×
25.08.2017
217.015.a096

Результат интеллектуальной деятельности: МЕМБРАНА НА ОСНОВЕ ПОЛИГЕКСАФТОРПРОПИЛЕНА И СПОСОБ РАЗДЕЛЕНИЯ ГАЗОВ С ЕЕ ИСПОЛЬЗОВАНИЕМ

Вид РИД

Изобретение

Аннотация: Изобретение относится к синтезу и термической обработке аморфного стеклообразного перфторированного полимера поли(гексафторпропилена) и применению мембран на его основе для газоразделения. Мембрана для разделения газовых смесей состоит из аморфного стеклообразного поли(гексафторпропилена), подвергнутого термическому отжигу при 160-180°C в течение 3-5 часов. Способ мембранного разделения газовых смесей, включающих два из компонентов He, CH, H, N, CO, включает подачу разделяемой смеси с одной стороны этой мембраны и отбор проникающих через нее компонентов с другой стороны. Технический результат - увеличение селективности мембран на основе ПГФП при достижении улучшенной комбинации селективности и проницаемости материала. 2 н.п. ф-лы, 4 табл., 6 пр., 6 ил.

Изобретение относится к области синтеза и термической обработки перфторированных полимеров (а именно, полигексафторпропилена) с целью создания газоразделительной мембраны на его основе с улучшенными свойствами для разделения газовых смесей, в частности для разделения смесей, содержащих гелий, углеводороды, углекислый газ и другие газы.

Перфторированные полимеры занимают специфическую нишу среди полимеров благодаря уникальной комбинации различных свойств (низкая поверхностная и когезионная энергии, высокая химическая устойчивость, пониженные электропроводность и диэлектрическая проницаемость, высокий показатель преломления и др.). Начиная с 1980-х годов были синтезированы три типа аморфных стеклообразных полимеров, получивших промышленное внедрение и привлекших интерес как потенциальные материалы мембран (тефлоны AF (DuPont) [P.R. Resnick, Polymers of fluorinated dioxoles, US Patent, 3978030 (1976); Nemser S.M., Roman I.A. Perfluorodioxole membranes, US Patent 5051114 (1991), Hyflon AD (Ausimonte сейчас Solvay Solexis) [P. Colaianna, G. Brinati, V. Arcella, Amorphous perfluoropolymers, US Patent 5883177 (1999); Macchione M., Jansen J.C., De Luca G., Tocci E., Longeri M., Drioli E. Experimental analysis and simulation of the gas transport in dense Hyflon AD60X membranes: Influence of residual solvent. J. Membr. Sci., 2007, 48, 2619-2635.] и Cytop (Asahi Glass) [M. Nakamura, I. Kaneko, K. Oharu, G. Kojima, M. Matsuo, S. Samejima, M. Kamba, Cyclic polymerization, US Patent 4910276 (1990); Merkel T.C., Pinnau I., Prabhakar R., Freeman B.D. Gas and vapor properties of perfluoropolymers, In: Yu. P. Yampolskii, I. Pinnau, B.D. Freeman (Eds.), Materials Science of Membranes for Gas and Vapor Separation, Wiley, Chichester, 2006, p. 251.). В то же самое время был изучен перфторированный полиэфир с сульфогруппами Nafion 117 [H.L. Yeager, A. Steck, J. Elecrochem. Soc: Electrochem. Sci. Technol., 1981, 128, 1880; Chiou J.S., Paul D.R. Gas Permeation in a Dry Nafion Membrane. Ind. Eng. Chem. Res., 1988, 27, 2161-2164.], нашедший широкое применение как материал для протон-проводящих мембран, используемый в топливных элементах. Недавнее исследование [М. Mukaddam, Е. Litwiller and I. Pinnau. Nafion: An Old Material with Unexpected Potential for Membrane-Based Natural Gas Separation Applications. ICOM 2014, Presentations, Abstracts, China, 2014.] показало, что Nafion 117 неожиданно может иметь потенциал для разделения природного газа. Эти полимеры имеют разный уровень газопроницаемости по постоянным газам и относятся соответственно к высоко - (тефлоны AF), средне - (Hyflon AD, Cytop) и низкопроницаемым (Nafion 117) материалам, однако, это деление довольно условно.

