×
27.09.2015
216.013.7ffb

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ГЛИНОЗЕМА

Вид РИД

Изобретение

№ охранного документа
0002564360
Дата охранного документа
27.09.2015
Аннотация: Изобретение может быть использовано в металлургической области, при переработке алюминийсодержащего сырья. Способ получения глинозема включает обработку алюминийсодержащего сырья соляной кислотой, выделение из осветленного хлоридного раствора кристаллов гексагидрата хлорида алюминия и их двухстадийное термическое разложение с получением глинозема. Вторую стадию термического разложения проводят при температуре 150-450°C и непрерывной подаче водяного пара при отношении суммарной массы поданного пара к массе полученного глинозема равном 0,2-5,7. Изобретение позволяет повысить качество глинозема, а именно снизить содержание остаточного хлора до 0,01% и содержание альфа-фазы до 10%, снизить энергозатраты в 1,5-2 раза при высокой производительности процесса.1 табл.
Основные результаты: Способ получения глинозема, включающий обработку алюминийсодержащего сырья соляной кислотой, выделение из осветленного хлоридного раствора кристаллов гексагидрата хлорида алюминия и их двухстадийное термическое разложение с получением глинозема, отличающийся тем, что вторую стадию термического разложения проводят при температуре 150-450°C и непрерывной подаче водяного пара при отношении суммарной массы поданного пара к массе полученного глинозема равном 0,2-5,7.

Изобретение относится к металлургии, в частности к кислотным способам получения глинозема, и может быть использовано при переработке алюминийсодержащего сырья, в том числе низкосортного.

Известен солянокислотный способ получения глинозема путем кислотной обработки предварительно обожженного сырья, высаливания хлористым водородом из осветленного раствора гексагидрата хлорида алюминия (AlCl3·6H2O) с последующим термическим разложением его до оксида, при температуре 110-140°C в присутствии водяного пара при соотношении H2O:Al2O3 в интервале (5,8-7,2):1 (SU, авторское свидетельство №1258815, C01F 7/22, Опубл. 23.09.1986 г.). Такой способ позволяет проводить разложение при невысоких температурах и получать глинозем в основном в гамма-модификации и с малым содержанием остаточного хлора (0,0025-0,0030%). Режимные параметры выбраны с целью попутной регенерации соляной кислоты с концентрацией хлористого водорода около 20%, возвращаемой на операцию кислотной обработки.

К недостаткам этого способа относятся длительность, малая производительность и существенные тепловые затраты на нагрев пара до требуемой температуры при необходимости подачи его в течение всего процесса. Кроме того, 20-процентная концентрация соляной кислоты, подаваемой на кислотную обработку сырья, не является оптимальной и лучшие результаты по переводу алюминия в раствор достигаются с применением более крепкой кислоты.

Наиболее близким к заявленному способу является способ получения глинозема, раскрытый в патентной заявке ЕР 0094081 А2 (МПК C01F 7/30, опубл. 1983 г.), включающий обработку алюминийсодержащего сырья соляной кислотой, выделение из осветленного хлоридного раствора кристаллов гексагидрата хлорида алюминия и их двухстадийное термическое

разложение с получением металлургического глинозема, при этом на вторую стадию термического разложения непрерывно подают водяной пар. Согласно этому способу первая стадия термического разложения проводится при 200-400°C, а вторая стадия при 900-1100°C.

К недостаткам данного способа следует отнести высокое (0,1%) содержание хлора в продукте, которое приблизительно в 10 раз превышает допустимые для металлургического глинозема пределы. Расход тепловой энергии при таком способе разложения AlCl3·6H2O достигает 15 ГДж на 1 т полученного глинозема. Нагрев материала до 1000°C в данных условиях приводит к повышению содержания в глиноземе альфа-фазы (70% и более), что делает продукт не пригодным для использования в металлургических целях. Высокая температура процесса значительно увеличивает потери тепла в окружающую среду.

В основу изобретения положена задача, заключающаяся в разработке солянокислотного способа получения металлургического глинозема, в том числе из низкосортного сырья, позволяющего перерабатывать бедные высококремнистые руды и отходы.

Техническим результатом является повышение качества глинозема и снижение энергозатрат при высокой производительности процесса.

