×
15.05.2023
223.018.5806

Результат интеллектуальной деятельности: Способ получения термостойкой проволоки из алюминиево-кальциевого сплава

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии легких сплавов, в частности к сплавам на основе алюминия, и может быть использовано при получении проволоки из алюминиево-кальциевого сплава, в том числе диаметром менее 0,3 мм. Способ получения проволоки из алюминиево-кальциевого сплава включает получение расплава на основе алюминия, содержащего, мас.%: кальций 0,8-1,8, цирконий 0,3-0,7, железо 0,1-0,64, кремний 0,05-0,4, алюминий - остальное, получение литой заготовки диаметром от 8 до 12 мм путем кристаллизации расплава в электромагнитном кристаллизаторе, деформацию литой заготовки путем холодного волочения и стабилизирующий отжиг полученной проволоки при температуре 420-460°С в течение 1-10 часов. Кроме того, диаметр проволоки составляет менее 3,1 мм, в частности менее 0,3 мм. Обеспечивается получение термостойкой проволоки из алюминиево-кальциевого сплава со следующими характеристиками: плотность менее 2,7 г/см, высокая деформационная технологичность, после 1-часового нагрева при 450°С: предел прочности при разрыве (σ) - не менее 180 МПа, условный предел текучести (σ) - не менее 170 МПа, относительное удлинение после разрыва (δ) - не менее 8%, электропроводность - не менее 54 % IACS. 2 з.п. ф-лы, 6 ил., 3 табл., 2 пр.

Изобретение относится к области металлургии легких сплавов, в частности к сплавам на основе алюминия, и может быть использовано при получении проволоки из алюминиево-кальциевого сплава, в том числе диаметром менее 0,3 мм.

В настоящее время существует множество изобретений на достижение наилучшего сочетания в проволоке электропроводности, прочности и термостойкости. В частности, известен сплав 01417, легированный церием, лантаном и другими редкоземельными металлами (РЗМ) [Добаткин В.И., Елагин В.И., Федоров В.М. Быстрозакристаллизованные алюминиевые сплавы. М.: ВИЛС, 1995, 341 с.]. Сплав 01417 предназначен для изготовления проволоки, длительно работающей при температуре до 250°С. В настоящее время из него изготавливают бортпровода авиалайнеров взамен медных проводов, при этом достигается снижение в весе изделия от 100 до 300 кг. Выигрыш в весе по удельной электропроводимости по сравнению с медной проволокой составляет до 30%.

Основным недостатком сплава 01417 является то, что он ориентирован на сложную и дорогостоящую технологию, включающую литье гранул с последующими операциями порошковой металлургии (известной как RS/PM). Другими недостаткам сплава являются ограничение по рабочим температурам (до 250°С) и повышенная плотность (2,828 г/см3) по сравнению с чистым алюминием. Это обусловлено большим содержанием РЗМ в составе сплава.

Известен способ получения проводникового алюминиевого сплава (RU 2667271, опублик. 18.09.2018). Данный способ включает получение заготовки сплава, содержащего (мас. %) 0,2-0,8% магния, 0,2-0,5% циркония и примеси, отжиг заготовки в интервале температур 300-450°С продолжительностью от 30 до 350 часов и деформацию методом интенсивной пластической деформации при давлении 0,1-6,0 ГПа, в интервале гомологических температур 0,3-0,5 Тпл до значения истинной накопленной деформации е≥4. Изобретение направлено на повышение механической прочности, электропроводности и термостойкости алюминиевого сплава.

Недостатком данного способа является ограниченная термостойкость (до 180°С) и чрезмерно длительный отжиг (более 30 часов).

Известен способ получения проводникового ультрамелкозернистого алюминиевого сплава (RU 2616316, опублик. 14.04.2017). Данный способ включает получение сплава, содержащего, по крайней мере, один легирующий компонент, выбранный из группы РЗМ (La, Се, Nd, Pr) в количестве 7,0-9,0%, железо и кремний в количестве по 0,05-0.1% (мас. %), интенсивную пластическую деформацию с истинной накопленной степенью деформации е≥4 при приложении давления 0.5-6.0 ГПа в интервале гомологических температур 0.3-0.5 Тпл, и отжиг в температурном интервале 280-400°С продолжительностью не менее 1 часа. Техническим результатом является повышение механической прочности и термостойкости при удовлетворительной электрической проводимости в сплаве.

