×
04.04.2018
218.016.30d0

Результат интеллектуальной деятельности: СПОСОБ ОБРАБОТКИ ЗАГОТОВОК ВАНАДИЕВЫХ СПЛАВОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к металлургии, а именно к области радиационного материаловедения, и может быть использовано в технологических циклах получения полуфабрикатов сплавов на основе ванадия, легированных элементами Периодической системы элементов. Способ обработки заготовок ванадиевых сплавов включает гомогенизацию, многократную термомеханическую обработку путем пластической деформации и последующего отжига, стабилизирующий отжиг в вакууме, диффузионное легирование кислородом путем термообработки на воздухе и вакуумных отжигов и окончательную стабилизирующую термообработку. Гомогенизацию осуществляют при температуре 1000-1500°С в течение 1 часа, термомеханическую обработку осуществляют в три цикла путем деформации с обжатием ε=30-50% и отжига при температуре 450-700°С в течение 1 часа, стабилизирующий отжиг в вакууме проводят при температуре 1000°С в течение 1 часа. При диффузионном легировании кислородом термообработку на воздухе проводят при температуре не более 700°С, а вакуумные отжиги - при температуре 450-1000°С, затем осуществляют вакуумный отжиг при температуре 1000-1500°С, деформационную обработку при комнатной температуре до величины истинной логарифмической деформации е ≥ 1, а окончательную стабилизирующую термообработку проводят при температуре 700-1200°С в течение 1 часа. Повышается термическая стабильность микроструктуры и механических свойств ванадиевых сплавов. 2 ил., 1 табл., 2 пр.

Изобретение относится к области радиационного материаловедения и может быть использовано в технологических циклах получения полуфабрикатов сплавов на основе ванадия, легированных элементами IV (Zr, Ti), и VI (Cr, W) групп Периодической системы элементов и содержащих элементы внедрения (С, О, N) в количестве не менее 0.04 вес.%, используемых в качестве конструкционных материалов в ядерных реакторах деления и синтеза с разными типами теплоносителей (Li, Na, Pb, Pb-Li, Pb-Bi, FLiBe, FLiNaK, He), работающих в условиях облучения, повышенных температур и коррозионных сред, в частности, в качестве оболочек тепловыделяющих элементов реакторов на быстрых нейтронах, элементов бланкета термоядерных реакторов.

Известен способ термомеханической обработки сплавов V-4Ti-4Cr и V-5Ti-5Cr, включающий гомогенизирующий отжиг при температуре 1300°С в течение 8 часов, последующий нагрев слитков до температуры 850-1000°С с выдержкой при этой температуре в течение 1.5-2 часов и выдавливанием на прессе с коэффициентом вытяжки 2-5. Далее производится отжиг в диапазоне температур 950-1100°С в течение 1 часа и осадка прутков на гидравлическом прессе со степенью деформации не более 50% с последующим рекристаллизационным отжигом в диапазоне температур 950-1100°С. В финале обработанная по указанной выше схеме заготовка подвергается нескольким циклам «прокатка ε = 50% + рекристаллизационный отжиг при 950-1100°С» (М.М. Потапенко, А.В. Ватулин, Г.П. Ведерников, И.Н. Губкин, В.А. Дробышев, B.C. Зурабов, М.И. Солонин, В.М. Чернов, А.К. Шиков. И.П. Поздников, А.Н. Рылов. Малоактивируемые конструкционные сплавы системы V-(4-5)Ti-(4-5)Cr // Вопросы атомной науки и техники. Серия «Материаловедение и новые материалы». - 2004. - Вып. 1(62). - С. 152-162).

Недостатками представленного аналога являются наблюдаемая в объеме обработанного материала высокая неоднородность гетерофазной структуры с формированием грубодисперсных пластинчатых (толщиной доли микрона и размерами в двух других измерениях до нескольких десятков микрон) выделений оксикарбонитридных фаз. Такое превращение происходит в процессе термического воздействия на стадии, предшествующей горячему выдавливанию, или в процессе последующей термомеханической обработки. Указанные выделения являются источниками высоких локальных внутренних напряжений и являются потенциальными местами зарождения локализованной деформации, разрушения и развития явления низкотемпературного радиационного охрупчивания сплавов. Кроме того, образование грубодисперсной фазы значительно (в несколько раз) снижает объемное содержание вьщеляющихся из пересыщенных твердых растворов мелкодисперсных частиц этой фазы и, как результат, ограничивает эффективность дисперсного упрочнения и повышения термической стабильности.