Достижение вышеуказанного технического результата достигается тем, что в способе получения глинозема, включающем обработку алюминийсодержащего сырья соляной кислотой, выделение из осветленного хлоридного раствора кристаллов гексагидрата хлорида алюминия и их двухстадийное термическое разложение с получением глинозема, вторую стадию термического разложения проводят при температуре 150-450°C и непрерывной подаче водяного пара при отношении суммарной массы поданного пара к массе полученного глинозема равном 0,2-5,7.

Положительный эффект введения водяного пара начинает сказываться при значении 0,2 в заявляемом интервале. При значении 5,7 он достигает

максимума, и дальнейшее повышение расхода пара приводит к непроизводительным тепловым потерям.

Термическое разложение гексагидрата хлорида алюминия является вариантом его гидролиза (термогидролиза), однако в технической литературе обычно именуется кальцинацией и представляется суммарным уравнением:

На самом деле процесс идет через промежуточный ряд превращений основных хлористых солей алюминия (оксихлоридов) различной основности и степени гидратации. Некоторые из этих промежуточных и не всегда последовательных реакций могут быть записаны в виде:

Реакция (2) протекает с выделением воды, которой по стехиометрии с избытком хватает для завершения суммарной реакции (1). Однако по литературным данным и результатам собственных исследований при температурах 100-500°C процесс прекращается, когда материал представляет собой смесь оксихлоридов алюминия, поскольку вода в виде пара быстро выносится из зоны реакции, не успев прореагировать с промежуточными продуктами разложения по реакциям (3)-(5). Дальнейшие превращения возможны только при повышении температуры до 900-1000°C в присутствии топочных газов, как это реализуется в прототипе. Причем существенную роль здесь играет вода, содержащаяся в продуктах сгорания органического топлива. Однако этого водяного пара не хватает для быстрого и эффективного завершения образования глинозема.

Ситуация меняется коренным образом, если по завершении стадии образования оксихлоридов алюминия в процесс принудительно ввести воду в виде пара. Тогда реакции (3)-(5) протекают без осложнений, причем оксид алюминия образуется по гидротермальному механизму, как это описано в аналоге. Процесс гидролиза с избытком воды идет глубоко и необратимо, поэтому концентрация остаточного хлора в конечном продукте минимальна, так же как и содержание альфа-фазы, поскольку условия для ее образования крайне ограничены. Необходимость в проведении второй стадии при высокой температуре отпадает. В результате достигается приблизительно двукратное снижение потребляемой тепловой энергии.

Способ получения глинозема осуществляется следующим образом.

Алюминийсодержащее сырье выщелачивают соляной кислотой, удаляют твердую фазу и проводят выделение кристаллов гексагидрата хлорида алюминия путем упаривания осветленного хлоридного раствора или высаливания газообразным хлористым водородом. Выделенные кристаллы подвергают нагреву в произвольно выбранном печном агрегате при температуре 110-250°C до образования оксихлоридов алюминия и заметного торможения дальнейших химических превращений ввиду израсходования воды, выделившейся при дегидратации исходного продукта (первая стадия). Далее в печной агрегат подают водяной пар при отношении суммарной массы поданного пара к массе получаемого глинозема равном 0,2-5,7, и завешают процесс (вторая стадия). Температуру на второй стадии достаточно поддерживать на уровне 150-450°C, что значительно снижает тепловые потери, а заявляемое отношение суммарной массы поданного пара к массе получаемого глинозема в пределах 0,2-5,7 позволяет минимизировать расход тепла на перегрев пара в зависимости от выбранного типа печного агрегата, поскольку условия взаимодействия твердого материала с газовой (паровой) фазой различны.

Подачей водяного пара только на вторую стадию разложения гексагидрата хлорида алюминия достигается уменьшенный расход пара при

высоком качестве глинозема и производительности процесса. Предварительная оценка показывает, что таким образом удается снизить суммарные затраты тепловой энергии при разложении гексагидрата хлорида алюминия в 1,5-2 раза.

Способ получения глинозема иллюстрируется следующими примерами.