Недостатками данного способа является ограниченная термостойкость (до 310°) и повышенная плотность (2,847 г/см3) по сравнению с чистым алюминием.

Наиболее близким к предлагаемому является способ получения деформированных полуфабрикатов из алюминиево-кальциевого сплава (RU 2716566, опубл. 12.03.2020). Заявленный способ включает приготовление расплава содержащего кальций, цирконий, железо, кремний и скандий, получение слитка, горячую деформацию при температуре в пределах от 390 до 450°С, холодную деформацию и стабилизирующий отжиг при температуре в пределах от 300 до 400°С в течение времени от 1 до 10 часов, обеспечивая формирование композиционной структуры, состоящей из алюминиевой матрицы, содержащей наночастицы фазы Al3(Zr,Sc)-L12 размером не более 20 нм в количестве не менее 0,4 об.%, и равномерно распределенных в алюминиевой матрице кальций-содержащих частиц размером не более 1 мкм в количестве не менее 16 об.%. Техническим результатом является создание способа получения различных деформированных полуфабрикатов (в том числе проволоки диаметром менее 0,3 мм) из алюминиево-кальциевого композиционного сплава. Полученные таким способом материалы обладают высоким уровнем физико-механических свойств (предел прочности не менее 250 МПа, удлинение не менее 3,5% и удельная электропроводность не менее 46,0 %IACS), термостойкости (350°С) и плотности (менее 2,7 г/см3).

Недостатком данного способа является то, что он включает горячую деформацию и не позволяет проводить прямое холодное волочение литой заготовки (слитка). Другим недостатком данного способа является то, что из-за высокого содержания кальция электропроводность проволоки не превышает 46,0 %IACS. Еще одним недостатком данного способа является необходимость введения в расплав дорогостоящего скандия.

Техническим результатом изобретения является получение термостойкой проволоки из алюминиево-кальциевого сплава со следующими характеристиками:

плотность менее 2,7 г/см3 (ниже, чем у чистого алюминия), высокая деформационная технологичность (отсутствие необходимости в горячей деформации) и следующим комплексом физико-механических свойств после 1 часового нагрева при 450°С: предел прочности при разрыве (σВ) не менее 180 МПа, условный предел текучести (σ0.2) не менее 170 МПа, относительное удлинение после разрыва (δ) - не менее 8%, электропроводность - не менее 54 %IACS.

Технический результат достигается следующим образом.

Способ получения проволоки из алюминиево-кальциевого сплава включает получение расплава на основе алюминия, содержащего компоненты при следующем составе % (мас):

кальций 0,8-1.8
цирконий 0,3-0,7
железо 0,1-0,64
кремний 0,05-0,4
алюминий остальное,

получение литой заготовки диаметром от 8 до 12 мм путем кристаллизации расплава в электромагнитном кристаллизаторе, деформацию литой заготовки путем холодного волочения и стабилизирующий отжиг полученной проволоки при температуре 420-460°С в течение 1-10 часов.

Кроме того диаметр проволоки составляет менее 3,1 мм.

Также диаметр проволоки составляет менее 0,3 мм.

При содержании кальция ниже 0,8 мас. % снижается термостойкость проволоки (прочностные свойства после 1-часой выдержки при 450°С), при содержании кальция свыше 1,8 мас. % снижается электропроводность и деформационная технологичность.

При содержании циркония ниже 0,3 мас. % снижается термостойкость проволоки (прочностные свойства после 1-часой выдержки при 450°С), при содержании циркония свыше 0,7 мас. % происходит формирование первичных кристаллов стабильной фазы Al3Zr-D023 и, как следствие, уменьшение наночастиц метастабильной фазы Al3Zr-L12, что приводит к снижению прочности.