Одна из особенностей перфторированных полимеров связана с их термодинамическими свойствами: растворимость в них углеводородов и их производных (т.е. органических веществ) иная, чем для обычных полимеров. Известно, что углеводородные газы и пары имеют пониженные коэффициенты растворимости в перфторированных полимерах по сравнению с их коэффициентами растворимости в обычных «углеводородных» полимерах [Merkel Т.С., Pinnau I., Prabhakar R., Freeman B.D. Gas and vapor properties of perfluoropolymers, In: Yu.P. Yampolskii, I. Pinnau, B.D. Freeman (Eds.), Materials Science of Membranes for Gas and Vapor Separation, Wiley, Chichester, 2006, p. 251.]. Как следствие, перфторированные полимеры занимают привлекательные позиции на некоторых диаграммах Робсона, т.е. диаграммах, связывающих селективность разделения и коэффициент проницаемости. Это относится к диаграммам для пар газов, содержащих углеводородный пенетрант, например He-CH4, N2-CH4, CO2-CH4, He-H2, H2-CH4).

По совокупности технических признаков и достигаемому техническому результату наиболее близкой к заявленной мембране является мембрана на основе полигексафторпропилена ПГФП, отлитого из раствора перфтортолуола и не подвергнутого какой-либо термической обработке и способ мембранного разделения газовых смесей с применением такой мембраны, включающий подачу разделяемой смеси с одной стороны мембраны и отбор проникающих через нее компонентов с другой стороны. Мембраны на его основе наиболее пригодны для разделения пар CO2/CH4 и N2/CH4 [Belov N.A., Zharov А.А., Shashkin A.V., Shaikh M.Q., Raetzke K., Yampolskii Yu.P. Gas transport and free volume in hexafluoropropylene polymers. J. Membr. Sci., 2011, 383, c. 70-77].

Задачей данного изобретения является увеличение селективности мембран на основе ПГФП при достижении улучшенной комбинации селективности и проницаемости материала при мембранном разделении смесей, содержащих гелий, водород, азот, углекислый газ и метан.

Для решения этой задачи мембрана для разделения газовых смесей на основе аморфного стеклообразного полигексафторпропилена состоит из полигексафторпропилена, подвергнутого термическому отжигу при 160-180°C в течение 3-5 часов.

Также для решения этой задачи в способе мембранного разделения газовых смесей, включающем подачу разделяемой смеси с одной стороны мембраны на основе аморфного стеклообразного полигексафторпропилена и отбор проникающих через нее компонентов с другой стороны, разделения газовых смесей, включающих два из компонентов He, CH4, H2, N2, CO2, используют указанную мембрану

Синтез ПГФП осуществляют без использования радикальных инициаторов методом термической полимеризации при повышенных давлениях (7-8 кбар) и температуре до 350°C.

Краткое описание чертежей

Фиг. 1 - Схема установки для синтеза полигексафторпропилена.

Фиг. 2 - Кривая натекания гелия через мембрану на основе отожженного ПГФП.

Фиг. 3 - Кривая натекания метана через мембрану на основе отожженного ПГФП.

Фиг. 4 - Кривая натекания углекислого газа через мембрану на основе отожженного ПГФП.

Фиг. 5 - Кривая натекания азота через мембрану на основе отожженного ПГФП.

Фиг. 6. Кривая натекания водорода через мембрану на основе отожженного ПГФП.

Пленки готовят из 5%-ного раствора полимера в октафтортолуоле методом полива на целлофановую пленку и последующим испарением растворителя. Затем их выдерживают под вакуумом до постоянного веса. Полученные пленки были прочными и сохраняли свои механические свойства на протяжении всех проводимых измерений.