Навеску каолина массой 100 г с содержанием основных компонентов, %: Al2O3 36,4; SiO2 45,3; Fe2O3 0,78; TiO2 0,51; CaO 0,96; MgO 0,49 смешали с с 25-процентным раствором соляной кислоты при Ж:Т=4:1, поместили в тефлонированный автоклав и выдерживали в условиях перемешивания при 180°C в течение 3 ч. По окончании процесса полученную пульпу отфильтровали, осветленный хлоридный раствор барботировали газообразным хлористым водородом до выделения кристаллов гексагидрата хлорида алюминия, которые промыли 38-процентной соляной кислотой на фильтре. Всего получили 151,3 г AlCl3·6H2O. Кристаллы поместили в трубчатую лабораторную печь, нагретую до 200°C, и выдержали в ней в течение 0,5 ч, завершив на этом первую стадию разложения. После этого печь стали продувать водяным паром, поступающим из колбы с кипящей водой, осуществляя вторую стадию разложения. Расход пара определяли по массе выкипевшей воды, стараясь выдерживать заявляемое отношение суммарной массы поданного пара к массе получаемого глинозема в пределах 0,2-5,7. Продолжительность второй стадии не превышала 0,5 ч.

В последующих опытах условия проведения второй стадии варьировали. Результаты опытов представлены в таблице примеров, из которой следует, что в соответствии с современными требованиями к металлургическому глинозему (содержание альфа-фазы не более 10%, содержание хлора не более 0,01%) примеры 1, 2 и 12 не позволили получить полностью качественный продукт. Остальные примеры дали положительные результаты. При этом границы интервала температур второй стадии оказались ограничены пределами 150-450°C. Только в этих заявляемых

пределах удалось обеспечить требуемые показатели качества (примеры 3-11). Дополнительным ограничением стало время пребывания материала, однако оно будет зависеть от типа печного агрегата, то есть при температуре 150°C (нижний предел заявляемого интервала) может быть получен глинозем с различным содержанием хлора, соответствующим или не соответствующим требованиям (примеры 1-2).

То же самое касается значения температуры 450°C (верхний предел заявляемого интервала). Здесь в зависимости от времени пребывания материала может быть соблюдено или не соблюдено требование по содержанию альфа-фазы (пример 12).

В совокупности заявляемый температурный режим и количество подаваемого водяного пара обеспечивают гидротермальные условия протекания процесса на второй стадии. Доказательством этому является низкое содержание хлора в глиноземе при всех заявляемых условиях и наличие альфа-фазы в продукте уже при 250°C, что при обычной кальцинации глинозема достижимо только при температуре свыше 1000°C.

Для промышленной реализации способа целесообразно применение двух последовательных печных агрегатов, позволяющих проводить двухстадийное разложение гексагидрата хлорида алюминия в непрерывном режиме с подачей водяного пара только во второй агрегат.

Таблица
Пример Условия второй стадии разложения AlCl3·6H2O Фазовый состав глинозема Содержание хлора в глиноземе, %
Температура, °C Время выдержки, мин
1 150 20 гамма 0,052
2 150 40 гамма 0,023
3 150 60 гамма 0,009
4 250 20 гамма 0,010
5 250 40 гамма и следы альфа 0,008
6 250 60 гамма и следы альфа 0,004
7 350 20 гамма и следы альфа 0,004
8 350 40 гамма и следы альфа 0,0035
9 350 60 гамма и 1-2% альфа 0,0032
10 450 20 гамма и 3% альфа 0,0028
11 450 40 гамма и 6% альфа 0,0023
12 450 60 гамма и 12% альфа 0,0023

Способ получения глинозема, включающий обработку алюминийсодержащего сырья соляной кислотой, выделение из осветленного хлоридного раствора кристаллов гексагидрата хлорида алюминия и их двухстадийное термическое разложение с получением глинозема, отличающийся тем, что вторую стадию термического разложения проводят при температуре 150-450°C и непрерывной подаче водяного пара при отношении суммарной массы поданного пара к массе полученного глинозема равном 0,2-5,7.
Источник поступления информации: Роспатент

Showing 211-220 of 234 items.
27.01.2020
№220.017.fa85

Способ получения галлатного раствора

Изобретение относится к области металлургии редких металлов, а именно к способам извлечения галлия из щелочных галлийсодержащих растворов, в том числе оборотных растворов глиноземного производства. Галлатный раствор получают из щелочного галлийсодержащего раствора. Проводят сорбцию галлия из...
Тип: Изобретение
Номер охранного документа: 0002712162
Дата охранного документа: 24.01.2020
01.02.2020
№220.017.fc4f

