×
09.09.2018
218.016.855c

Результат интеллектуальной деятельности: СПОСОБ ПРИГОТОВЛЕНИЯ АДСОРБЕНТА-ОСУШИТЕЛЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам приготовления алюмооксидного осушителя влагосодержащих газов – углеводородного, природного и других. Способ приготовления включает стадию получения псевдобемитсодержащего гидроксида алюминия гидратацией активного гидроксиоксида алюминия в слабокислом растворе, сушку и дальнейший помол. Псевдобемитсодержащий гидроксид алюминия пептизируют растворами основных гидроксидов, полученную пластичную массу формуют в виде экструдатов, сушат и подвергают термической обработке в потоке осушенного воздуха. Получен адсорбент-осушитель, содержащий компоненты в следующих концентрациях, мас.%: Na – 0,1-3,5%, K – 0,01-3%, Ba – 0,17-0,5%, γ-+χ-AlO - остальное. Технический результат заключается в повышении устойчивости сорбционных характеристик адсорбента в процессах динамической адсорбции воды в многократных циклах сорбции/десорбции. 2 з.п. ф-лы, 1 табл., 7 пр.

Изобретение относится к способам приготовления алюмооксидного осушителя влагосодержащих газов – углеводородного, природного и др.

В настоящее время в российской нефтегазовой и нефтегазоперерабатывающей промышленности требуется увеличение степени осушки влагосодержащих газов с использованием сравнительно доступных осушителей, производимых по малоотходным и энергосберегающим технологиям. Одной из них является технология быстрой термической обработки гидраргиллита горячими газами как с использованием пневмотранспорта (патент РФ № 2219128, опубл. 20.12.2003, С01F7/44), так и при движении порошка по вращающейся поверхности нагрева в поле центробежных сил (Патент РФ № 2360196, 27.06.2009, F26B17/10). По первому способу получают активный гидроксиоксид алюминия, именуемый в дальнейшем как продукт ТГА (термоактивированный гидроксид алюминия), по второму – продукт ЦТА (центробежная термическая активация).

Известны различные способы приготовления алюмооксидных осушителей влагосодержащих газов, однако они не лишены недостатков, среди которых – низкая сорбционная емкость, большое количество химически загрязненных стоков на стадиях приготовления, низкая механическая прочность гранул, неоптимальная с точки зрения гидродинамики и процесса динамической адсорбции паров воды форма гранул, несовершенные текстурные характеристики.

Наиболее часто в качестве алюмооксидных осушителей используют сорбенты на основе γ-Al2O3, получение которого ведут через технологию осаждения. Так, в патенте (Патент SU № 1658563, МПК С01F7/02, опубл. 20.02.1996) описан способ получения гранулированного γ-Al2O3 путем осаждения псевдобемита (бемита) азотной кислотой из раствора алюмината натрия при значениях pH=8,5-8,9. Осадок подсушивают, пептизируют в смесителе азотной кислотой при величине массового кислотного модуля (г кислоты/г Al2O3) 0,003-0,01, формуют в экструдаты цилиндрической формы путем выдавливания пасты через отверстие фильеры, сушат и прокаливают при температуре 500-600°С. В результате получают γ-Al2O3 с величиной удельной площади поверхности до 400 м2/г и суммарным объемом пор до 0,62 см3/г. Однако из-за отсутствия микро- и мелких мезопор адсорбент характеризуется низкой сорбционной емкостью, а сам способ – большим количеством стоков.

Описан способ (Патент SU № 524768, МПК С01F7/02, опубл. 15.08.1976) получения гидроксида алюминия, применяемого в качестве катализатора, адсорбента и носителя с высоким суммарным объемом пор (до 0,72 см3/г) и удельной площадью поверхности до 270 м2/г через гидратацию «аморфного» гидроксида алюминия в слабощелочной среде при pH=8-11 и температуре 50-80°С в течение длительного времени 20-80 ч. Способ требует отмывки продукта гидратации от примесного натрия и фильтрования с использованием специального фильтровального оборудования. Осадок, как и в предыдущем способе, пептизируют азотной кислотой, далее проводят гидротермальный синтез в автоклаве при температуре суспензии 100-140°С. Гранулы получают методом жидкостного формования охлажденной после гидротермального синтеза массы, сушат и прокаливают при 500-550°С в течение 4 ч. К недостаткам способа следует отнести использование дорогостоящей стадии гидротермального синтеза, кроме того осушитель, получаемый по этому способу отличается малой динамической емкостью, что связано с отсутствием микропор.

