×
13.01.2017
217.015.725a

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ФТОРИДНЫХ СТЕКОЛ С РАСШИРЕННЫМ ДИАПАЗОНОМ ОПТИЧЕСКОГО ПРОПУСКАНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области получения фторидных стекол с широким диапазоном пропускания. Технический результат изобретения заключается в получении оптически прозрачных стекол без кислородсодержащих примесей с расширенным диапазоном пропускания от 0,21 мкм до 7,5 мкм для фторцирконатного стекла и от 0,225 мкм до 8 мкм для фторгафнатного стекла. Шихту из смеси фторидов металлов, выбранных из ряда: фторид металла IV группы; BaF; LaF; AlF; NaF, плавят в атмосфере сухого аргона при температуре 850÷950°С в течение 30÷60 минут и затем охлаждают. Перед плавлением шихту обрабатывают фторирующим агентом - дифторидом ксенона при температурах его реагирования с кислородсодержащими примесями с последующим удалением газообразных продуктов реакции в вакууме. В качестве фторида металла IV группы используют либо ZrF, либо HfF. Обработку шихты фторирующим агентом проводят при температуре 300÷350°С в течение 3÷5 часов. Удаление газообразных продуктов реакции в вакууме проводят при температуре 100÷150°C. Полученное стекло дополнительно отжигают при 250÷270°C в течение 2÷3 часов во избежание растрескивания. 2 з.п. ф-лы, 2 ил., 2 пр.

Изобретение относится к области получения фторидных стекол с широким диапазоном пропускания, которые используются для создания новых высокоэффективных оптических сред лазеров, усилителей и нелинейных преобразователей частоты для ИК спектрального диапазона, а также конверторов ИК-излучения в видимую спектральную область.

Существенным преимуществом фторидных стекол по сравнению с кварцевыми стеклами является значительно более широкий диапазон пропускания от ближнего УФ- до среднего ИК-диапазона (0,295~7,5 мкм). Однако ионы гидроксила, попадающие во фторидное стекло из исходных материалов или в процессе получения стекла, сильно поглощают ИК излучение. Оценки показывают, что присутствие 1 ppm ионов гидроксила может привести к затуханию в волоконных световодах, ~ равному 104 дБ/км на длине волны 2,9 мкм. Поэтому чистота исходных фторидов особенно по гидроксильным группам и кислороду остается труднорешаемой задачей [Drexhage M.G., Moynihan C.T. Infrared optical fibers // Scientific American. 1988. V. 259. №5. P. 110-116].

Известно, что для решения одной из принципиальных проблем при получении стекол, а именно удаления кислородсодержащих примесей из исходных фторидов, в шихту дополнительно вводят фториды неметаллов: HF, F2, NH4F·HF, CF4, CCl2F2, CClF3, т.е. вещества, не проявляющие окислительных свойств, а вступающие в реакцию замещения [US 5071460, опубл. 10.12.1991].

Основным недостатком является вероятность загрязнения стекла углеродом при разложении металлорганических соединений.

Так, ранее, для удаления кислородсодержащих примесей из компонентов стекол синтез фторидных стекол проводили в атмосфере бифторида аммония (NH4F·HF) путем нагревания и выдерживания исходной смеси при 500°С в течение 1-2 ч. Далее полученную смесь нагревали до плавления при 800-1000°С [M. Poulain. Halide Glasses // J. Non-Cryst. Solids. 1983. V. 56. No. 1-3. P. 1-14].

Недостатком реакций замещения является то, что их реализация сопряжена с возможностью образования ряда нежелательных примесей и, следовательно, загрязнением получаемого фторидного стекла.

Известен способ получения фторцирконатного стекла, согласно которому перед плавлением в состав шихты вводят фторцирконат аммония (NH4)3ZrF7. При нагревании фторцирконат аммония разлагается с образованием ZrF4, NH4HF2, NH3 и HF. Испарение NH4HF2, HF создает в печи фторирующую атмосферу, предохраняющую расплав фторидов от протекания реакций пирогидролиза и способствующую образованию фторидом циркония комплексных соединений с другими фторидами, что, в свою очередь, подавляет его сублимацию, понижает его летучесть [RU 2102346, опубл. 20.01.1998].