При содержании железа и кремния ниже 0,1 мас. % и 0,05 мас. % соответственно исключается возможность готовить сплавы на основе алюминия технической чистоты. При содержании железа и кремния выше 0,6 мас. % и 0,5 мас. % соответственно ухудшается технологическая пластичность сплава из-за огрубления структуры.

При диаметре литой заготовки менее 8 мм затрудняется получение необходимого обжатия при получении проволоки и, как следствие, достижение требуемых прочностных свойств. При диаметре литой заготовки свыше 12 мм происходит огрубление структуры из-за снижения скорости охлаждения при кристаллизации.

Температура отжига ниже 420°С и время выдержки менее 1 часа не позволяют в полной мере стабилизировать структуру и реализовать необходимый уровень термостойкости. Температура отжига выше 460°С и время выдержки более 10 часов приводят к огрублению структуры (в частности, увеличению размеров частиц Zr- и Ca-содержащих фаз и формированию рекристаллизованных зерен) и, как следствие, к снижению прочностных свойств.

Предлагаемые режимы обеспечивают формирование композиционной структуры, состоящей из алюминиевой матрицы, содержащей наночастицы фазы Al3Zr-L12 размером не более 20 нм в количестве не менее 0,4 об.% и равномерно распределенных в алюминиевой матрице эвтектических кальций-содержащих частиц субмикронного размера. При этом суммарная концентрация легирующих элементов в алюминиевом твердом растворе не превышает 0,1 мас. %.

В частных исполнениях способ может включать получение проволоки диаметром менее 3,1 мм или диаметром менее 0,3 мм.

Изобретение поясняется чертежом, где: на фиг. 1 представлена литая заготовка алюминиевого сплава, полученная кристаллизацией расплава в электромагнитном кристаллизаторе, на фиг. 2 представлена проволока, полученная холодным волочением из литой заготовки алюминиевого сплава (фиг. 1), на фиг. 3 представлена микроструктура литой заготовки алюминиевого сплава, полученной кристаллизацией расплава в электромагнитном кристаллизаторе (сканирующая электронная микроскопия (СЭМ)), на фиг. 4 наночастицы фазы Al3Zr-L12 в структуре отожженной проволоки (просвечивающая электронная микроскопия (ПЭМ)), на фиг. 5 представлены кальций-содержащие частицы в структуре отожженной проволоки (ПЭМ), на фиг. 6 представлен излом отожженной проволоки после испытаний на растяжение (СЭМ).

На фигурах показаны: изображение 1, полученное в светлом поле, темнопольное изображение 2 и картина дифракции, изображение 3, полученное детектором обратно-рассеянных электронов, изображение 4, полученное детектором вторичных электронов.

Выбор кальция в качестве основного эвтектико-образующего компонента обусловлен тем, что по объемной доле второй фазы алюминиево-кальциевая эвтектика почти в 3 раза превосходит алюминиево-кремниевую эвтектику. Большое количество кальциевой фазы эвтектического происхождения позволяет реализовать при относительно малом количестве легирующих элементов высокую объемную долю интерметаллидов, соизмеримую со сплавами типа 01417, содержащих более 7 мас. % РЗМ.

Эвтектические сплавы с кальцием в отличие от сплавов с высоким содержанием кремния, а также сплавов с высоким содержанием редкоземельных металлов, позволяют добиться упрочнения путем дополнительного легирования добавкой циркония. Благодаря высокой скорости охлаждения в условиях кристаллизации расплава в электромагнитном кристаллизаторе цирконий полностью переходит в алюминиевый твердый раствор, который при последующих отжигах распадается с образованием наночастиц фазы Al3Zr-L12 (фиг. 4). Сохраняя высокую дисперсность в широком интервале температур (до 450°С включительно), эти наночастицы действуют как эффективные антирекристаллизаторы, что может дополнительно обеспечить прирост прочности деформированного полуфабриката.