Известен способ (патент SU № 1731729, МПК С01F7/34, опубл. 07.05.1992) в котором к гидроксиду алюминия в форме псевдобемита и/или его смеси с «аморфной» составляющей или бемитом, полученному осаждением из алюминийсодержащего раствора, добавляют порошок байерита, полученный осаждением из раствора нитрата алюминия и аммиака, при их массовом соотношении (70-95):(30-5). Полученную смесь пластифицируют в смесителе с Z-образными лопастями, формуют при помощи шнекового экструдера в форме цилиндров, высушивают при температуре 110°С и подвергают термической обработке при 350-400°С. Получаемые образцы характеризуются высокими значениями величины удельной площади поверхности, вплоть до 620 м2/г. Однако динамическая емкость данных образцов не превышает 2,7 г H2O/100 г осушителя из-за отсутствия системы транспортных пор. К недостаткам способа можно отнести использование экологически вредной стадии «осаждения».

Наиболее близким по достигаемому эффекту и технической сущности является способ (патент RU № 2448905, МПК C01F7/44, 27.04.2012), в котором активный гидроксиоксид алюминия, например, продукт ЦТА или ТГА, гидратируют в щелочном или кислом растворе, сушат, размалывают, пластифицируют растворами кислот, формуют полученную пасту методом экструзии, сушат и прокаливают в токе осушенного воздуха. Гидратацию проводят как предварительного измельченного активного гидроксиоксида алюминия в реакторах с мешалкой, так и неизмельченного – в шаровой мельнице при различных соотношениях твердой и жидкой фазы. По способу получают осушитель смешенного фазового состава, содержащий в себе: η-, γ-Al2O3 и χ-Al2O3 в следующих соотношениях: χ-Al2O3 – 35-95%, η-Al2O3 + γ-Al2O3 – 5-65%. Величина удельной площади поверхности такого адсорбента находится в диапазоне от 275 до 400 м2/г при среднем диаметре пор 2,5-4,1 нм. Динамическая емкость по парам воды осушителя достигает 7,2 г H2O на 100 г адсорбента при температуре точки росы (т.т.р.) – 40°С. Вместе с тем, ресурсные испытания такого осушителя показали, что их динамическая емкость начиная с 10 цикла сорбции/десорбции снижается более чем на 30% и выходит на плато, что связано со «спеканием» заполненных молекулами воды микропор во время регенерации гранул адсорбента потоком горячего осушенного воздуха.

Изобретение решает задачу создания улучшенного способа приготовления высокоэффективного алюмооксидного осушителя, характеризующегося получением адсорбента с оптимальными пористой структурой, кислотно-основными свойствами поверхности и химическим составом, включающим в себя натрий, калий и барий, введение которых происходит на стадии пептизации псевдобемитсодержащего гидроксида алюминия.

Технический результат – использование приготовленного заявленным способом алюмооксидного осушителя в динамической адсорбции воды обеспечивает повышение устойчивости сорбционных характеристик адсорбента в многократных циклах сорбции/десорбции.

Задача решается приготовлением гранулированного мезопористого осушителя, состоящего, преимущественно из оксида алюминия, и включающего в себя добавки Na в количестве 0,1-3,5 мас. %, К – 0,01-3 мас. % и Bа – 0,17-0,5 мас. %, характеризующегося по данным рентгенофазового анализа фазовым составом γ-Al2O3 (до 40 мас. %) и χ-Al2O3 (до 60 мас. %), а по до данным инфракрасной спектроскопии наличием суперсильных и сильных основных центров с полосами поглощения CDCl3 130 см-1, 82-84 см-1 и 45-47 см-1. Введение в состав Na, K и Ba, обуславливающих образование суперсильных и сильных основных центров и оптимальной пористой структуры оксида алюминия, происходит путем пептизации псевдобемитсодержащего гидроксида алюминия водными растворами NaOH, KOH и Ba(OH)2. Далее пептизированную пластичную массу продавливают через фильеру с отверстиями, геометрия которых обеспечивает получение гранул в виде трилистника, квадролоба и пустотелых колец. Полученные гранулы сушат и далее прокаливают в потоке осушенного воздуха, что обеспечивает получение алюмооксидных осушителей с удельной площадью поверхности 250-350 м2/г, объемом мезопор (2-100 нм) – 0,3-0,6 см3/г при среднем диаметре пор 4-7 нм и механической прочности на раздавливание по образующей 15-30 МПа.