К недостаткам способа относится его трудоемкость, поскольку процессы разложения аммонийных комплексов являются многостадийными.

Следует также отметить, что фторирование расплавов стекол газообразными фторирующими агентами при температурах около 900-1000°С не приводит к высокой степени очистки от гидроксильных групп вследствие отсутствия эффективного контакта молекул фторирующего агента с ОН- группами.

Основным недостатком является то, что описанный способ дофторирования не оказывает влияния на смещение границ области оптического пропускания. Расширить ИК-диапазон пропускания фторидных стекол в длинноволновую область удалось путем частичного замещения анионов фтора более тяжелыми анионами хлора и катионов циркония и алюминия более тяжелыми катионами гафния и индия [Л.Н. Дмитрук, С.Х. Батыгов, Л.В Моисеева, О.Б. Петрова, М.Н. Бреховских, В.А. Федоров. Синтез и свойства стекол на основе галогенидов тяжелых металлов // Неорган. материалы. 2007. Т. 43. №7. С. 887-890].

Известен способ получения фторидных хлор- и бромсодержащих стекол с малой концентрацией поглощающих в ИК-диапазоне кислородсодержащих примесей, с одновременным предотвращением испарения тяжелых галогенов в процессе синтеза. В шихту из смеси галогенидов, выбранных из ряда: HfF4; BaF2; ВаCl2; LaF3; AlF3; InF3; NaF; NaBr, т.е. содержащую "тяжелые" хлориды и бромиды, дополнительно вводили 2÷3 мол. % предварительно высушенного при температуре до 100°С гидрофторида бария BaF2·2HF для фторирования сорбированных тиглем и шихтой кислородсодержащих примесей. Суть предлагаемого способа заключается в герметизации объема тигля во время синтеза и устранении контакта расплава с окружающей газовой атмосферой как во время синтеза, так и во время литья [RU 2526955, опубл. 27.08.2014].

В результате получали стекла, характеризующиеся малой концентрацией кислородсодержащих примесей и существенным сдвигом ИК-области пропускания в сторону длинных волн.

Недостатком является сложное аппаратурное оформление, связанное с тем, что плавление осуществляют в герметизированном тигле, а выливание расплава в форму проводят без контакта расплава с окружающей газовой средой.

Вторым недостатком является сложность в выборе концентрации вводимого в шихту гидрофторида бария, которая должна быть, с одной стороны, достаточна для фторирования сорбированных кислородсодержащих примесей, с другой стороны, не приводить к изменениям состава стекол из-за частичного замещения хлорида бария и бромида натрия соответствующими фторидами.

Основным недостатком является то, что способ не позволяет сместить край области УФ-пропускания в коротковолновую область.

Наиболее близким к заявленному является способ получения фторидных стекол, заключающийся в использовании таких фторокислителей, как фториды металлов в высшей степени окисления, из которых по крайней мере один представляет собой комплексное соединение с фторидом брома NaBrF4 или йода NaIF4. Этот способ подразумевает введение в состав шихты вместо простого бинарного фторида металла его комплексного соединения с сильным фторирующим агентом. В качестве фторирующих агентов используются фториды брома или йода, которые образуют комплексные с фторидами металлов, входящими в составы фторидных стекол. При таком способе обработки шихты ИК-спектр стекол не содержит полосы поглощения ОН- группы [RU 2263637, опубл. 31.05.2004] (прототип).

Основным недостатком является то, что при реализации способа по прототипу диапазон пропускания фторцирконатного стекла составляет всего лишь от 0,25 мкм до 7,0 мкм.

Кроме того, при нагревании комплексные соединения фторидов брома или йода распадаются с выделением жидкой фазы трифторидов брома или йода, что взрывоопасно, т.к. они возгораются на воздухе.

Изобретение направлено на изыскание простого, безопасного способа получения фторидных стекол без кислородсодержащих и других нежелательных примесей, характеризующихся расширенным диапазоном оптического пропускания одновременно как в сторону смещения УФ-края в коротковолновую область, так и в сторону смещения ИК-края в длинноволновую область.