Известен способ получения сверхмелкого зерна в чистом ванадии методом равноканального углового прессования (Z.Z. Jiang, S.H. Yu, Y.B. Chun, D.H. Shin, S.K. Hwang Grain refinement of pure vanadium by equal channel angular pressing // Materials Science and Engineering A 479 (2008) 285-292). Для реализации этого способа прутки чистого ванадия после электроннолучевой плавки подвергались нагреву до 1000°С в вакууме, после чего их деформировали равноканальным угловым прессованием при температуре 350°С. В результате такой обработки в материале формировалось нанокристаллическое структурное состояние с размером зерен около 200 нм. Отжиг обработанных образцов при температуре 700°С приводил к росту зерен до микронных размеров.

Недостатками представленного аналога являются низкая термическая стабильность формируемых структурных состояний и необходимость проведения деформационной обработки при высоких температурах.

Наиболее близким по технической сущности решением, выбранным в качестве прототипа, является способ химико-термической обработки ванадиевых сплавов легированных хромом и титаном. Заготовки сплава после гомогенизирующего отжига при температуре 1300°С в течение 8 часов, последующего нагрева слитков до температуры 850-1000°С с выдержкой при этой температуре в течение (1.5-2) часов и выдавливания на прессе с коэффициентом вытяжки 2-5 подвергаются отжигу в диапазоне температур 950-1100°С в течение 1 часа и осадке прутков из заготовок на гидравлическом прессе со степенью деформации не более 50% с последующим рекристаллизационным отжигом в диапазоне температур (950-1100)°С. Образцы сплава отжигают в вакууме 2×10-5 Торр при Т=1400°С в течение 1 часа, затем проводят термообработки на воздухе при Т=620°С, приводящие к образованию поверхностных окисных пленок V2O5. После этого проводится вакуумный (2×10-5 Торр) отжиг при 650°С в течение 10 часов для поглощения кислорода оксидной пленки поверхностным слоем ванадиевого сплава, термообработка в вакууме при 1400°С в течение 1 часа, обеспечивающая однородное распределение кислорода по толщине образца. После указанных выше операций проводятся 3 цикла термомеханической обработки, состоящие из деформации прокаткой с обжатием ε ≈ 30% при комнатной температуре и отжига при Т=450÷700°С в течение 1 часа. На заключительном этапе производится ступенчатая термообработка при последовательном повышении температуры с 800°С до 900°С и далее до 1000°С. На каждом шаге время отжига составляет один час. (Патент RU 2463377, МПК C22F 1/18, C21D 8/10, опубл. 10.10.2012).

Недостатком прототипа является значительная неоднородность распределения упрочняющих частиц и невозможность получения наноструктурированной зеренной структуры материала.

Задачей настоящего изобретения является разработка способа обработки заготовок ванадиевых сплавов, обеспечивающего повышение термической стабильности микроструктуры и механических свойств.

Поставленная задача решается тем, что применяется многоэтапный способ обработки заготовок ванадиевых сплавов, легированных элементами IV и VI групп Периодической системы, включающий гомогенизацию, многократную термомеханическую обработку «пластическая деформация + отжиг», диффузионное легирование сплавов кислородом и отжиг в интервале температур 1000÷1500°С, после которого проводятся деформационная обработка до величины истинной логарифмической деформации е ≥ 1 и стабилизирующая термообработка.

Сущность изобретения поясняется рисунками и данными, приведенными в таблице 1:

Фиг. 1 - Микроструктура сплава V-Zr-Cr после деформации кручением (N=1) (а) и последующих отжигов при Т=800°С (б), Т=900°С (в), Т=950°С (г). Просвечивающая электронная микроскопия.

Фиг. 2 - Карта угловой разориентации структуры сплава системы V-Cr-Zr-W после обработки и отжига при температуре 1200°С. Растровая электронная микроскопия (EBSD).