Отличительным признаком предлагаемого способа приготовления алюмооксидного адсорбента-осушителя по сравнению с прототипом является то, получаемый осушитель содержит, мас. %: Na – 0,1-3,5; K – 0,01-3 и Ba – 0,17-0,5. Выход содержания и массового соотношения образующих суперсильные и сильные основные центры щелочноземельных металлов за заявленные границы приводит к уменьшению динамической емкости по парам воды осушителя и снижению стойкости к спеканию наиболее мелких пор.

Вторым существенным отличительным признаком предлагаемого способа приготовления адсорбента-осушителя является то, что в предлагаемом способе в результате экструзии через фильеру образуются гранулы в виде трилистника, квадролоба и пустотелого цилиндра, за счет чего повышается степень использования поверхности гранул и, как следствие, возрастает величина динамической емкости адсорбентов по сравнению с адсорбентами, сформованными в виде гранул цилиндрической формы, на 10-15%.

Технический результат предлагаемого способа приготовления алюмооксидного адсорбента-осушителя складывается из следующих составляющих:

1. Заявленный способ обеспечивает получение адсорбента-осушителя, имеющего суперсильные и сильные основные центры, обуславливающие активное протекание химической адсорбции молекул воды на высокоразвитой поверхности оксида алюминия, в том числе при крайне низких значениях температуры точки росы осушаемого воздуха, и как следствие, высокую динамическую емкость.

2. Использование водорастворимых гигроскопичных основных гидроксидов обеспечивает формирование мезопористой структуры оксида алюминия на стадии термической обработки гидроксида алюминия на фоне сохранения высокой удельной площади поверхности, что предотвращает протекание процессов спекания, наиболее ярко выраженных для микропор и вызванного этим снижением динамической емкости адсорбентов-осушителей.

3. Особая форма гранул обеспечивает повышение степени использования поверхности гранул без внесения изменений в параметры процесса динамической адсорбции паров воды.

Следовательно, каждый существенный признак необходим, а их совокупность является достаточной для достижения новизны качества, не присущей признакам в разобщенности, то есть требуемый технический результат достигается не суммой эффектов, а новым эффектом суммы признаков.

Ниже приводится описание предлагаемого технического решения.

Сначала готовят псевдобемитсодержащий гидроксид алюминия, для чего берут широко представленный на отечественном рынке активный гидроксиоксид алюминия, например, продукт ТГА или ЦТА (лучше ЦТА), помещают в слабокислый раствор азотной кислоты при соотношении Твердое : Жидкое = 1 : 5, и ведут его гидратацию при температуре получаемой суспензии 75°С при интенсивном перемешивании в реакторе с мешалкой в течение 4-х ч. Количество азотной кислоты определяется исходя из необходимости вести синтез при pH=5-6.

На следующем этапе проводят разделение твердой и жидкой фазы суспензии на фильтре, например, нутч-фильтре. Полученный осадок сушат при температуре 110°С до сухого состояния.

Сухой осадок псевдобемитсодержащего гидроксида алюминия помещают в смеситель с Z-образными лопастями и при постоянном перемешивании порошка добавляют водные растворы NaOH и Ba(OH)2, или KOH и Ba(OH)2. Перемешивание ведут до получения однородной пластичной массы. Весь процесс пептизации занимает, как правило, не более 30 минут. Количество гидроксида алюминия и основных гидроксидов берут с учетом того, что кислотный модуль при пептизации составлял в случае пептизации NaOH и Ba(OH)2 – 0-0,15 моль NaOH/моль Al2O3 и 0,0015-0,004 моль Ba(OH)2/моль Al2O3, а в случае пептизации KOH и Ba(OH)2 – 0-0,08 моль KOH/моль Al2O3 и 0,0015-0,004 моль Ba(OH)2/моль Al2O3.

С целью удешевления получаемого адсорбента-осушителя при приготовлении пластичной массы в смеситель добавляют технический гидрат глинозема в количестве 5-20 мас. %, что не приводит к заметному изменению характеристик адсорбента-осушителя.

Полученную пластичную массу экструдируют через фильеру с отверстиями, формы и размеры которых обеспечивают получение экструдатов с поперечным сечением в виде трилистника или квадролоба с диаметром описанной окружности 1,6-4,2 мм, или пустотелого цилиндра, диаметром 4 мм с толщиной стенки 1 мм.