Технический результат достигается тем, что предложен способ получения фторидных стекол с расширенным диапазоном оптического пропускания, заключающийся в том, что шихту из смеси фторидов металлов, выбранных из ряда: фторид металла IV группы; BaF2; LaF3; AlF3; NaF, плавят в атмосфере сухого аргона при температуре 850÷950°С в течение 30÷60 минут и затем охлаждают, перед плавлением шихту обрабатывают фторирующим агентом при температурах его реагирования с кислородсодержащими примесями с последующим удалением газообразных продуктов реакции в вакууме, отличающийся тем, что в качестве фторида металла IV группы используют либо ZrF4, либо HfF4, в качестве фторирующего агента используют дифторид ксенона, а обработку шихты фторирующим агентом проводят при температуре 300÷350°С в течение 3÷5 часов.

Дифторид ксенона представляет собой кристаллическое вещество с tпл ~ 130°С и tкип ~ 155°С, поэтому его легко дозировать в отличие от жидкостей или газов.

Значения температур обработки 300÷350°С шихты дифторидом ксенона в качестве фторирующего агента выбраны по аналогии с результатами работы [Brekhovskikh M., Popov Α., Fedorov V., Kiselev Yu. Reaction of fluoroxidizers with rare earth elements, zirconium and hafnium oxides // Mat. Res. Bull. 1988. V. 23. №10. P. 1417-1421], где в результате изучения химических превращений оксидных соединений РЗЭ, циркония, гафния с участием фторокислителя - дифторида ксенона, установлены условия протекания реакций, в которых происходит образование фторидов и выделение молекулярного кислорода.

Изобретение проиллюстрировано Фиг. 1 «УФ-край пропускания» и Фиг. 2 «ИК-край пропускания», на которых кривая 1 отвечает фторцирконатному стеклу, синтезированному по прототипу, кривая 2 - фторцирконатному стеклу, синтезированному в соответствии с предлагаемым способом, кривая 3 - фторгафнатному стеклу, синтезированному в соответствии с предлагаемым способом.

Сущность предлагаемого технического решения заключается в том, что использование дифторида ксенона в качестве фторирующего агента позволяет простым безопасным способом получать фторидные стекла без кислородсодержащих примесей и с расширенным диапазоном оптического пропускания одновременно как в сторону смещения УФ-края в коротковолновую область, так и в сторону смещения ИК-края в длинноволновую область.

Принимая во внимание склонность фторидов III и IV групп к пирогидролизу, нами было предложено использовать неорганический фторокислитель - дифторид ксенона применительно к фторидным системам при получении стекол, не содержащих полос поглощения ОН- и кислорода.

Известно, что в органической химии дифторид ксенона используется для фторокисления кетонов и ароматических соединений [В. Zajc, M. Zupan. Fluorination with xenon difluoride. The effect of catalyst on fluorination of 1,3-diketones and enol acetates // J. Org. Chem. 1982. V. 47. No.3. P. 573-575; G. Firnau, R. Chirakal, S. Sood, S. Garnett. Aromatic fluorination with xenon difluoride: L-3,4-dihydroxy-6-fluoro-phenylalanine // Can. J. Chem. 1980. V. 58. No. 14. P. 1449-1450].

Температура 100÷150°С удаления газообразных продуктов реакции в вакууме обусловлена необходимостью удаления сорбированной воды.

Параметры отжига стекла во избежание растрескивания определены экспериментально методом дифференциального термического анализа и составили необходимые и достаточные 250÷270°С в течение 2÷3 часов.

Ниже приведены примеры, иллюстрирующие, но не ограничивающие предложенный способ.