В частности, заготовки сплава после гомогенизирующего отжига в интервале температур 1000÷1500°С в течение 1 часа подвергают трем (и более) циклам термомеханической обработки, состоящим из деформации прокаткой с обжатием ε ≈ 30-50% при комнатной температуре и отжига при Т=450÷700°С в течение 1 часа. Стабилизация сформированного структурного состояния проводится отжигом в вакууме при 1000°С в течении часа. Затем проводят термообработки на воздухе при температуре не более 700°С, приводящие к образованию поверхностных окисных пленок V2O5. После этого проводится серия вакуумных (2×10-5 Торр) отжигов в интервале 450÷1000°С в течение нескольких часов для поглощения кислорода оксидной пленки поверхностным слоем ванадиевого сплава. Далее следует отжиг в интервале температур 1000÷1500°С, длительностью один час и более, деформационная обработка до величины истинной логарифмической деформации е ≥ 1 и стабилизирующая термообработка в интервале температур 700÷1200°С.

В результате термомеханической обработки в сплавах ванадия формируется гетерофазное структурное состояние, характеризуемое высокой плотностью дефектов кристаллического строения и формированием мелкодисперсных частиц на основе фаз внедрения. Легирование кислородом в процессе химико-термической обработки позволяет сформировать в материале однородное распределение мелкодисперсных частиц оксидной фазы и реализовать эффективное совместное дисперсное и субструктурное упрочнение. Большая пластическая деформация, реализуемая в условиях высокопрочного состояния, обусловленного значительными эффектами дисперсного упрочнения, позволяет сформировать нанокристаллическое структурное состояние в обрабатываемом материале.

Примеры конкретного осуществления изобретения приведены ниже:

Пример 1

Заготовку сплава V-Zr-Cr (V-1.17Zr-8.75Cr-0.14W-0.01C-0.02O-0.01N вес. %) после гомогенизирующего отжига при температуре 1400°С и трех циклов термомеханической обработки, состоящих из деформации прокаткой с обжатием ε ≈ 40% при комнатной температуре и отжига при Т=550°С в течение 1 часа, отжигают в вакууме при 1000°С в течение часа. Затем проводят термообработки на воздухе при Т=550°С 210 минут. После этого проводится серия вакуумных (2×10-5 Торр) отжигов: 600°С в течение 10 часов, 750°С в течение 5 часов, 900°С в течение 2 часов, 1000°С в течение 1 часа. Далее образцы подвергаются одночасовому вакуумному отжигу при температуре 1400°С. Из заготовки вырезали образцы-диски толщиной 0.2 мм и диаметром 8 мм, которые деформировали кручением на один оборот (е > 3) под высоким (7 ГПа) квазигидростатическим давлением при комнатной температуре и стабилизировали при температуре 800°С в течение 1 часа.

Пример 2

Заготовку сплава системы V-Cr-Zr-W после гомогенизирующего отжига при температуре 1500°С подвергают трем циклам термомеханической обработки, состоящим из деформации прокаткой с обжатием ε ≈ 35% при комнатной температуре и отжига при Т=550°С в течение 1 часа. Далее образцы отжигают в вакууме при 1000°С в течение часа. Затем проводят термообработки на воздухе при Т=500°С 840 минут. После этого проводится серия вакуумных отжигов для поглощения кислорода оксидной пленки поверхностным слоем ванадиевого сплава: 600°С в течение 8 часов, 900°С в течение 6 часов, 1000°С в течение 1 часа. Далее образцы подвергаются одночасовому вакуумному отжигу при температуре 1400°С. После этого из заготовки вырезали образцы-диски толщиной 0.2 мм и диаметром 8 мм, которые деформировали кручением на один оборот под давлением 7 ГПа при комнатной температуре и стабилизировали при температуре 1200°С в течение 1 часа.

Структура ванадиевых сплавов после кручения под давлением (фиг. 1а) на один оборот характеризуется ярко выраженной анизотропией: формируются зерна вытянутой формы с размерами в направлениях, параллельных плоскости наковален, от 50 до 800 нм, а в направлении оси кручения от 20 до 200 нм. Внутри представленных субмикронных зерен происходит формирование двухуровневого состояния: нанофрагментов (5-20 нм), разделенных малоугловыми (0.5-2°) границами с упругой кривизной кристаллической решетки, достигающей нескольких сотен град/микрон. Формирование такого состояния приводит к более чем двукратному росту значений микротвердости (таблица 1).