На заключительной стадии проводят термическую обработку сформованных гранул в потоке осушенного воздуха при температуре воздуха 500-600°С, объемной скорости подачи воздуха 500-3000 ч-1, скорости разогрева воздуха до рабочей температуры 25-50°С/ч, длительность термической обработки при этом составляет 4-8 ч.

В результате получают алюмооксидный адсорбент-осушитель, который полностью соответствует заявленным интервалам по содержанию щелочноземельных металлов, текстурным и основным характеристикам поверхности.

Сравнение образцов проводят по величине динамической емкости по парам воды, выраженной в массе поглощенного осушителем адсорбтива, отнесенной к 100 см3 адсорбента, на момент достижения воздухом на выходе из адсорбера температуры точки росы равной -40°С после одного и десяти циклов сорбции/десорбции.

Определение динамической емкости проводят путем пропускания насыщенного парами воды воздуха через слой адсорбента объемом 200 см3, находящегося в адсорбере диаметром 30 мм и высотой 400 мм при объемном расходе паровоздушной смеси 8,7 л/мин и абсолютном влагосодержании 15,6-16,6 г H2O/м3.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1. (Согласно известному техническому решению)

В емкость с 2 л дистиллированной воды при интенсивном и непрерывном перемешивании добавляют 500 г продукта ЦТА со средним размером частиц 5-15 мкм с потерями массы после прокаливания при 800°С равными 3%. Затем в емкость постепенно приливают раствор муравьиной кислоты до достижения величины кислотного модуля . Гидратацию ведут при постоянном перемешивании и без внешнего подогрева в течение 4 ч. Полученную суспензию, не отфильтровывая, помещают в сушильный шкаф и сушат при температуре 110°С в течение 24-х часов, после чего измельчают в шаровой мельнице также в течение 24-х ч до частиц средним размером 5-15 мкм.

Полученное в количестве 200 г связующее вещество – гидроксид алюминия со структурой псевдобемита и небольшими примесями байерита – помещают в смеситель с Z-образными лопастями. К 200 г связующего вещества добавляют 800 г гидраргиллита, предварительно размолотого на роторно-инерционной мельнице до частиц со средним размером 5-15 мкм.

Полученную смесь при непрерывном перемешивании пептизируют раствором азотной кислоты при . Перемешивание длится в течение 10-25 минут, во время которого приливают 1% раствор поливинилового спирта.

Полученную пластичную массу формуют в виде цилиндрических гранул, прокаливают в потоке осушенного воздуха при температуре 400°С и испытывают на динамическую емкость по парам воды. Результаты испытания приведены в таблице.

Примеры 2-6 иллюстрируют предлагаемое техническое решение.

Пример 2

Готовят псевдобемитсодержащий гидроксид алюминия, для чего берут 400 г измельченного любым способом порошка ЦТА до среднеобъемного размера частиц 5-25 мкм, добавляют при перемешивании в воду, нагретую до 75°С, приливают 3,5 мл азотной кислоты (70%) Гидратацию ведут в течение 4-х часов.

Суспензию подают на нутч-фильтр, и через фильтровальную ткань типа Бельтинг проводят разделение твердой и жидкой фазы.

Осадок сушат в сушильном шкафу при температуре 110°С до сухого состояния. После чего осадок помещают в смеситель с Z-образными лопастями, где при перемешивании проводят его пептизацию растворами NaOH и Ba(OH)2 при величине кислотного модуля 0,01 моль NaOH/моль Al2O3 и 0,004 моль Ba(OH)2/моль Al2O3. Смесь перемешивают в течение 30 минут.

Приготовленную пластичную массу формуют в шнеке-грануляторе через фильеру с отверстиями в виде трилистника с диаметром описанной окружности 1,6 мм.

Термическую обработку гранул проводят при температуре 500°С, объемной скорости подачи воздуха 500 ч-1, скорости разогрева воздуха до рабочей температуры 25°С/ч и длительности процесса 4 ч.

Далее часть образца объемом 200 см3 отбирают в термостойкую колбу с крышкой, помещают в вакуумный эксикатор над осушителем. Остывший до комнатной температуры образец загружают в адсорбер и проводят его испытание на динамическую емкость по парам воды в 10 циклах сорбции/десорбции.