Сочетание кальция, железа и кремния обеспечивает формирование высокодисперсной структуры в условиях кристаллизации расплава в электромагнитном кристаллизаторе (фиг. 3). Относительно высокая пластичность кальций-содержащих интерметаллидов способствует формированию частиц субмикронного размера в процессе холодного волочения. Эти частицы также препятствуют протеканию рекристаллизации при нагреве при температурах до 450°С включительно (фиг. 5).

ПРИМЕР 1

В лабораторных условиях было опробовано 5 вариантов способа получения проволоки из алюминиево-кальциевого сплава. Расплав готовили на основе алюминия марки А99 (ГОСТ 11069-2001). Плавка велась в следующей последовательности. После расплавления алюминия вводили лигатуры, содержащие железо, кремний, цирконий. После растворения лигатур и выхода печи на заданную температуру вводился кальций под зеркало расплава и активно перемешивался. Расплав заливали в электромагнитный кристаллизатор, получая прутковые заготовки различного диаметра (фиг. 1). Температура литья была заведомо выше температуры ликвидус.

Прутковые заготовки подвергали холодному волочению до диаметра 3 мм. После этого проволоку подвергали многоступенчатому отжигу, последняя ступень которого выполняла функцию стабилизирующего отжига. Концентрации кальция, циркония, железа и кремния, диаметр прутковой заготовки, температура стабилизирующего отжига и его продолжительность варьировались согласно значениям, указанным в табл. 1. На отожженной (при 450°С в течение 1 часа) проволоке (фиг. 2), определяли механические свойства на растяжение (предел прочности при разрыве (σВ), условный предел текучести (σ0.2), относительное удлинение после разрыва (δ)) и удельную электропроводность (УЭП).

Как видно из табл. 1, при низком содержании легирующих компонентов в расплаве (вариант 1) технологические параметры стабилизирующего отжига не позволяют обеспечить в структуре достаточного количества кальций-содержащих фаз эвтектического происхождения и цирконий- наночастиц. Следствием этого является пониженная прочность и повышенная содержащих плотность (табл. 2). Содержание железа и кремния в случае исполнения варианта 1 также не позволяет использовать алюминий технической чистоты.

При высоком содержании легирующих компонентов в расплаве (вариант 5) объемная доля кальций-содержащих фаз (в слитке) слишком высока. Кроме того, в структуре литой заготовки присутствуют первичные кристаллы алюминиево-циркониевой фазы. Все это не обеспечивает достаточной пластичности при холодном волочении (табл. 2).

При диаметре литой заготовки свыше 12 мм, температуре отжига выше 460°С и время выдержки более 10 часов (вариант 6) происходит огрубление структуры из-за снижения скорости охлаждения при кристаллизации и увеличения размеров частиц Zr- и Ca-содержащих фаз, как следствие, снижение прочностных свойств.

Таким образом, можно заключить, что только варианты 2, 3 и 4, в которых содержание компонентов сплава, температура отжига и время выдержки, а также диаметр литой заготовки находятся в заявленных пределах, позволяют реализовать заявленный способ получения проволоки из алюминиево-кальциевого сплава. Заявленные варианты способа получения проволоки обеспечивают реализацию требуемой структуры, содержащий наночастицы фазы Al3Zr-L12 (фиг. 4) и кальций-содержащие частицы субмикронного размера (фиг. 5). Равномерное распределение этих частиц обеспечивает вязкий характер разрушения проволоки, которое проявляется в наличием в изломе равномерно распределенных ямок, размер которых не превышает 2 мкм (фиг. 6).

ПРИМЕР 2

В лабораторных условиях из 3 мм проволоки, полученного по варианту 3 (см. пример 1) была получена проволока диаметром 260 мкм (Фиг. 4). Проволоку подвергали отжигу при 450°С в течение 1 часа. Свойства приведенные в табл. 3 показывают, что они соответствуют заданным значениям.

