470-500, 510-570 сделали вывод о том, что в образце №Ар-151-12 обнаружены примесные дефекты (структурная примесь), образующие центры излучения TiO4/Li+, AlO44-/Na+, АlО44-/Li+, GeО44-/Li+ (фиг. 1). Далее сравнили полученные спектры рентгенолюминесценции непрокаленных образцов (РЛ1) и прокаленных до 500°С (РЛ2) и по заметному усилению интенсивности излучения в прокаленных пробах по отношению к непрокаленным в диапазоне длин волн 360-380 нм сделали заключение о наличии собственных дефектов и их влиянии на люминесценцию кварца в одном диапазоне. Используя таблицу на фигуре 1, сделали вывод о том, что спектральный состав излучения образца № №Ар-151-12 обязан, в основном, центрам излучения, связанным со структурными примесями TiO4/Li+, AlO44-/Na+, АlО44-/Li+, GeО44-/Li+ TiO4/Li+. Заключение о наличии структурных примесей Al, Ge, Ti, Li в образце №Ар-151-12 подтверждено данными метода масспектрометрии, по которым в образце кварца №Ар-151-12 из Аргазинского месторождения присутствуют эти примеси в количестве до 80 ppm (структурные примеси определяли в ФГУП «ЦНИИгеолнеруд» и в Томском государственном университете).

Таким образом, предложенный способ определения спектрального состава излучения собственных и примесных дефектов в кварцевом сырье с помощью спектров рентгенолюминесценции, полученных при различном времени облучения и при сравнении спектров рентгенолюминесценции не прокаленных и прокаленных до 500°С образцов кварца позволяет быстро и надежно определять спектральный состав излучения собственных и примесных дефектов в кварцевом сырье.

Способ определения спектрального состава излучения собственных и примесных дефектов в кварцевом сырье, включающий отбор проб кварцевого сырья, прокаливание, получение спектров люминесценции приготовленных проб при рентгеновском возбуждении (спектры рентгенолюминесценции), отличающийся тем, что прокаливание производят до 500°С, получают спектры люминесценции приготовленных проб при рентгеновском возбуждении в оптическом диапазоне длин волн 200-800 нм, сравнивают спектральный состав излучения проб в прокаленных и непрокаленных пробах при различном времени рентгенизации (облучения) и определяют спектральный состав излучения собственных дефектов по усилению интенсивности излучения в полосах рентгенолюминесценции (λ, нм) 280, 320-340, 360-380, 390-400, 450-470 в прокаленных пробах; определяют спектральный состав излучения примесных дефектов по усилению интенсивности излучения в полосах рентгенолюминесценции (λ, нм) 330-360, 370-390, 390-420, 420-440, 470-520, 510-570 после повторного облучения.
СПОСОБ ОПРЕДЕЛЕНИЯ СПЕКТРАЛЬНОГО СОСТАВА ИЗЛУЧЕНИЯ СОБСТВЕННЫХ И ПРИМЕСНЫХ ДЕФЕКТОВ В КВАРЦЕВОМ СЫРЬЕ
СПОСОБ ОПРЕДЕЛЕНИЯ СПЕКТРАЛЬНОГО СОСТАВА ИЗЛУЧЕНИЯ СОБСТВЕННЫХ И ПРИМЕСНЫХ ДЕФЕКТОВ В КВАРЦЕВОМ СЫРЬЕ
СПОСОБ ОПРЕДЕЛЕНИЯ СПЕКТРАЛЬНОГО СОСТАВА ИЗЛУЧЕНИЯ СОБСТВЕННЫХ И ПРИМЕСНЫХ ДЕФЕКТОВ В КВАРЦЕВОМ СЫРЬЕ
СПОСОБ ОПРЕДЕЛЕНИЯ СПЕКТРАЛЬНОГО СОСТАВА ИЗЛУЧЕНИЯ СОБСТВЕННЫХ И ПРИМЕСНЫХ ДЕФЕКТОВ В КВАРЦЕВОМ СЫРЬЕ
СПОСОБ ОПРЕДЕЛЕНИЯ СПЕКТРАЛЬНОГО СОСТАВА ИЗЛУЧЕНИЯ СОБСТВЕННЫХ И ПРИМЕСНЫХ ДЕФЕКТОВ В КВАРЦЕВОМ СЫРЬЕ
СПОСОБ ОПРЕДЕЛЕНИЯ СПЕКТРАЛЬНОГО СОСТАВА ИЗЛУЧЕНИЯ СОБСТВЕННЫХ И ПРИМЕСНЫХ ДЕФЕКТОВ В КВАРЦЕВОМ СЫРЬЕ
Источник поступления информации: Роспатент

Showing 121-130 of 176 items.
09.09.2018
№218.016.8534

Способ очистки нефтепродуктов от серосодержащих и ароматических углеводородов

Изобретение относится к технологии облагораживания нефтехимического сырья экстракционным способом и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Способ очистки нефтепродуктов от сульфидов полимерами включает добавление раствора полимера к раствору...
Тип: Изобретение
Номер охранного документа: 0002666362
Дата охранного документа: 07.09.2018
09.09.2018
№218.016.855c

Способ приготовления адсорбента-осушителя

Изобретение относится к способам приготовления алюмооксидного осушителя влагосодержащих газов – углеводородного, природного и других. Способ приготовления включает стадию получения псевдобемитсодержащего гидроксида алюминия гидратацией активного гидроксиоксида алюминия в слабокислом растворе,...
Тип: Изобретение
Номер охранного документа: 0002666448
Дата охранного документа: 07.09.2018
28.09.2018
№218.016.8c73