Пример 3

Пример аналогичен примеру 2, за исключением того, что пептизацию псевдобемитсодержащего гидроксида алюминия проводят растворами KOH и Ba(OH)2 при величине кислотного модуля 0,005 моль KOH/моль Al2O3 и 0,004 моль Ba(OH)2/моль Al2O3.

Пример 4

Готовят псевдобемитсодержащий гидроксид алюминия, аналогично примеру 2. Гидроксид алюминия добавляют в смеситель с Z-образными лопастями, где при перемешивании проводят его пептизацию растворами NaOH и Ba(OH)2 при величине кислотного модуля 0,15 моль NaOH/моль Al2O3 и 0,0015 моль Ba(OH)2/моль Al2O3. Смесь перемешивают в течение 30 минут, в результате чего образуется пластичная масса.

Приготовленную пластичную массу формуют в шнеке-грануляторе через фильеру с отверстиями в виде квадролоба с диаметром описанной окружности 4,2 мм мм.

Термическую обработку гранул проводят при температуре 600°С, объемной скорости подачи воздуха 3000 ч-1, скорости разогрева воздуха до рабочей температуры 50°С/ч и длительности процесса 8 ч.

Пример 5

Готовят псевдобемитсодержащий гидроксид алюминия, аналогично примеру 2. Гидроксид алюминия добавляют в смеситель с Z-образными лопастями, где при перемешивании проводят его пептизацию растворами KOH и Ba(OH)2 при величине кислотного модуля 0,08 моль KOH/моль Al2O3 и 0,0015 моль Ba(OH)2/моль Al2O3. Смесь перемешивают в течение 30 мин, в результате чего образуется пластичная масса.

Приготовленную пластичную массу формуют в шнеке-грануляторе через фильеру с отверстиями в виде кольца с диаметром внешней окружности 4 мм, а внутренней 2 мм.

Термическую обработку гранул проводят при температуре 500°С, объемной скорости подачи воздуха 3000 ч-1, скорости разогрева воздуха до рабочей температуры 50°С/ч и длительности процесса 4 ч.

Пример 6

Готовят псевдобемитсодержащий гидроксид алюминия, аналогично примеру 2. Берут 380 г гидроксида алюминия и 20 г технического гидрата глинозема, добавляют их в смеситель с Z-образными лопастями. При непрерывном перемешивании проводят пептизацию смеси растворами KOH и Ba(OH)2 при величине кислотного модуля 0,08 моль KOH/моль Al2O3 и 0,0015 моль Ba(OH)2/моль Al2O3. Смесь перемешивают в течение 30 минут, в результате чего образуется пластичная масса.

Приготовленную пластичную массу формуют в шнеке-грануляторе через фильеру с отверстиями в виде кольца с диаметром внешней окружности 4 мм, а внутренней 2 мм.

Термическую обработку гранул проводят при температуре 500°С, объемной скорости подачи воздуха 3000 ч-1, скорости разогрева воздуха до рабочей температуры 50°С/ч и длительности процесса 4 ч.

Пример 7

Пример аналогичен примеру 5, за исключением того, что для пептизации берут 320 г гидроксида алюминия и 80 г технического гидрата глинозема.

Таким образом, как видно из таблицы, предлагаемый способ приготовления алюмооксидного адсорбента-осушителя позволяет повысить сорбционные характеристики (стойкость к ухудшению свойств) при проведении большого количества циклов сорбции/десорбции, что позволит увеличить эффективность процесса динамической адсорбции паров воды и увеличить ресурс используемого адсорбента до его замены в адсорберах.

Источник поступления информации: Роспатент

Showing 1-10 of 173 items.
10.07.2015
№216.013.5b6a

Способ получения катализатора на основе ceo-snо на стеклотканном носителе

Изобретение относится к способу получения катализатора на основе CeO-SnО на стеклотканном носителе. Данный способ включает подготовку носителя путем термической обработки при 500°С, нанесение спиртового пленкообразующего раствора методом вытягивания со скоростью 100 мм/мин, сушку при 60°С 1 ч и...
Тип: Изобретение
Номер охранного документа: 0002554943
Дата охранного документа: 10.07.2015
10.08.2015
№216.013.68bf

Катализатор переработки этанола и способ получения ацетальдегида и водорода из этанола с использованием этого катализатора