Кристаллизатор для непрерывного литья заготовки

Изобретение относится к непрерывному литью металла. Кристаллизатор содержит литейное колесо (6) с открытым каналом на наружной поверхности, прилегающую к нему непрерывную ленту (4), закрывающую открытый канал, и систему охлаждения. Поперечное сечение открытого канала – равнобедренная трапеция с...
Тип: Изобретение
Номер охранного документа: 0002712683
Дата охранного документа: 30.01.2020
05.02.2020
№220.017.fdc2

Углеродистый восстановитель для производства технического кремния и способ его получения

Изобретение относится к металлургии и может быть использовано для получения металлов и сплавов восстановительной плавкой в электрических рудовосстановительных печах. Углеродистый восстановитель содержит следующие компоненты, мас. %: обогащенный бурый и/или обогащенный каменный угли и/или...
Тип: Изобретение
Номер охранного документа: 0002713143
Дата охранного документа: 03.02.2020
20.02.2020
№220.018.03f9

Алюминиевый электролизер с утепленной бортовой футеровкой

Изобретение относится к бортовой футеровке электролизера для электролитического получения алюминия. Электролизер включает металлический катодный кожух, теплоизоляционную и огнеупорную футеровку, подину, выполненную из подовых блоков с катодными токоподводящими стержнями, бортовую футеровку,...
Тип: Изобретение
Номер охранного документа: 0002714565
Дата охранного документа: 18.02.2020
20.02.2020
№220.018.0453

Литейный алюминиевый сплав

Изобретение относится к области металлургии, а именно к сплавам на основе алюминия, и может быть использовано при получении тонкостенных отливок сложной формы, преимущественно литьем под давлением, и может быть использовано для литья деталей для автомобилестроения, корпусов электронных...
Тип: Изобретение
Номер охранного документа: 0002714564
Дата охранного документа: 18.02.2020
25.03.2020
№220.018.0f5a

Способ экспресс-определения криолитового отношения и концентрации фторида калия в электролите при получении алюминия

Изобретение относится к способу определения состава электролита, в частности криолитового отношения (КО) и концентрации фторида калия (KF) в электролите на основе термических измерений с целью управления процессом электролиза алюминия. Способ включает отбор и извлечение, по меньшей мере, трех...
Тип: Изобретение
Номер охранного документа: 0002717442
Дата охранного документа: 23.03.2020
25.03.2020
№220.018.0f78

Алюминиевый сплав для аддитивных технологий

Изобретение относится к области металлургии, а именно к составу и технологии получения заготовок и деталей из сплавов на основе алюминия, в том числе с использованием технологий селективного лазерного сплавления. Способ получения порошка из сплава на основе алюминия включает получение расплава...
Тип: Изобретение
Номер охранного документа: 0002717441
Дата охранного документа: 23.03.2020
25.03.2020
№220.018.0fa2

Сплав на основе алюминия, изделие из него и способ получения изделия

Изобретение относится к области цветной металлургии, в частности к термически упрочняемым алюминиевым сплавам системы алюминий-магний-кремний и изделиям из него. Cплав на основе алюминия содержит магний, кремний, марганец, медь, железо, титан и бор при следующем соотношении компонентов, мас. %:...
Тип: Изобретение
Номер охранного документа: 0002717437
Дата охранного документа: 23.03.2020
25.03.2020
№220.018.0fd2

Способ обжига подины алюминиевого электролизёра

Изобретение относится к способу обжига подины алюминиевого электролизера с обожженными или инертными анодами. Способ включает покрытие подины электропроводным материалом, размещение на нем обожженных анодов, соединенных с анодными шинами анодной ошиновки электролизера, пропускание...
Тип: Изобретение
Номер охранного документа: 0002717438
Дата охранного документа: 23.03.2020
07.06.2020
№220.018.251d

Сплав на основе алюминия и способ получения изделия из него

Изобретение относится к области цветной металлургии, в частности к термически упрочняемым алюминиевым сплавам на основе системы алюминий-магний-кремний, используемым в различных областях промышленности. Cплав на основе алюминия содержит, мас.%: магний 0,80-1,10, кремний 0,85-1,20, марганец...
Тип: Изобретение
Номер охранного документа: 0002722950
Дата охранного документа: 05.06.2020
Showing 131-139 of 139 items.
20.01.2018
№218.016.1a90