Биосовместимый материал

Изобретение относится к области медицинской техники, а именно к биосовместимому материалу, предназначенному для повышения жизнеспособности клеток костного мозга, на основе сплава никелида титана, отличающегося тем, что в состав сплава введено дополнительно серебро при полном ингредиентном...
Тип: Изобретение
Номер охранного документа: 0002668128
Дата охранного документа: 26.09.2018
04.10.2018
№218.016.8ed5

Способ изготовления мощного нитрид-галлиевого полевого транзистора

Изобретение относится к электронной технике и предназначено для создания дискретных приборов и сверхвысокочастотных интегральных схем с использованием полевых HEMT транзисторов. Техническим результатом является более качественное удаление электронного резиста в окнах резистной маски,...
Тип: Изобретение
Номер охранного документа: 0002668635
Дата охранного документа: 02.10.2018
13.10.2018
№218.016.91f0

Буровой раствор с содержанием высокозамещенного карбоксиметилированного крахмала

Изобретение относится к буровым растворам на водной основе и может найти применение при строительстве нефтяных и газовых скважин в условиях действия высоких забойных температур, а также повышенной минерализации буровых растворов. Технический результат - способность бурового раствора сохранять...
Тип: Изобретение
Номер охранного документа: 0002669314
Дата охранного документа: 10.10.2018
15.10.2018
№218.016.9247

Способ получения биодеградируемых композиционных материалов с открытой пористостью для восстановления костной ткани

Изобретение относится к области медицины, а именно к способу получения биодеградируемых композиционных материалов с открытой пористостью для восстановления костной ткани, включающему пропитку пористого керамического каркаса полимером, который отличается тем, что смесь гидроксиапатита с хлоридом...
Тип: Изобретение
Номер охранного документа: 0002669554
Дата охранного документа: 12.10.2018
25.10.2018
№218.016.95c8

Цифровой интегратор

Изобретение относится к областям радиотехники, измерительной и вычислительной техники и может быть использовано в устройствах интегрирования в системах цифровой обработки сигналов, системах управления и специализированных вычислительных устройствах. Технический результат заключается в...
Тип: Изобретение
Номер охранного документа: 0002670389
Дата охранного документа: 22.10.2018
30.11.2018
№218.016.a268

Способ очистки дизельного топлива от серосодержащих соединений

Настоящее изобретение относится к очистке углеводородного сырья, содержащего сернистые соединения, путем экстракции сернистых соединений (СС) в ионную жидкость, модифицированную солями переходных металлов, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности....
Тип: Изобретение
Номер охранного документа: 0002673539
Дата охранного документа: 28.11.2018
16.01.2019
№219.016.b01d

Полимерный реагент, обладающий улучшенными характеристиками диспергируемости, и способ его получения

Изобретение относится к растворимым в воде композициям водорастворимых простых эфиров полисахаридов (далее по тексту полимер), которые используются для получения однородных, не содержащих комков полимера растворов путем непосредственного введения композиции в системы на водной основе....
Тип: Изобретение
Номер охранного документа: 0002677205
Дата охранного документа: 15.01.2019
03.02.2019
№219.016.b6af

Гидротермальный способ получения биорезорбируемого керамического материала

Изобретение относится к гидротермальному способу получения биорезорбируемого материала на основе гидроксиапатита (ГА) с использованием микроволнового излучения (СВЧ). Способ включает приготовление и перемешивание смеси гидроксида кальция, концентрированного 60-80 %-ного раствора ортофосфорной...
Тип: Изобретение
Номер охранного документа: 0002678812
Дата охранного документа: 01.02.2019
Showing 101-104 of 104 items.
13.02.2018
№218.016.20fa

Способ обработки монокристаллов ферромагнитного сплава conial с содержанием ni 33-35 ат.% и al 29-30 ат.%

Изобретение относится к области металлургии, а именно к обработке монокристаллов ферромагнитного сплава CoNiAl с эффектом памяти формы, и может быть использовано для создания рабочего тела актуатора. Способ обработки монокристалла ферромагнитного сплава CoNiAl с содержанием Ni 33-35 ат. % и Al...
Тип: Изобретение
Номер охранного документа: 0002641598
Дата охранного документа: 18.01.2018
04.04.2018
№218.016.30d0

Способ обработки заготовок ванадиевых сплавов

Изобретение относится к металлургии, а именно к области радиационного материаловедения, и может быть использовано в технологических циклах получения полуфабрикатов сплавов на основе ванадия, легированных элементами Периодической системы элементов. Способ обработки заготовок ванадиевых сплавов...
Тип: Изобретение
Номер охранного документа: 0002644832
Дата охранного документа: 14.02.2018
01.03.2019
№219.016.d035

Способ разделения минералов меди и серебра из зон окисления сульфидных полиметаллических месторождений

Использование: для разделения минералов меди и серебра из зон окисления сульфидных полиметаллических месторождений. Сущность: заключается в том, что отбирают монофракции, возбуждают в них люминесценцию с помощью рентгеновской трубки, снимают спектр рентгенолюминесценции в спектральном диапазоне...
Тип: Изобретение
Номер охранного документа: 0002444724
Дата охранного документа: 10.03.2012
09.05.2019
№219.017.4f9e

Способ определения содержания серебра в йодидах

Изобретение относится к области диагностики йодидов из зон окисленных руд. Способ включает отбор монофракций, возбуждение в них люминесценции с последующим определением состава минерала. Люминесценцию возбуждают рентгеновскими лучами, снимают спектр рентгенолюминесценции в спектральном...
Тип: Изобретение
Номер охранного документа: 0002432555
Дата охранного документа: 27.10.2011
+ добавить свой РИД