Пример 1. Фторцирконатное стекло

В 5 г шихты состава, мол. %, 55,8ZrF4-14,4BaF2-5,8LaF3-3,8AlF3-20,2NaF добавляли 0,5 г дифторида ксенона, смесь помещали в никелевый реактор, футерованный лейкосапфиром и соединенный с вакуумной линией. Реактор нагревали в печи до 350°С и выдерживали в течение 3 часов, после чего откачивали газообразные продукты реакции в динамическом вакууме при 150°С. Затем навеску перекладывали в сухом боксе в тигель из стеклоуглерода и проводили синтез стекла в атмосфере сухого аргона при температуре 950°С в течение 60 минут. Полученное стекло отжигали при 270°С в течение 3 часов во избежание растрескивания. Получили оптически прозрачное стекло с диапазоном пропускания от 0,21 мкм (Фиг. 1, кривая 2) до 7,5 мкм (Фиг. 2, кривая 2) по уровню 50%-ного пропускания. Спектр пропускания не содержал полос поглощения ОН- групп в области 2,9 мкм, а также в области 6 мкм, где проявляются деформационные колебания воды.

Пример 2. Фторгафнатное стекло

В 5 г шихты состава, мол.%, 58HfF4-20BaF2-2LaF3-3AlF3-17NaF добавляли 0,5 г дифторида ксенона, смесь помещали в никелевый реактор, футерованный лейкосапфиром и соединенный с вакуумной линией. Реактор нагревали в печи до 300°С и выдерживали в течение 5 часов, после чего откачивали газообразные продукты реакции в динамическом вакууме при 150°С. Затем навеску перекладывали в сухом боксе в тигель из стеклоуглерода и проводили синтез стекла в атмосфере сухого аргона при температуре 850°С в течение 50 минут. Полученное стекло отжигали при 270°С в течение 3 часов во избежание растрескивания. Получили оптически прозрачное стекло с диапазоном пропускания от 0,225 мкм (Фиг. 1, кривая 3) до 8 мкм (Фиг. 2, кривая 3) по уровню 50%-ного пропускания. Спектр пропускания не содержал полос поглощения ОН- групп в области 2,9 мкм, а также в области 6 мкм, где проявляются деформационные колебания воды.

Предлагаемый способ позволяет получать оптически прозрачные стекла без кислородсодержащих примесей с расширенным диапазоном пропускания от 0,21 мкм до 7,5 мкм для фторцирконатного стекла и от 0,225 мкм до 8 мкм для фторгафнатного стекла.


СПОСОБ ПОЛУЧЕНИЯ ФТОРИДНЫХ СТЕКОЛ С РАСШИРЕННЫМ ДИАПАЗОНОМ ОПТИЧЕСКОГО ПРОПУСКАНИЯ
СПОСОБ ПОЛУЧЕНИЯ ФТОРИДНЫХ СТЕКОЛ С РАСШИРЕННЫМ ДИАПАЗОНОМ ОПТИЧЕСКОГО ПРОПУСКАНИЯ
Источник поступления информации: Роспатент

Showing 21-30 of 54 items.
10.04.2016
№216.015.310d

Способ утилизации и переработки вторсырья из целлюлозосодержащих отходов

Изобретение относится к области утилизации вторсырья, в частности к способу утилизации и переработки вторсырья из целлюлозосодержащих отходов. Предложен способ утилизации и переработки вторсырья из целлюлозосодержащих отходов, заключающийся в том, что целлюлозосодержащие отходы вымачивают в...
Тип: Изобретение
Номер охранного документа: 0002580497
Дата охранного документа: 10.04.2016
10.06.2016
№216.015.455c

Гибридный многослойный фотоэлектрический преобразователь

Изобретение относится к устройствам преобразования энергии электромагнитного излучения в электричество, в частности фотопреобразователям солнечного излучения на основе органических полупроводников. Согласно изобретению формируют гибридный фотоэлектрический преобразователь, содержащий пять слоев...
Тип: Изобретение
Номер охранного документа: 0002586263
Дата охранного документа: 10.06.2016
12.01.2017
№217.015.612a

Способ получения литированного двойного оксида лития и марганца со структурой шпинели

Изобретение относится к технологии получения материала на основе смешанного оксида лития и марганца со структурой шпинели для использования его во вторичных батареях. Предложен способ получения литированного двойного оксида лития и марганца состава LiMnO, где 0,20
Тип: Изобретение
Номер охранного документа: 0002591154
Дата охранного документа: 10.07.2016
25.08.2017
№217.015.ba0d