Термогравиметрическим анализом было показано, что пленки, полученные из ПГФП, содержали 4.5-4.7% мас. остаточного растворителя.

Измерения коэффициентов проницаемости газов (гелий, водород, азот, углекислый газ, метан) проводили методом Дейнеса-Баррера [С.А. Рейтлингер, Проницаемость полимерных материалов, М.: Химия, 1974] на установке Баротрон с емкостными датчиками давления в интервале от 1 до 3-4 атм при 22°C. Подмембранное давление не превышало 12 мм рт.ст. (0.016 атм).

Пример 1

Синтез полигексафторпропилена (ПГФП)

Синтез ПГФП осуществляют при давлении 8 кбар и температуре 240°C на установке Баростат, описанной ранее [A.A. Zharov, I.A. Guzyaeva, Kinetics and mechanism of themal polymerization of hexafluoropropylene under high pressure, Russ. Chem. Bull. Intern Ed., 59, 1225 (2010)], позволяющей реализовывать и исследовать химические реакции при давлениях до 18 кбар и температурах до 350°C. Схема установки показана на Фиг. 1,

где 1 - реактор из фторопласта - 4,

2 - блок высокого давления,

3 - мультипликатор на давление до 160 МПа,

4 - мультипликатор на давление до 1200 МПа,

5 - баллон с гексафторпропиленом,

6 - плиты пресса,

7 - масляные насосы,

8 - термопара,

9 - электропечь.

Мономер (гексафторпропилен) загружают в тефлоновую ампулу, а высокое давление обеспечивают действием поршня с максимальным усилием 40 т. Процесс осуществляют в блоке из нержавеющей стали, снабженном электронагревателем.

Строение полимера было доказано спектром F-ЯМР, который выявил линии при -73, -102, and -179 ppm, которые были отнесены к группам CF3, CF2 и CF, соответственно присутствующим в мольном отношении 3:2:1. Дополнительный сигнал был отмечен в виде плеча в области от -105 до -110 ppm, что служило указанием на фрагмент CF2 в группе -CF(CF3)-CF2-CF2-CF(CF3)-. Это показывает, что полимеризация шла по механизму "голова-к-голове" - "хвост-к-хвосту" и может объяснять аморфный характер полученного полимера. Это было доказано рентгеноструктурным анализом, который обнаружил два широких максимума. Температура стеклования ПГФП согласно методу ДСК составила 162°C, начало термического разложения наблюдалось при 300°C, плотность 1.99 г/см3. При комнатной температуре полимер растворим в перфторированных растворителях, таких как перфторбензол, префтортолуол и других. Молекулярная масса полимера составляет приблизительно 1⋅106 Да.

Пример 2

Отжиг образцов ПГФП

Ряд образцов ПГФП подвергают отжигу в течение 3-5 часов при температуре 160-180°C. Термогравиметрическим анализом было показано, что в результате отжига при температурах на 20°C выше температуры стеклования остаточный растворитель удаляется из полимерной пленки. Толщина пленки возросла с 41.5 до 56 мкм. Плотность пленки, подвергнутой отжигу, составила 2.00 г/см3, что совпадает с плотностью полимера до обработки. Таким образом, отожженный образец ПГФП был избавлен как от остаточных механических напряжений, так и от остаточного растворителя.

Пример 3

Определение проницаемости и селективности по паре газов He и CH4.

Пленку из ПГФП готовят способом, изложенным выше. Толщина пленки составляет 41.5 мкм. Другой образец пленки (толщина 57 мкм) подвергают отжигу при температуре 170°C в течение 4 часов. Пленку помещают в ячейку установки Баротрон и измеряют транспортные параметры гелия и метана описанным выше методом. Давление гелия над мембраной составляет 0.52 атм, давление метана - 0.48 атм. Кривые натекания газов через мембрану показаны на Фиг. 2 и 3.

