×
10.05.2018
218.016.391f

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛУРГИЧЕСКОГО ГЛИНОЗЕМА (ВАРИАНТЫ)

Вид РИД

Изобретение

Аннотация: Группа изобретений относится к металлургии и может быть использована при переработке низкосортного высококремнистого алюминийсодержащего сырья. Осуществляют измельчение алюминий-содержащего сырья с последующим вскрытием соляной кислотой, представляющей собой кислый оборотный маточный раствор. Разделяют образовавшуюся хлоридную пульпу на отвальный кремнеземный осадок и осветленный хлоридный раствор. Производят кристаллизацию из осветленного хлоридного раствора гексагидрата хлорида алюминия. Осуществляют термическое разложение гексагидрата хлорида алюминия на оксид алюминия с последующей его кальцинацией с получением в качестве промежуточного продукта чернового глинозема. Выщелачивают черновой глинозем оборотным щелочным раствором с декомпозицией образующегося алюминатного раствора. Подвергают пирогидролизу 15% кислого маточного раствора. Поддерживают концентрацию хлорид-иона в черновом глиноземе на уровне 0,2-5,0%, концентрацию хлорид-иона в оборотном щелочном растворе - на уровне 40-90 г/л. Щелочной оборотный раствор после декомпозиции в количестве 10-40 масс. % от полного потока упаривают до выделения кристаллов хлорсодержащих соединений, которые выводят из процесса. Обеспечивается повышение качества глинозема и снижение энергозатрат при его получении. 2 н. и 14 з.п. ф-лы, 1 ил., 2 табл., 1 пр.

Изобретение относится к металлургии, в частности к кислотным способам получения глинозема и может быть использовано при переработке низкосортного высококремнистого алюминий-содержащего сырья, в том числе отходов, например зол от сжигания углей. Металлургический глинозем и его полуфабрикат - гидроксид алюминия - имеют широкий спектр промышленного применения, первую очередь, для получения металлического алюминия.

Глиноземные заводы во всем мире и производят высококачественный металлургический глинозем, главным образом, по технологии Байера из низкокремнистых (байеровских) бокситов, в которых отношение концентраций Al2O3/SiO2 (кремневый модуль) не ниже 3. Для значений кремневого модуля в диапазоне 3-7 приходится использовать комбинированные схемы Байер-спекание, которые являются более энергозатратными. Для высококремнистого алюминий содержащего сырья, например, нефелинов икаолинов в промышленности применяется только способ спекания, энергетические затраты на который в сравнении с процессом Байера выше приблизительно в 5 раз.

Параллельно разрабатываются кислотные способы получения глинозема из высококремнистого алюминий-содержащего сырья. Наиболее рациональным среди них на настоящий момент представляется солянокислотный.

Известен способ получения глинозема из высококремнистых бокситов через солянокислотный процесс, включающий обжиг алюминий-содержащего сырья при температуре до 700°C, обработку его соляной кислотой, высаливание гексагидратахлорида алюминия (AlCl3⋅6H2O) путем насыщения осветленного хлоридного раствора газообразным хлористым водородом, кальцинацию хлорида алюминия для получения оксида алюминия (глинозема), пирогидролиз маточного раствора и ректификацию абсорбированной соляной кислоты с возвратом хлороводорода на стадии кислотной обработки и высаливания в виде водного раствора и газа соответственно (Eisner D., Jenkins D.H. and Sinha H.N. Alumina via hydrochloric acid leaching of high silica bauxites-process development. Light metals, 1984, p. 411-426).

Согласно известному способу на обработку сырья поступает только ректифицированная соляная кислота, что исключает оборот и накопление примесей (например, железа, натрия, калия, кальция и др.) в кислотном цикле и максимально возможно снижает их содержание в гексагидрате хлорида алюминия. Примеси выводятся в виде оксидов путем полного пирогидролиза маточного раствора после кристаллизации AlCl3⋅6H2O. Несмотря на это содержание фосфора в конечном продукте в 1,5 раза превышает допустимые для металлургического глинозема пределы.

К недостаткам данного способа следует также отнести очень сложную аппаратурно-технологическую схему и наличие большого количества дорогостоящего оборудования для полной регенерации соляной кислоты, что влечет за собой высокие капитальные затраты на строительство глиноземного завода по такой технологии. Полный пирогидролиз маточного раствора после кристаллизации AlCl3⋅6H2O является очень энергоемким переделом, и затраты на топливо существенно увеличивают себестоимость продукции.