Способ определения удельной электропроводности ионпроводящих материалов

Изобретение относится к физико-химическим исследованиям и может быть использовано в химической и других родственных с ней отраслях промышленности для определения удельной электропроводности ионпроводящих материалов, в том числе полимерных пленок и тканей. Предложен способ определения удельной...
Тип: Изобретение
Номер охранного документа: 0002615601
Дата охранного документа: 05.04.2017
25.08.2017
№217.015.bab7

Способ получения стабильных водных коллоидных растворов наночастиц диоксида церия

Изобретение может быть использовано в химической промышленности, биохимии, медицине. Для получения стабильных водных коллоидных растворов наночастиц диоксида церия готовят водный раствор гексанитроцерата(IV) аммония, тщательно перемешивая до его полного растворения. Проводят гидротермальную...
Тип: Изобретение
Номер охранного документа: 0002615688
Дата охранного документа: 06.04.2017
25.08.2017
№217.015.bae7

Способ получения композиционного порошка mb-sic, где m=zr, hf

Изобретение относится к неорганической химии и неорганическому материаловедению, конкретно к получению порошковых материалов состава MB-SiC, где М = Zr, Hf, содержащих нанокристаллический карбид кремния. Получаемые композиционные порошки ZrB-SiC и/или HfB-SiC могут быть применены для нанесения...
Тип: Изобретение
Номер охранного документа: 0002615692
Дата охранного документа: 06.04.2017
25.08.2017
№217.015.d135

Индикаторный элемент для обнаружения утечки гидразиновых ракетных горючих

Изобретение относится к химмотологии, а именно к химическим индикаторам на твердофазных носителях для определения компонентов ракетных, авиационных и автомобильных топлив, и может быть использовано для экспрессного обнаружения утечки гидразиновых ракетных горючих на месте сварных швов и...
Тип: Изобретение
Номер охранного документа: 0002622026
Дата охранного документа: 08.06.2017
25.08.2017
№217.015.d2ee

Мембрана ионоселективного электрода для определения октагидротриборатного аниона

Изобретение относится к потенциометрическим методам количественного определения веществ (ионометрия) и может быть использовано для неразрушающего контроля и автоматического регулирования содержания октагидротриборатного аниона в водных, включая технологические, растворах. Предложена мембрана...
Тип: Изобретение
Номер охранного документа: 0002621888
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.d40c

Способ получения керамического прекурсора для синтеза лейкосапфира

Изобретение относится к области неорганической химии, в частности к способу получения прекурсора для синтеза лейкосапфира. Предложенный способ заключается в том, что смесь гидраргиллита с 1÷15 мас.% электрокорунда с размером зерна от 10 до 50 мкм заливают 0,5÷2 мас.% водного раствора соляной...
Тип: Изобретение
Номер охранного документа: 0002622133
Дата охранного документа: 13.06.2017
26.08.2017
№217.015.d75a

Композиционный катодный материал

Изобретение относится к электротехнической промышленности и может быть использовано для производства улучшенного катодного активного материала литий-ионных аккумуляторных батарей с повышенной удельной емкостью при циклировании токами высокой плотности. Предложен композиционный катодный материал...
Тип: Изобретение
Номер охранного документа: 0002623212
Дата охранного документа: 23.06.2017
Showing 21-30 of 36 items.
12.01.2017
№217.015.612a

Способ получения литированного двойного оксида лития и марганца со структурой шпинели

Изобретение относится к технологии получения материала на основе смешанного оксида лития и марганца со структурой шпинели для использования его во вторичных батареях. Предложен способ получения литированного двойного оксида лития и марганца состава LiMnO, где 0,20
Тип: Изобретение
Номер охранного документа: 0002591154
Дата охранного документа: 10.07.2016
25.08.2017
№217.015.ba0d