По аналогичным кривым найдены значения для исходной пленки ПГФП (прототип). Полученные значения коэффициентов проницаемости по гелию и метану, соответствующие селективности P(He)/P(CH4), а также селективность на «верхней границе» диаграммы при P(He)=600 Баррер представлены в таблице 1.

Таким образом, селективность (или идеальный фактор разделения) α(He/CH4)=P(He)/P(CH4) увеличился в результате отжига с 80 до 690. Наблюдаемая селективность для отожженной пленки ПГФП также выше, чем соответствующее значение на диаграмме Робсона для пары He и CH4.

Пример 4

Определение проницаемости и селективности по паре газов CO2 и CH4. Пленку из ПГФП готовят способом, изложенным выше. Толщина пленки составляет 41.5 мкм. Другой образец пленки (толщина 57 мкм) подвергают отжигу при температуре 165°C в течение 4 часов. Пленку помещают в ячейку установки Баротрон и измеряют транспортные параметры углекислого газа и метана описанным выше методом. Давление углекислого газа над мембраной составляет 0.55 атм, давление метана - 0.48 атм. Кривые натекания метана и углекислого газа через мембрану показаны на Фиг. 3 и 4 соответственно.

По аналогичным кривым были найдены значения для исходной пленки ПГФП.

Таким образом, селективность (или идеальный фактор разделения) α(CO2/CH4)=P(CO2)/P(CH4) увеличился в результате отжига с 28 до 69. Отметим, что в отличие от пары He-CH4 в данном случае проницаемость снизилась для обоих газов, имеющих менее различающиеся молекулярные размеры, однако все же сильнее для метана. Полученное значение селективности по паре CO2/CH4 близко к величине селективности на «верхней границе» диаграммы Робсона для этой пары газов. Селективность α(CO2/CH4) отожженного ПГФП в 2.5 раза выше, чем у исходного ПГФП (прототипа).

Пример 5

Определение проницаемости и селективности по паре газов N2 и CH4.

Пленку из ПГФП готовят способом, изложенным выше. Толщина пленки составила 41.5 мкм. Другой образец пленки (толщина 57 мкм) подвергают отжигу при той же температуре 175°C в течение 4 часов. Пленку помещают в ячейку установки Баротрон и измеряют транспортные параметры азота и метана описанным выше методом. Давление азота над мембраной составляет 0.55 атм, давление метана - 0.48 атм. Кривые натекания газов через мембрану показаны на Фиг. 3 и 5 соответственно.

По аналогичным кривым найдены значения для исходной пленки ПГФП.

Таким образом, селективность (или идеальный фактор разделения) α(N2/CH4)=P(N2)/P(CH4) увеличился в результате отжига с 3.0 до 6.4, т.е. примерно в два раза. Молекулярные размеры азота и метана близки, но все же более сильное снижение отмечено для коэффициента проницаемости метана. На диаграмме Робсона для пары N2/CH4 точка, отвечающая свойствам отожженного ПГФП, показывает более высокую селективность, чем та, которая отвечает верхней границе (4.1).

Пример 6

Определение проницаемости и селективности по паре газов He и H2.

Гелий и водород являются наиболее легкими газами, имеющими в большинстве полимеров близкие коэффициенты проницаемости. Тем не менее в работах по перфторированным полимерам (см. например Merkel Т.С., Pinnau I., Prabhakar R., Freeman B.D. Gas and vapor properties of perfluoropolymers, In: Yu.P. Yampolskii, I. Pinnau, B.D. Freeman (Eds.), Materials Science of Membranes for Gas and Vapor Separation, Wiley, Chichester, 2006, p. 251) отмечается повышенная селективность таких полимеров к гелию. В связи с этим была измерена проницаемость исходного и отожженного ПГФП по отношению к водороду. Пленку из ПГФП готовят способом, изложенным выше. Толщина пленки составила 41.5 мкм. Другой образец пленки (толщина 57 мкм) подвергают отжигу при температуре 170°C в течение 4 часов. Пленку помещают в ячейку установки Баротрон и измеряют транспортные параметры гелия и водорода описанным выше методом. Давление гелия над мембраной составляет 0.52 атм, давление водорода - 0.43 атм. Кривые натекания газов через мембрану показаны на Фиг. 2 и 6 соответственно.