После стабилизирующего отжига сплава V-Zr-Cr при 800°С (фиг. 1б) на фоне исходного структурного состояния появляются кристаллиты размерами от 50 до 250 нм с почти равноосной формой. Иногда исходные анизотропные зерна фрагментированы на субзерна указанных выше размеров. При этом значения микротвердости остаются на том же уровне, что и после деформационной обработки (таблица 1).

Дополнительные исследования показали, что прочностные характеристики материала после предлагаемой обработки сохраняются и при повышении температуры отжига до 900°С (таблица 1), несмотря на существенное изменение зеренной структуры материала (фиг. 1в): основной объем материала представлен почти равноосными зернами, размеры которых составляют 0.3-1.7 мкм, на их фоне встречаются зерна более мелкой фракции с характерными размерами 0.4-0.6 мкм. Увеличение температуры отжига до 950°С приводит к уменьшению прочностных характеристик (таблица 1).

Отжиг обработанных образцов сплава системы V-Cr-Zr-W при температуре 1200°С приводит к увеличению размеров зерен до нескольких микрон (фиг. 2), тем не менее, микротвердость материала после такой обработки остается на уровне 2.2 ГПа, что заметно превышает исходные значения.

Таким образом, сформированная в процессе химико-термической обработки высокая плотность распределенных однородным образом наноразмерных (3-20 нм) частиц оксикарбонитридов на основе Zr (O-N-C) способствует стабилизации структурных состояний, формирующихся в результате дальнейшей деформационной обработки.

Деформационная обработка при комнатной температуре до величины истинной логарифмической деформации е ≥ 1 может быть реализована различными методами, в том числе кручением под давлением, прокаткой, равноканальным угловым прессованием, многократной всесторонней ковкой или их комбинацией.

Способ обработки заготовок ванадиевых сплавов, включающий гомогенизацию, многократную термомеханическую обработку путем пластической деформации и последующего отжига, стабилизирующий отжиг в вакууме, диффузионное легирование кислородом путем термообработки на воздухе и вакуумных отжигов и окончательную стабилизирующую термообработку, отличающийся тем, что гомогенизацию осуществляют при температуре 1000-1500°С в течение 1 часа, термомеханическую обработку осуществляют в три цикла путем деформации с обжатием ε=30-50% и отжига при температуре 450-700°С в течение 1 часа, стабилизирующий отжиг в вакууме проводят при температуре 1000°С в течение 1 часа, при диффузионном легировании кислородом термообработку на воздухе проводят при температуре не более 700°С, а вакуумные отжиги - при температуре 450-1000°С, затем осуществляют вакуумный отжиг при температуре 1000-1500°С, деформационную обработку при комнатной температуре до величины истинной логарифмической деформации е ≥ 1, а окончательную стабилизирующую термообработку проводят при температуре 700-1200°С в течение 1 часа.
СПОСОБ ОБРАБОТКИ ЗАГОТОВОК ВАНАДИЕВЫХ СПЛАВОВ
Источник поступления информации: Роспатент

Showing 1-10 of 183 items.
20.06.2013
№216.012.4b2c

Средство, обладающее мочегонным действием

Предложено лекарственное средство мочегонного действия группы акваретиков, 4-нитро-фенил-O-D-глюкопиранозид. Средство может быть использовано для лечения застойных явлений в большом и малом круге кровообращения, обусловленных сердечной недостаточностью, так как усиливает выделение воды,...
Тип: Изобретение
Номер охранного документа: 0002484826
Дата охранного документа: 20.06.2013
20.07.2013
№216.012.565a

Средство, обладающее мочегонным действием

Предложено лекарственное средство мочегонного действия группы акваретиков Фенил-α-О-D-глюкопиранозид. Средство может быть использовано для лечения застойных явлений в большом и малом круге кровообращения, обусловленных сердечной недостаточностью, так как усиливает выделение воды, способствуя...
Тип: Изобретение
Номер охранного документа: 0002487714
Дата охранного документа: 20.07.2013
10.12.2013
№216.012.87a5