Кроме того глинозем, полученный кальцинацией гексагидрата хлорида алюминия принципиально отличается от традиционного

металлургического глинозема низкой прочностью частиц, склонностью к пылению, в 1,5-3 раза меньшей насыпной плотностью и совершенно иными реологическими свойствами (очень плохой текучестью), что создает проблемы при его транспортировке и при осуществлении процесса электролитического получения алюминия. При кальцинации такого глинозема практически невозможно добиться одновременно низкого содержания остаточного хлора и α-фазы, что является одним из главных требований к металлургическому глинозему. В случае содержания в исходном сырье соединений фосфора он практически целиком попадет в готовый продукт, на что указывают сами авторы известного способа.

Известен способ извлечения алюминия и железа из алюминиевых руд (Патент СА 2684696, опубл. 27.11.2008), включающий подготовку алюминий-содержащего сырья (каолинового аргиллита), выщелачивание его 6-молярной соляной кислотой при 100-110°C, разделение полученной суспензии на твердую и жидкую фазы, дистилляцию жидкой фазы и промывной воды твердой фазы на 90% с регенерацией хлороводорода путем ректификации и его возврат на стадию выщелачивания. Оставшиеся 10% жидкой фазы подвергаются нейтрализации каустической щелочью до pH>10 с получением хлоридного (алюмохлоридного) раствора и отделением осадка оксида железа. Алюмохлоридный раствор нейтрализуется соляной кислотой до pH=3÷4 и алюминий отделяется жидкостной экстракцией и далее переводится в гидроксид и оксид алюминия (глинозем). Данный способ также требует весьма большого количества тепловой энергии на 90-процентное упаривание всего потока раствора и промывной воды после выщелачивания сырья и значительного расхода соляной кислоты и каустической щелочи для селективного выделения железа и алюминия из растворов.

Наиболее близким к заявленному способу является комбинированный кислотно-щелочной способ получения глинозема путем солянокислотной обработки сырья, с отделением кремнеземного осадка,

щелочи, достигавшие 36-37 кг/т глинозема. По перечисленным причинам этот способ не нашел применения в промышленности.

В основу изобретения положена задача, заключающаяся в разработке способа получения металлургического глинозема из низкосортного (высококремнистого) сырья, позволяющего перерабатывать бедные высококремнистые руды и отходы.

Техническим результатом является повышение качества глинозема и снижение энергозатрат при получении металлургического глинозема из низкосортного сырья, т.е. при переработке бедных высококремнистых руд и отходов.

Поставленная задача решается, а вышеуказанный технический результат достигается предложенным способом получения металлургического глинозема, включающим стадии:

согласно одному варианту:

измельчения алюминий-содержащего сырья с последующим вскрытием соляной кислотой, представляющей собой кислый оборотный (маточный) раствор,

разделения образовавшейся хлоридной пульпы на отвальный кремнеземный осадок и осветленный хлоридный раствор,

кристаллизации из осветленного хлоридного раствора гексагидрата хлорида алюминия,

термического разложения гексагидрата хлорида алюминия на оксид алюминия с последующей его кальцинацией с получением в качестве промежуточного продукта чернового глинозема,

выщелачивания чернового глинозема оборотным щелочным раствором с декомпозицией образующегося алюминатного раствора, и последующей кальцинации выделенного гидроксида алюминия, при этом порядка 15% кислого маточного раствора подвергают пирогидролизу, концентрацию хлорид-иона в черновом глиноземе поддерживают на уровне 0,2-5,0%, концентрацию хлорид-иона в оборотном щелочном

растворе поддерживают на уровне 40-90 г/л, щелочной оборотный раствор после декомпозиции в количестве 10-40 мас. % от полного потока упаривают до выделения кристаллов хлорсодержащих соединений, которые выводят из процесса.

В качестве дополнений предпочтительно следующее:

Щелочной оборотный раствор упаривают в две стадии, причем на первой стадии кристаллизуют карбонаты щелочных металлов, а на второй стадии кристаллизуют хлориды щелочных металлов.