По аналогичным кривым найдены значения для исходной пленки ПГФП.

Из таблицы следует, что селективность (или идеальный фактор разделения) α(He/H2)=P(He)/P(H2) увеличился в результате отжига с 2.1 до 3. Наблюдаемая для отожженной пленки ПГФП селективность несколько выше, чем значение, отвечающее «верхней границе» при той же проницаемости

Из приведенных данных видно, что применение отожженного предложенным методом ПГФП позволяет повысить селективность разделения при сохранении достаточной проницаемости. При этом селективность α(He/CH4) отожженного ПГФП в 1,7 раза выше, чем у Нафиона, лучшего из иностранных аналогов по селективности, и в 87 раз выше, чем у аморфного Тефлона AF2400, наиболее проницаемого из иностранных аналогов; селективность по паре (CO2/CH4) почти в 3 раза превосходит селективность Нафиона и в 8 раз - селективность тефлона AF2400; по паре N2/CH4 отожженный ПГФП в 2.5 раза более селективен, чем Нафион и почти в 5 раз более селективен по сравнению с тефлоном AF2400; значения а(Не/Н2) лишь немного ниже, чем у Нафиона, и в 2,5 раза выше, чем селективность Тефлона AF2400. Вместе с тем проницаемость отожженного ПГФП значительно превышает проницаемость Нафиона: по He - в 15 раз, по H2 и N2 - приблизительно в 21 раз, по CO2 - в 24 раза. Таким образом, селективность разделения пар газов с применением заявленной мембраны находится на уровне лучших иностранных аналогов или превосходит ее, иногда значительно, при хорошей проницаемости. Заявленная мембрана перспективна как высококачественная замена дорогостоящих зарубежных мембран.


МЕМБРАНА НА ОСНОВЕ ПОЛИГЕКСАФТОРПРОПИЛЕНА И СПОСОБ РАЗДЕЛЕНИЯ ГАЗОВ С ЕЕ ИСПОЛЬЗОВАНИЕМ
МЕМБРАНА НА ОСНОВЕ ПОЛИГЕКСАФТОРПРОПИЛЕНА И СПОСОБ РАЗДЕЛЕНИЯ ГАЗОВ С ЕЕ ИСПОЛЬЗОВАНИЕМ
МЕМБРАНА НА ОСНОВЕ ПОЛИГЕКСАФТОРПРОПИЛЕНА И СПОСОБ РАЗДЕЛЕНИЯ ГАЗОВ С ЕЕ ИСПОЛЬЗОВАНИЕМ
МЕМБРАНА НА ОСНОВЕ ПОЛИГЕКСАФТОРПРОПИЛЕНА И СПОСОБ РАЗДЕЛЕНИЯ ГАЗОВ С ЕЕ ИСПОЛЬЗОВАНИЕМ
МЕМБРАНА НА ОСНОВЕ ПОЛИГЕКСАФТОРПРОПИЛЕНА И СПОСОБ РАЗДЕЛЕНИЯ ГАЗОВ С ЕЕ ИСПОЛЬЗОВАНИЕМ
МЕМБРАНА НА ОСНОВЕ ПОЛИГЕКСАФТОРПРОПИЛЕНА И СПОСОБ РАЗДЕЛЕНИЯ ГАЗОВ С ЕЕ ИСПОЛЬЗОВАНИЕМ
Источник поступления информации: Роспатент