Источник поступления информации: Роспатент

Showing 1-10 of 322 items.
20.06.2016
№217.015.03df

Оправка прошивного стана

Изобретение относится к области обработки металлов давлением на станах винтовой прокатки. Оправка имеет переменный профиль. Возможность удаления дефектов непрерывнолитой заготовки, уменьшение разностенности получаемых гильз обеспечивается за счет того, что в оправке с переднего торца,...
Тип: Изобретение
Номер охранного документа: 0002587702
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2b53

Способ изготовления струеформирующих сопел

Изобретение относится к области производства струеформирующих сопел, которые могут быть использованы для очистки поверхностей, удаления покрытий, создания шероховатости на поверхности, для резки и разделения материалов. Способ включает формирование рабочего отверстия в композиционном алмазном...
Тип: Изобретение
Номер охранного документа: 0002579598
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2b79

Усиливающий сверхпроводящий метаматериал

Использование: для сверхмалошумящего усиления слабых радиотехнических сигналов. Сущность изобретения заключается в том, что усиливающий сверхпроводящий метаматериал состоит из гальванически связанных элементарных ячеек, смещенных постоянным током и проявляющих эффект квантовой интерференции с...
Тип: Изобретение
Номер охранного документа: 0002579813
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2c52

Способ акустического каротажа

Изобретение относится к горному делу и предназначено для определения координат трещиноватых зон, пересекающих измерительную скважину, пробуренную в кровле выработки. Способ основан на экспериментально установленной закономерности влияния трещиноватой зоны на корреляционные характеристики...
Тип: Изобретение
Номер охранного документа: 0002579820
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cca

Способ извлечения золота из руд

Изобретение относится к области цветной металлургии. Способ извлечения золота включает цианирование руды при измельчении. В мельницу последовательно подают при соотношении твердой фазы к жидкой фазе от 3:2 до 2:1 предварительно дробленную до крупности фракций от 2 мм до 4 мм руду, добавку...
Тип: Изобретение
Номер охранного документа: 0002579858
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cd6

Способ защиты поверхности сляба из низколегированной стали перед его нагревом в методической печи под прокатку

Изобретение относится к области металлургии и может быть использовано при подготовке слябов из низколегированных сталей перед нагревом под прокатку. Способ защиты поверхности сляба из низколегированной стали при прокатке включает напыление алюминиевого газотермического покрытия на широкие грани...
Тип: Изобретение
Номер охранного документа: 0002579866
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2d7d

Способ получения деформированных полуфабрикатов из сплава на основе алюминия

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия системы Al-Fe-Si в виде тонколистового проката, фольги, листов, плит, прессованных профилей, проволоки и др. Из деформированных полуфабрикатов могут быть получены изделия, предназначенные для...
Тип: Изобретение
Номер охранного документа: 0002579861
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e9d

Способ определения количества незамерзшей воды в мерзлых грунтах

Изобретение относится к геологии и может быть использовано при проектировании зданий и сооружений для определения количества незамерзшей воды в мерзлых грунтах. Для этого осуществляют бурение скважин с отбором керна, оттаивают полученный образец замороженного грунта и определяют суммарное...
Тип: Изобретение
Номер охранного документа: 0002580316
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3217

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к медицине. Описан способ получения биоактивного покрытия с антибактериальным эффектом, который включает электроискровую обработку поверхности подложки обрабатывающим электродом, следующего состава (вес. %):биоактивная добавка - 5-40,антибактериальная металлическая добавка...
Тип: Изобретение
Номер охранного документа: 0002580628
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.321e

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к области медицины, а именно к способу получения биоактивного покрытия с антибактериальным эффектом, включающий электроискровую обработку поверхности токопроводящей подложки обрабатывающим электродом, состоящим из биоактивной добавки в количестве 5-40 вес.%;...
Тип: Изобретение
Номер охранного документа: 0002580627
Дата охранного документа: 10.04.2016
Showing 1-10 of 44 items.
27.03.2013
№216.012.3131