Хлориды щелочных металлов, преимущественно натрия и калия, подвергают очистке и в виде водного раствора подвергают мембранному или диафрагменному электролизу.

Из хлора и водорода, образующихся при мембранном или диафрагменном электролизе водного раствора хлоридов щелочных металлов, синтезируют соляную кислоту и направляют ее на вскрытие исходного алюминий-содержащего сырья, а часть водного раствора гидроксидов щелочных металлов, образующегося при мембранном или диафрагменном электролизе водного раствора хлоридов щелочных металлов, смешивают с оборотным щелочным раствором, возвращаемым на выщелачивание чернового глинозема.

Часть раствора гидроксидов щелочных металлов, образующегося при мембранном или диафрагменном электролизе водного раствора хлоридов щелочных металлов, направляют на нейтрализацию кремнеземного осадка.

Согласно второму варианту способ получения металлургического глинозема включает стадии:

измельчения алюминий-содержащего сырья с последующим вскрытием соляной кислотой, представляющей собой кислый оборотный (маточный) раствор,

разделения образовавшейся хлоридной пульпы на отвальный кремнеземный осадок, который после промывки водой направляют в отвал, и на осветленный хлоридный раствор, при этом воду после

промывки направляют на адиабатическую абсорбцию хлороводорода из отходящих газов кальцинации гексагидрата хлорида алюминия и отходящих газов пирогидролиза, а количество воды на промывку определяют количеством воды для адиабатической абсорбции,

кристаллизации из осветленного хлоридного раствора гексагидрата хлорида алюминия, при этом после отделения кристаллов полученный маточный раствор направляют на ректификацию, где концентрацию хлороводорода в маточном растворе снижают с образованием газообразного хлороводорода, который после осушки направляют на высаливание, маточный раствор после ректификации делят на две неравные части - большую часть направляют непосредственно на приготовление кислого оборотного раствора, другую часть направляют на выделение примесей пирогидролизом,

термического разложения гексагидрата хлорида алюминия на оксид алюминия с последующей его кальцинацией с получением в качестве промежуточного продукта чернового глинозема, при этом отходящие газы кальцинации поступают на абсорбцию, осуществляемую водой для промывки отвального кремнеземного осадка,

выщелачивания чернового глинозема по процессу Байера оборотным щелочным раствором с декомпозицией образующегося алюминатного раствора,

водной промывки и последующей кальцинации выделенного гидроксида алюминия,

упаривания маточного раствора после декомпозиции и промывной воды гидроксида алюминия с образованием оборотного щелочного раствора, возвращаемого на выщелачивание чернового глинозема,

при этом для выщелачивания алюминий-содержащего сырья в значительной части используют маточный раствор и лишь часть его подают на вывод примесей методом пирогидролиза.

В качестве дополнений предпочтительно следующее:

Концентрацию хлорид-иона в черновом глиноземе поддерживают на уровне 0,2-5,0%, концентрацию хлорид-иона в оборотном щелочном растворе поддерживают на уровне 40-90 г/л, маточный раствор после декомпозиции в количестве 10-40 мас. % от полного потока упаривают до выделения кристаллов хлорсодержащих соединений, которые выводят из процесса.

Маточный раствор после декомпозиции и воду после промывки упаривают в две стадии, причем на первой стадии кристаллизуют карбонаты щелочных металлов, а на второй стадии кристаллизуют хлориды щелочных металлов.

Хлориды щелочных металлов, преимущественно натрия и калия, подвергают очистке и в виде водного раствора подвергают мембранному или диафрагменному электролизу.

Из хлора и водорода, образующихся при мембранном или диафрагменном электролизе водного раствора хлоридов щелочных металлов, синтезируют соляную кислоту и направляют ее на вскрытие исходного алюминий-содержащего сырья, а часть водного раствора гидроксидов щелочных металлов, образующегося при мембранном или диафрагменном электролизе водного раствора хлоридов щелочных металлов, смешивают с оборотным щелочным раствором, возвращаемым на выщелачивание чернового глинозема.

Часть раствора гидроксидов щелочных металлов, образующегося при мембранном или диафрагменном электролизе водного раствора хлоридов щелочных металлов, направляют на нейтрализацию кремнеземного осадка.