Изобретение относится к катализатору получения ацетальдегида и водорода из этанола. Данный катализатор представляет собой мезопористый силикагель (S =100-300 м/г) с нанесенным на его поверхность серебром в количестве 1-8% от массы катализатора, находящимся в высокодисперсном (наноразмерном)...
Тип: Изобретение
Номер охранного документа: 0002558368
Дата охранного документа: 10.08.2015
10.09.2015
№216.013.777b

Способ подготовки культур сульфидогенных бактерий для выделения днк

Изобретение относится к области биотехнологии. Предложен способ подготовки культур сульфидогенных бактерий для выделения ДНК. В способе используют 15 мл культуральной жидкости. Центрифугируют культуральную жидкость при 1000 об/мин. Проводят трехкратную отмывку клеток фосфатно-солевым буфером в...
Тип: Изобретение
Номер охранного документа: 0002562176
Дата охранного документа: 10.09.2015
27.10.2015
№216.013.88e2

Способ очистки донных отложений и воды от нефти и нефтепродуктов под ледовым покровом в водоемах

Способ включает размещение на водоеме источника сжатого воздуха и источника водовоздушной смеси, который подсоединен к водовоздушному шлангу, перед началом очистных мероприятий осуществляют гидроэкологическое обследование водоема по сетке станций, устанавливают направляющие каналы (основной и...
Тип: Изобретение
Номер охранного документа: 0002566645
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8b72

Способ получения сложного алюмината кальция-магния

Изобретение относится к люминофорам и может быть использовано при производстве материалов для источников и преобразователей света. Готовят рабочий раствор, содержащий следующие компоненты, мас.%: тетрагидрат нитрата кальция - 1,30-1,33; гексагидрат нитрата магния - 1,41-1,44; нонагидрат нитрата...
Тип: Изобретение
Номер охранного документа: 0002567305
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8bad

Способ предпосевной обработки семян зерновых культур

Изобретение относится к области сельского хозяйства, в частности к растениеводству, и может быть использовано для предпосевной обработки семян зерновых культур (пшеницы, ячменя, овса). Способ предпосевной подготовки семян зерновых культур включает обработку семян гликолурилом путем их...
Тип: Изобретение
Номер охранного документа: 0002567364
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8d8d

Способ определения селена(iv)

Группа изобретений относится к области аналитической химии, а именно к методам определения селена(IV), и может быть использована при его определении в фармацевтических препаратах, биологически активных добавках, питьевых и минеральных водах. Способы определения селена(IV) с использованием...
Тип: Изобретение
Номер охранного документа: 0002567844
Дата охранного документа: 10.11.2015
27.11.2015
№216.013.93a7

Способ зеленого черенкования плодовых и ягодных культур

Изобретение относится к области сельского хозяйства, в частности к садоводству. Способ включает размножение черенков годичного прироста длиной 15-20 см с 3-4 почками и двумя-тремя целыми листьями с последующей обработкой черенков перед посадкой. При этом черенки после оводнения в течение 1 часа...
Тип: Изобретение
Номер охранного документа: 0002569418
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.95d0

Способ увеличения семенной и сырьевой продуктивности посконника коноплевидного в условиях ex situ

Изобретение относится к области сельского хозяйства, селекции и семеноводства. Способ включает отбор молодых и средневозрастных генеративных особей в природных местах произрастания, изучение их морфобиологических особенностей, выявление вариабельности морфобиологических признаков и...
Тип: Изобретение
Номер охранного документа: 0002569972
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.97b8

Способ очистки донных отложений водоемов от нефти и нефтепродуктов и устройство для его осуществления

Изобретение относится к области охраны окружающей среды и предназначено для очистки природных и искусственных водоемов, дно которых загрязнено нефтью и нефтепродуктами. Способ очистки донных водоемов от нефти и нефтепродуктов включает отделение нефти и нефтепродуктов от донных отложений, подъем...
Тип: Изобретение
Номер охранного документа: 0002570460
Дата охранного документа: 10.12.2015
Showing 1-10 of 43 items.
27.08.2014
№216.012.f000

Катализатор получения элементной серы по процессу клауса, способ его приготовления и способ проведения процесса клауса

Изобретение относится к катализаторам, используемым для получения элементарной серы по процессу Клауса. Предлагаемый катализатор получения элементарной серы по процессу Клауса на основе оксида алюминия представляет собой смесь χ-, γ-AlO и рентгеноаморфной фазы оксида алюминия в следующем...
Тип: Изобретение
Номер охранного документа: 0002527259
Дата охранного документа: 27.08.2014
10.05.2015
№216.013.4a40