Термостойкий литейный алюминиевый сплав

Изобретение относится к области металлургии и может быть использовано для изготовления отливок, предназначенных для получения деталей ответственного назначения, работающих под действием высоких нагрузок при температурах до 300-350°С, автомобильных двигателей, деталей водозаборной арматуры,...
Тип: Изобретение
Номер охранного документа: 0002478131
Дата охранного документа: 27.03.2013
27.03.2013
№216.012.3132

Высокопрочный сплав на основе алюминия с добавкой кальция

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок при температурах до 100-150°С, таких как детали летательных аппаратов, автомобилей и других транспортных средств, детали...
Тип: Изобретение
Номер охранного документа: 0002478132
Дата охранного документа: 27.03.2013
27.03.2013
№216.012.3136

Ультрамелкозернистые алюминиевые сплавы для электротехнических изделий и способы их получения (варианты)

Изобретение относится к области получения алюминиевых сплавов и может быть использовано для изготовления изделий электротехнического назначения. Для повышения механической прочности и электрической проводимости в алюминиевых сплавах системы Al-Mg-Si формируют два типа ультрамелкозернистой...
Тип: Изобретение
Номер охранного документа: 0002478136
Дата охранного документа: 27.03.2013
10.06.2013
№216.012.489c

Высокопрочный экономнолегированный сплав на основе алюминия

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок при температурах до 150°С, деталей летательных аппаратов, автомобилей и других транспортных средств, деталей спортинвентаря и др....
Тип: Изобретение
Номер охранного документа: 0002484168
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4ca1

Литейный алюминиевый сплав

Изобретение относится к области металлургии, конкретно к сплавам на основе алюминия, и может быть использовано при получении крупногабаритных отливок сложной формы, предназначенных для изготовления деталей ответственного назначения, в частности корпусов редукторов, применяемых в авиастроении....
Тип: Изобретение
Номер охранного документа: 0002485199
Дата охранного документа: 20.06.2013
27.10.2013
№216.012.7a05

Способ получения борсодержащего композиционного материала на основе алюминия

Изобретение относится к области металлургии, в частности к борсодержащим алюмоматричным композиционным материалам, и может быть использовано при получении изделий, к которым предъявляются требования низкого удельного веса в сочетании с высоким уровнем поглощения при нейтронном излучении. Способ...
Тип: Изобретение
Номер охранного документа: 0002496899
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7a08

Алюмоматричный композиционный материал с борсодержащим наполнителем

Изобретение относится к области металлургии, в частности к содержащим бор алюмоматричным композиционным материалам, и может быть использовано при получении изделий, к которым предъявляются требования низкого удельного веса в сочетании со специальными свойствами, в частности высокий уровень...
Тип: Изобретение
Номер охранного документа: 0002496902
Дата охранного документа: 27.10.2013
27.12.2013
№216.012.910b

Способ термообработки отливок из сплавов на основе гамма алюминида титана

Изобретение относится к области металлургии, в частности к способам термообработки отливок сплавов на основе гамма алюминида титана, и может быть использовано при получении изделий ответственного назначения, работающих при температурах до 800°С, в частности лопаток газотурбинных двигателей....
Тип: Изобретение
Номер охранного документа: 0002502824
Дата охранного документа: 27.12.2013
10.02.2014
№216.012.9eb5

Литейный магниевый сплав

Изобретение относится к области металлургии, а именно к литейным сплавам на основе магния, и может быть использовано при получении деталей для авиакосмической промышленности, работающих под действием высоких нагрузок при температурах до 150°С и 250°С кратковременно. Литейный сплав на основе...
Тип: Изобретение
Номер охранного документа: 0002506337
Дата охранного документа: 10.02.2014
20.07.2014
№216.012.dfaf

Способ получения отливок сплавов на основе гамма алюминида титана

Изобретение относится к области металлургии, в частности к способам получения отливок сплавов на основе гамма алюминида титана, и может быть использовано при получении изделий ответственного назначения, работающих при температурах до 700°C, в частности лопаток газотурбинных двигателей. Способ...
Тип: Изобретение
Номер охранного документа: 0002523049
Дата охранного документа: 20.07.2014
+ добавить свой РИД