Средство, обладающее мочегонным действием

Изобретение относится к фармакологии, а именно к применению 2-нафтил-О-D-глюкопиранозида в качестве средства, обладающего мочегонным действием, обладающего высокой диуретической и низкой салуретической активностью. 1 табл., 1 пр.
Тип: Изобретение
Номер охранного документа: 0002500407
Дата охранного документа: 10.12.2013
20.02.2014
№216.012.a41a

Способ исследования радиационной стойкости конструкционных материалов и контейнер для его осуществления

Изобретение относится к реакторному материаловедению, в частности к способу исследования радиационной стойкости конструкционных и топливных материалов при высоких и предельных уровнях облучения для активных зон атомных реакторов на быстрых нейтронах с жидкометаллическим теплоносителем....
Тип: Изобретение
Номер охранного документа: 0002507725
Дата охранного документа: 20.02.2014
27.05.2014
№216.012.c87d

Средство, обладающее мочегонным действием

Изобретение относится к фармакологии, а именно к применению П-метил-фенил-O-D-глюкопиранозида в качестве средства, обладающего мочегонным действием, обладающего высокой диуретической и низкой салуретической активностью. 1 табл., 1 пр.
Тип: Изобретение
Номер охранного документа: 0002517091
Дата охранного документа: 27.05.2014
10.07.2014
№216.012.db67

Способ получения многослойного композита на основе ниобия и алюминия с использованием комбинированной механической обработки

Изобретение относится к области порошковой металлургии, в частности к получению многослойных композитов на основе системы Nb-Al. Может использоваться для синтеза наноструктурных интерметаллических соединений данной системы. Смесь порошков ниобия и алюминия чистотой не менее 98% и долей алюминия...
Тип: Изобретение
Номер охранного документа: 0002521945
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.dcb7

Способ получения средства, обладающего гепатопротекторным действием

Изобретение относится к фармацевтической промышленности, а именно к способу получения средства, обладающего гепатопротекторным действием. Способ получения средства, обладающего гепатопротекторным действием, путем экстракции измельченных столбиков с рыльцами кукурузы спиртом этиловым методом...
Тип: Изобретение
Номер охранного документа: 0002522281
Дата охранного документа: 10.07.2014
20.01.2015
№216.013.1f77

Способ получения многослойного композита на основе меди и алюминия с использованием комбинированной механической обработки

Изобретение относится к области металлургии и может быть использовано для получения многослойных композитов на основе системы Cu-Al, а также прекурсоров для синтеза наноструктурных интерметаллических соединений данной системы. Способ получения многослойного композита на основе меди и алюминия...
Тип: Изобретение
Номер охранного документа: 0002539496
Дата охранного документа: 20.01.2015
27.06.2015
№216.013.5afd

Способ получения многослойного композита на основе никеля и алюминия с использованием комбинированной механической обработки

Изобретение относится к области материаловедения и может быть использовано для получения многослойных композитов на основе системы Ni-Al, а также прекурсоров для синтеза наноструктурных интерметаллических соединений данной системы. Способ получения многослойного композита на основе никеля и...
Тип: Изобретение
Номер охранного документа: 0002554834
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.5b6a

Способ получения катализатора на основе ceo-snо на стеклотканном носителе

Изобретение относится к способу получения катализатора на основе CeO-SnО на стеклотканном носителе. Данный способ включает подготовку носителя путем термической обработки при 500°С, нанесение спиртового пленкообразующего раствора методом вытягивания со скоростью 100 мм/мин, сушку при 60°С 1 ч и...
Тип: Изобретение
Номер охранного документа: 0002554943
Дата охранного документа: 10.07.2015
Showing 1-10 of 108 items.
20.02.2014
№216.012.a41a

Способ исследования радиационной стойкости конструкционных материалов и контейнер для его осуществления

Изобретение относится к реакторному материаловедению, в частности к способу исследования радиационной стойкости конструкционных и топливных материалов при высоких и предельных уровнях облучения для активных зон атомных реакторов на быстрых нейтронах с жидкометаллическим теплоносителем....
Тип: Изобретение
Номер охранного документа: 0002507725
Дата охранного документа: 20.02.2014
10.07.2014
№216.012.db67

Способ получения многослойного композита на основе ниобия и алюминия с использованием комбинированной механической обработки