Способ регенерации катализаторов гидрирования растительных масел

Изобретение относится к способу регенерации никельсодержащего катализатора для проведения процессов гидрирования растительных масел в реакторах с перемешивающим устройством. Предлагаемый способ включает смешивание отработанного катализатора с тугоплавким жиром, формование полученной пасты в...
Тип: Изобретение
Номер охранного документа: 0002550515
Дата охранного документа: 10.05.2015
20.08.2016
№216.015.4bac

Способ активации катализатора для получения фторсодержащих углеводородов

Изобретение относится к области химической промышленности, к способу активации хромсодержащих катализаторов, которые могут использоваться в реакциях газофазного фторирования галогенированных углеводородов. Описан способ активации катализатора для получения фторсодержащих углеводородов...
Тип: Изобретение
Номер охранного документа: 0002594485
Дата охранного документа: 20.08.2016
25.08.2017
№217.015.97df

Катализатор процесса дегидратации этанола в этилен, способ его приготовления и способ получения этилена

Изобретение относится к способу получения этилена в процессе дегидратации этанола при помощи высокоактивных алюмооксидных катализаторов. Описан гранулированный наноструктурированный алюмооксидный катализатор, содержащий в своем составе оксид алюминия, натрий и дополнительно серу, или фосфор,...
Тип: Изобретение
Номер охранного документа: 0002609263
Дата охранного документа: 31.01.2017
26.08.2017
№217.015.d906

Носитель для катализаторов на основе оксида алюминия и способ его приготовления

Изобретение относится к способам получения носителей катализаторов различной геометрической формы на основе оксида алюминия со структурой корунда и может быть использовано в производстве катализаторов. Носитель для катализаторов на основе оксида алюминия со структурой корунда различной...
Тип: Изобретение
Номер охранного документа: 0002623436
Дата охранного документа: 26.06.2017
26.08.2017
№217.015.dca4

Катализатор окисления аммиака

Изобретение относится к катализаторам окисления аммиака блочной сотовой структуры, включающим в свой состав оксиды железа, алюминия, кремния и стабилизирующую добавку, при следующем соотношении компонентов: оксид железа - 65-80; оксид алюминия - 19-30; оксид кремния 0,01-5, стабилизирующая...
Тип: Изобретение
Номер охранного документа: 0002624218
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.e366

Способ приготовления катализатора гидроочистки сырья гидрокрекинга

Изобретение относится к способам приготовления катализаторов гидроочистки нефтяных фракций с температурой начала кипения выше 360°С для получения сырья с низким содержанием серы и азота, которое далее перерабатывается в процессе гидрокрекинга. Описан способ приготовления катализатора,...
Тип: Изобретение
Номер охранного документа: 0002626402
Дата охранного документа: 27.07.2017
26.08.2017
№217.015.e3d7

Способ приготовления катализатора гидроочистки углеводородного сырья

Изобретение относится к способам приготовления катализаторов для получения нефтяных дистиллятов с низким содержанием серы. Описан способ приготовления катализатора, заключающийся в пропитке носителя, который содержит, мас.%: борат алюминия AlBO со структурой норбергита - 5,0-25,0; натрий - не...
Тип: Изобретение
Номер охранного документа: 0002626399
Дата охранного документа: 27.07.2017
26.08.2017
№217.015.e44d

Катализатор гидроочистки углеводородного сырья

Изобретение относится к катализаторам получения нефтяных дистиллятов с низким содержанием серы. Описан катализатор, содержащий, мас. %: [Со(HO)(CHO)][MoO(CHO)] 33,0-43,0%; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия AlBO со структурой норбергита - 5,0-25,0; натрий -...
Тип: Изобретение
Номер охранного документа: 0002626398
Дата охранного документа: 27.07.2017
19.01.2018
№218.016.0037

Катализатор гидроочистки сырья гидрокрекинга

Изобретение относится к катализаторам предварительной гидроочистки нефтяных фракций с температурой начала кипения выше 360°С для получения сырья с низким содержанием серы, которое далее перерабатывается в процессе гидрокрекинга. Катализатор гидроочистки сырья гидрокрекинга включает в свой...
Тип: Изобретение
Номер охранного документа: 0002629358
Дата охранного документа: 29.08.2017
+ добавить свой РИД