Способ определения удельной электропроводности ионпроводящих материалов

Изобретение относится к физико-химическим исследованиям и может быть использовано в химической и других родственных с ней отраслях промышленности для определения удельной электропроводности ионпроводящих материалов, в том числе полимерных пленок и тканей. Предложен способ определения удельной...
Тип: Изобретение
Номер охранного документа: 0002615601
Дата охранного документа: 05.04.2017
25.08.2017
№217.015.bab7

Способ получения стабильных водных коллоидных растворов наночастиц диоксида церия

Изобретение может быть использовано в химической промышленности, биохимии, медицине. Для получения стабильных водных коллоидных растворов наночастиц диоксида церия готовят водный раствор гексанитроцерата(IV) аммония, тщательно перемешивая до его полного растворения. Проводят гидротермальную...
Тип: Изобретение
Номер охранного документа: 0002615688
Дата охранного документа: 06.04.2017
25.08.2017
№217.015.bae7

Способ получения композиционного порошка mb-sic, где m=zr, hf

Изобретение относится к неорганической химии и неорганическому материаловедению, конкретно к получению порошковых материалов состава MB-SiC, где М = Zr, Hf, содержащих нанокристаллический карбид кремния. Получаемые композиционные порошки ZrB-SiC и/или HfB-SiC могут быть применены для нанесения...
Тип: Изобретение
Номер охранного документа: 0002615692
Дата охранного документа: 06.04.2017
25.08.2017
№217.015.d135

Индикаторный элемент для обнаружения утечки гидразиновых ракетных горючих

Изобретение относится к химмотологии, а именно к химическим индикаторам на твердофазных носителях для определения компонентов ракетных, авиационных и автомобильных топлив, и может быть использовано для экспрессного обнаружения утечки гидразиновых ракетных горючих на месте сварных швов и...
Тип: Изобретение
Номер охранного документа: 0002622026
Дата охранного документа: 08.06.2017
25.08.2017
№217.015.d2ee

Мембрана ионоселективного электрода для определения октагидротриборатного аниона

Изобретение относится к потенциометрическим методам количественного определения веществ (ионометрия) и может быть использовано для неразрушающего контроля и автоматического регулирования содержания октагидротриборатного аниона в водных, включая технологические, растворах. Предложена мембрана...
Тип: Изобретение
Номер охранного документа: 0002621888
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.d40c

Способ получения керамического прекурсора для синтеза лейкосапфира

Изобретение относится к области неорганической химии, в частности к способу получения прекурсора для синтеза лейкосапфира. Предложенный способ заключается в том, что смесь гидраргиллита с 1÷15 мас.% электрокорунда с размером зерна от 10 до 50 мкм заливают 0,5÷2 мас.% водного раствора соляной...
Тип: Изобретение
Номер охранного документа: 0002622133
Дата охранного документа: 13.06.2017
26.08.2017
№217.015.d75a

Композиционный катодный материал

Изобретение относится к электротехнической промышленности и может быть использовано для производства улучшенного катодного активного материала литий-ионных аккумуляторных батарей с повышенной удельной емкостью при циклировании токами высокой плотности. Предложен композиционный катодный материал...
Тип: Изобретение
Номер охранного документа: 0002623212
Дата охранного документа: 23.06.2017
26.08.2017
№217.015.e058

Способ получения наполнителей для строительных материалов

Изобретение относится к получению наполнителя для строительных материалов. Соль алюминия в количестве от 40 до 100 г/л растворяют в кипящем водном 10-50 мас.% растворе углевода, добавляют разрыхлитель в виде 5-50 мас.% раствора нитрата алюминия с обеспечением содержания алюминия в растворе до...
Тип: Изобретение
Номер охранного документа: 0002625388
Дата охранного документа: 13.07.2017
26.08.2017
№217.015.e1ba

Экстракционный способ получения наноразмерных кристаллов оксидов металлов

Изобретение может быть использовано в производстве компонентов полупроводниковых приборов, датчиков, УФ-фильтров, солнечных батарей, гетерогенных катализаторов. Для получения наноразмерных кристаллов оксидов металлов экстракционным способом в дистиллированной воде готовят гетерогенную систему...
Тип: Изобретение
Номер охранного документа: 0002625877
Дата охранного документа: 19.07.2017
+ добавить свой РИД