Изобретение относится к области порошковой металлургии, в частности к получению многослойных композитов на основе системы Nb-Al. Может использоваться для синтеза наноструктурных интерметаллических соединений данной системы. Смесь порошков ниобия и алюминия чистотой не менее 98% и долей алюминия...
Тип: Изобретение
Номер охранного документа: 0002521945
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.dcb7

Способ получения средства, обладающего гепатопротекторным действием

Изобретение относится к фармацевтической промышленности, а именно к способу получения средства, обладающего гепатопротекторным действием. Способ получения средства, обладающего гепатопротекторным действием, путем экстракции измельченных столбиков с рыльцами кукурузы спиртом этиловым методом...
Тип: Изобретение
Номер охранного документа: 0002522281
Дата охранного документа: 10.07.2014
20.01.2015
№216.013.1f77

Способ получения многослойного композита на основе меди и алюминия с использованием комбинированной механической обработки

Изобретение относится к области металлургии и может быть использовано для получения многослойных композитов на основе системы Cu-Al, а также прекурсоров для синтеза наноструктурных интерметаллических соединений данной системы. Способ получения многослойного композита на основе меди и алюминия...
Тип: Изобретение
Номер охранного документа: 0002539496
Дата охранного документа: 20.01.2015
27.06.2015
№216.013.5afd

Способ получения многослойного композита на основе никеля и алюминия с использованием комбинированной механической обработки

Изобретение относится к области материаловедения и может быть использовано для получения многослойных композитов на основе системы Ni-Al, а также прекурсоров для синтеза наноструктурных интерметаллических соединений данной системы. Способ получения многослойного композита на основе никеля и...
Тип: Изобретение
Номер охранного документа: 0002554834
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.5b6a

Способ получения катализатора на основе ceo-snо на стеклотканном носителе

Изобретение относится к способу получения катализатора на основе CeO-SnО на стеклотканном носителе. Данный способ включает подготовку носителя путем термической обработки при 500°С, нанесение спиртового пленкообразующего раствора методом вытягивания со скоростью 100 мм/мин, сушку при 60°С 1 ч и...
Тип: Изобретение
Номер охранного документа: 0002554943
Дата охранного документа: 10.07.2015
10.08.2015
№216.013.68bf

Катализатор переработки этанола и способ получения ацетальдегида и водорода из этанола с использованием этого катализатора

Изобретение относится к катализатору получения ацетальдегида и водорода из этанола. Данный катализатор представляет собой мезопористый силикагель (S =100-300 м/г) с нанесенным на его поверхность серебром в количестве 1-8% от массы катализатора, находящимся в высокодисперсном (наноразмерном)...
Тип: Изобретение
Номер охранного документа: 0002558368
Дата охранного документа: 10.08.2015
10.09.2015
№216.013.777b

Способ подготовки культур сульфидогенных бактерий для выделения днк

Изобретение относится к области биотехнологии. Предложен способ подготовки культур сульфидогенных бактерий для выделения ДНК. В способе используют 15 мл культуральной жидкости. Центрифугируют культуральную жидкость при 1000 об/мин. Проводят трехкратную отмывку клеток фосфатно-солевым буфером в...
Тип: Изобретение
Номер охранного документа: 0002562176
Дата охранного документа: 10.09.2015
27.10.2015
№216.013.88e2

Способ очистки донных отложений и воды от нефти и нефтепродуктов под ледовым покровом в водоемах

Способ включает размещение на водоеме источника сжатого воздуха и источника водовоздушной смеси, который подсоединен к водовоздушному шлангу, перед началом очистных мероприятий осуществляют гидроэкологическое обследование водоема по сетке станций, устанавливают направляющие каналы (основной и...
Тип: Изобретение
Номер охранного документа: 0002566645
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8b72

Способ получения сложного алюмината кальция-магния

Изобретение относится к люминофорам и может быть использовано при производстве материалов для источников и преобразователей света. Готовят рабочий раствор, содержащий следующие компоненты, мас.%: тетрагидрат нитрата кальция - 1,30-1,33; гексагидрат нитрата магния - 1,41-1,44; нонагидрат нитрата...
Тип: Изобретение
Номер охранного документа: 0002567305
Дата охранного документа: 10.11.2015
+ добавить свой РИД