Ошиновка анодная алюминиевого электролизера с обожженными анодами

Изобретение относится к анодной ошиновке алюминиевых электролизеров с обожженными анодами при поперечном или продольном их расположении в корпусе. Ошиновка содержит шинопровод, состоящий из шин, образующих с помощью алюминиевых перемычек замкнутый контур и соединенных между собой поперечными...
Тип: Изобретение
Номер охранного документа: 0002636545
Дата охранного документа: 23.11.2017
20.01.2018
№218.016.1be1

Устройство для аэрации жидкости

Изобретение относится к области обогащения полезных ископаемых, а именно к флотационному процессу разделения минеральных частиц любой крупности. Может быть также использовано для очистки сточных вод, в химической промышленности и других отраслях производства, где необходима аэрация жидкости....
Тип: Изобретение
Номер охранного документа: 0002636727
Дата охранного документа: 27.11.2017
17.02.2018
№218.016.2a5c

Ошиновка для алюминиевых электролизеров большой мощности

Изобретение относится к ошиновке алюминиевого электролизера большой мощности при поперечном расположении электролизеров в корпусе электролиза. Ошиновка содержит сборные и обводные катодные шины и спуски, установленные вдоль входной и выходной сторон катодного кожуха предыдущего электролизера, в...
Тип: Изобретение
Номер охранного документа: 0002643005
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.2f54

Способ и шихта для получения азотированного силикомарганца в дуговой руднотермической электропечи

Изобретение относится к области металлургии, а точнее к электротермическому получению металлов и сплавов в дуговых рудно-термических электропечах и может быть использовано в производстве марганцевых и хромистых ферросплавов. Способ включает подготовку и загрузку в печь марганцевой руды и/или...
Тип: Изобретение
Номер охранного документа: 0002644637
Дата охранного документа: 13.02.2018
10.05.2018
№218.016.391f

Способ получения металлургического глинозема (варианты)

Группа изобретений относится к металлургии и может быть использована при переработке низкосортного высококремнистого алюминийсодержащего сырья. Осуществляют измельчение алюминий-содержащего сырья с последующим вскрытием соляной кислотой, представляющей собой кислый оборотный маточный раствор....
Тип: Изобретение
Номер охранного документа: 0002647041
Дата охранного документа: 13.03.2018
10.05.2018
№218.016.3b53

Получение скандийсодержащего концентрата и последующее извлечение из него оксида скандия повышенной чистоты

Изобретение относится к способу переработки красного шлама при получении скандийсодержащего концентрата и оксида скандия, в котором ведут карбонизационное выщелачивание, сорбцию скандия на фосфорсодержащем ионите, десорбцию скандия и осаждение скандиевого концентрата. При этом содержание в нем...
Тип: Изобретение
Номер охранного документа: 0002647398
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.3dc3

Способ десорбции хлороводорода из водных растворов и способ концентрирования соляной кислоты

Изобретение относится к способу десорбции хлороводорода из водных растворов соляной кислоты и/или ее гидролизующихся солей и может использоваться, в частности, в процессах дистилляции, ректификации и концентрирования соляной кислоты, в том числе в процессах переработки водных растворов...
Тип: Изобретение
Номер охранного документа: 0002648334
Дата охранного документа: 23.03.2018
16.10.2018
№218.016.92c3

Способ получения оксида скандия из скандийсодержащих концентратов

Изобретение относится к способу получения оксида скандия из скандийсодержащих концентратов. Способ включает растворение скандийсодержащего концентрата в минеральной кислоте, очистку скандиевого раствора от примесей, отделение осадка от скандиевого раствора, его обработку щелочным агентом,...
Тип: Изобретение
Номер охранного документа: 0002669737
Дата охранного документа: 15.10.2018
28.06.2019
№219.017.9948

Способ извлечения скандия из красного шлама глиноземного производства

Изобретение относится к способу извлечения скандия из красных шламов - отходов глиноземного производства. Извлечение скандия включает стадии распульповки красного шлама, сорбционного ступенчатого выщелачивания скандия из пульпы с использованием ионообменного сорбента с получением насыщенного по...
Тип: Изобретение
Номер охранного документа: 0002692709
Дата охранного документа: 26.06.2019
+ добавить свой РИД