Showing 171-180 of 247 items.
15.10.2018
№218.016.9271

Способ получения дивинила

Изобретение раскрывает способ получения дивинила путем превращения кислородсодержащего органического вещества при повышенной температуре в присутствии катализатора, включающего оксид цинка ZnO, оксид калия KO, оксид магния MgO и γ-оксид алюминия γ-AlOхарактеризующийся тем, что в качестве...
Тип: Изобретение
Номер охранного документа: 0002669561
Дата охранного документа: 12.10.2018
15.10.2018
№218.016.9273

Способ получения аддитивного полимера на основе дициклопентадиена (варианты)

Изобретение относится к синтезу аддитивных полимеров на основе дициклопентадиена (ДЦПД) и может быть использовано в различных отраслях промышленности. Описан способ получения аддитивных полимеров на основе ДЦПД, включающий смешение растворов трех компонентов каталитической системы в...
Тип: Изобретение
Номер охранного документа: 0002669562
Дата охранного документа: 12.10.2018
19.10.2018
№218.016.945f

Замещенные 4-арил-гексагидро-7н-имидазоло[1,5-b][1,2]оксазин-7-оны и способ их получения

Настоящее изобретение относится к способу получения замещенных 4-арил-гексагидро-7H-имидазоло[1,5-b][1,2]оксазин-7-онов общей формулы:
Тип: Изобретение
Номер охранного документа: 0002670097
Дата охранного документа: 18.10.2018
25.10.2018
№218.016.956e

Способ получения высокоплотного реактивного топлива (варианты)

Изобретение относится к двум вариантам способа получения высокоплотного реактивного топлива для сверхзвуковой авиации. Один из вариантов способа включает фракционирование тяжелой смолы пиролиза с выделением дистиллятной фракции с температурой кипения до 330°C, гидроочистку дистиллятной фракции...
Тип: Изобретение
Номер охранного документа: 0002670449
Дата охранного документа: 23.10.2018
01.11.2018
№218.016.993d

Способ получения аминофуразанов

Изобретение относится к области органической химии, а именно к способу получения 4-замещенных 3-аминофуразанов. Предложен способ получения 4-замещенных 3-аминофуразанов общей формулы
Тип: Изобретение
Номер охранного документа: 0002671414
Дата охранного документа: 31.10.2018
03.11.2018
№218.016.9a26

Способ получения аддитивных полимеров на основе норборненов, содержащих двойную связь в заместителе

Изобретение относится к синтезу аддитивных полимеров на основе норборненов, содержащих двойную связь в заместителе, и может быть использовано в различных отраслях промышленности. Способ получения аддитивных полимеров на основе норборненов, содержащих двойную связь в заместителе, включает...
Тип: Изобретение
Номер охранного документа: 0002671564
Дата охранного документа: 02.11.2018
11.11.2018
№218.016.9c45

Способ получения катализатора, полученный этим способом катализатор и способ жидкофазного алкилирования изобутана бутиленами в его присутствии

Изобретение относится к технологии производства гетерогенных катализаторов. Предложен способ получения катализатора алкилирования изобутана бутиленами на основе цеолита, включающий ионный обмен путем обработки цеолита типа фожазит, гранулированного без связующего, при 70÷90°C с одновременным...
Тип: Изобретение
Номер охранного документа: 0002672063
Дата охранного документа: 09.11.2018
14.12.2018
№218.016.a759

Комбинированный катализатор и способ получения обогащённого триптаном экологически чистого высокооктанового бензина в его присутствии

Настоящее изобретение относится к получению высокооктанового бензина с низким содержанием ароматических соединений, но с высоким содержанием триптана (2,2,3-триметилбутана), и может применяться в области получения моторного топлива. Комбинированный катализатор получения обогащенного триптаном...
Тип: Изобретение
Номер охранного документа: 0002674769
Дата охранного документа: 13.12.2018
14.12.2018
№218.016.a76b

Способ переработки тяжелых нефтяных фракций

Изобретение относится к способу переработки тяжелых нефтяных фракций, включающему предварительное введение в сырье - тяжелые нефтяные фракции - водного раствора соли аммония и переходного металла, взаимодействие указанной соли с серосодержащим агентом, получение микроэмульсии серосодержащей...
Тип: Изобретение
Номер охранного документа: 0002674773
Дата охранного документа: 13.12.2018
19.12.2018
№218.016.a8ec

Способ получения суспензии молибденсодержащего композитного катализатора гидроконверсии тяжелого нефтяного сырья

Предлагаемое изобретение относится к способу получения суспензии молибденсодержащего композитного катализатора гидроконверсии тяжелого нефтяного сырья, который включает введение водного раствора прекурсора катализатора в смесь углеводородов с последующим его сульфидированием. Для получения...
Тип: Изобретение
Номер охранного документа: 0002675249
Дата охранного документа: 18.12.2018
Showing 161-167 of 167 items.
08.02.2020
№220.018.001e

Высокопрочный литейный алюминиевый сплав с добавкой кальция

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок при температурах до 150-200°С, в частности деталей летательных аппаратов, автомобилей и других транспортных средств, деталей...
Тип: Изобретение
Номер охранного документа: 0002713526
Дата охранного документа: 05.02.2020
14.03.2020
№220.018.0bb9

Деформируемый свариваемый алюминиево-кальциевый сплав

Изобретение относится к области металлургии, в частности к сплаву на основе алюминия, и может быть использовано для изготовления деформированных полуфабрикатов, предназначенных для получения деталей ответственного назначения, пригодных для аргонодуговой сварки и допускающих нагревы до 350°С....
Тип: Изобретение
Номер охранного документа: 0002716568
Дата охранного документа: 12.03.2020
14.03.2020
№220.018.0c07

Способ получения деформированных полуфабрикатов из алюминиево-кальциевого композиционного сплава

Изобретение относится к области металлургии легких сплавов, в частности сплавов на основе алюминия, и может быть использовано при получении деформированных полуфабрикатов, в том числе проволоки, диаметром менее 0,3 мм из алюминиево-кальциевого композиционного сплава из слитков промышленных...
Тип: Изобретение
Номер охранного документа: 0002716566
Дата охранного документа: 12.03.2020
15.05.2023
№223.018.5806

Способ получения термостойкой проволоки из алюминиево-кальциевого сплава

Изобретение относится к области металлургии легких сплавов, в частности к сплавам на основе алюминия, и может быть использовано при получении проволоки из алюминиево-кальциевого сплава, в том числе диаметром менее 0,3 мм. Способ получения проволоки из алюминиево-кальциевого сплава включает...
Тип: Изобретение
Номер охранного документа: 0002767091
Дата охранного документа: 16.03.2022
16.05.2023
№223.018.614b

Литейный алюминиево-кальциевый сплав на основе вторичного сырья

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок при температурах до 300°С, в частности деталей летательных аппаратов, автомобилей и других транспортных средств. Литейный сплав на...
Тип: Изобретение
Номер охранного документа: 0002741874
Дата охранного документа: 29.01.2021
21.05.2023
№223.018.69f1

Заэвтектический деформируемый алюминиевый сплав

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано для изготовления деформированных полуфабрикатов, предназначенных для получения деталей ответственного назначения, работающих в условиях износа и повышенных температур до 300-350°С, в частности...
Тип: Изобретение
Номер охранного документа: 0002795622
Дата охранного документа: 05.05.2023
21.05.2023
№223.018.69f2

Заэвтектический деформируемый алюминиевый сплав

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано для изготовления деформированных полуфабрикатов, предназначенных для получения деталей ответственного назначения, работающих в условиях износа и повышенных температур до 300-350°С, в частности...
Тип: Изобретение
Номер охранного документа: 0002795622
Дата охранного документа: 05.05.2023
+ добавить свой РИД