Концентрацию хлороводорода в хлоридном растворе доводят до порядка 17-19%, при этом в ходе абсорбции за счет большого количества тепла, выделяющегося при абсорбции хлороводорода, хлоридный раствор самоиспаряется, и из цикла выводится вся вода, поданная на промывку отвального кремнеземного осадка.

Хлоридный раствор подают на кристаллизацию (высаливание), где через него барботируется газообразный хлороводород, полученный на ректификации, и в растворе концентрацию HCl доводят до порядка 32%, при этом большая часть алюминия выпадает в виде кристаллов гексагидрата хлорида алюминия.

После отделения кристаллов (кристаллизата) полученный кислый маточный раствор направляют на ректификацию, где концентрацию хлороводорода в кислом маточном растворе снижают и образуется газообразный хлороводород, который после осушки до содержания воды порядка 5%, направляют на высаливание, при этом осушку осуществляют путем охлаждения газа оборотной водой до температуры порядка 35°C.

Доля маточного раствора порядка 15%, направляемого на пирогидролиз, определяется допустимым содержанием примесей в кислом оборотном маточном растворе, направляемом на вскрытие исходного алюминий-содержащего сырья, а в ходе пирогидролиза в газовую фазу переходит вся свободная кислота, содержащаяся в маточном растворе, а также хлороводород, образующийся при гидролизе хлоридов металлов: Al, Fe, Са, Mg, отходящие газы пирогидролиза содержат регенерированный хлороводород и поступают на абсорбцию хлороводорода водой для промывки отвального кремнеземного осадка,

На стадии на кальцинации с получением чернового глинозема и отходящих газов, содержащих хлороводород, отходящие газы кальцинации поступают на абсорбцию, осуществляемую водой для промывки отвального кремнеземного осадка, при этом в оборотный кислый маточный раствор, направляемый на вскрытие исходного алюминий-содержащего сырья, вводят свежую кислоту для компенсации потерь, а свежую воду вводят на санитарную очистку отходящих газов кальцинации и пирогидролиза.

Оба варианта способа обеспечивают достижение общего технического результата - повышение качества глинозема и снижение

энергозатрат при получении металлургического глинозема из низкосортного сырья.

Перечень чертежей

Фиг. 1 - Принципиальная технологическая схема получения глинозема.

Сущность изобретения поясняется принципиальной технологической схемой получения глинозема, приведенной на Фиг. 1, из которой становится очевидным рациональное оптимальное сочетание кислотного и щелочного циклов технологии, как по потокам, так и по режимам, что в совокупности обеспечивает достижение технического результата.

Измельченное алюминий-содержащее сырье, например каолиновая глина или каолиновый аргиллит, подвергается вскрытию соляной кислотой, представляющей собой кислый оборотный (маточный) раствор, например в автоклавных условиях. Пульпа после вскрытия разделяется на осадок, содержащий около 90% кремнезема, (сиштоф) и хлоридный (алюмохлоридный) раствор. После промывки водой сиштоф направляется в отвал.

Промывная вода сиштофа направляется на адиабатическую абсорбцию хлороводорода (HCl) из отходящих газов кальцинации гексагидрата хлорида алюминия (ГХА, AlCl3⋅6H2O) и отходящих газов пирогидролиза. При этом концентрация HCl в хлоридном растворе доводится до 17-19%. В ходе абсорбции за счет большого количества тепла, выделяющегося при абсорбции HCl, хлоридный раствор самоиспаряется, при этом из цикла выводится вся вода, поданная на промывку сиштофа. То есть количество воды на промывку сиштофа определяется количеством воды, которое может быть испарено на адиабатической абсорбции.

Хлоридный раствор после отделения от сиштофа подается на кристаллизацию (высаливание), где через него барботируется газообразный хлороводород, полученный на ректификации, и

концентрация HCl в растворе доводится до 32%, при этом большая часть (~95%) алюминия выпадает в виде кристаллов гексагидрата хлорида алюминия. После отделения кристаллов (кристаллизата) полученный маточный раствор направляется на ректификацию, где концентрация HCl в маточном растворе снижается почти до 22-27% HCl и образуется газообразный HCl, который после осушки до содержания ~5% H2O направляется на высаливание. Осушка осуществляется путем охлаждения газа оборотной водой до температуры ~35°C. Маточный раствор после ректификации (содержит 22-27% HCl) делится на две неравные части: большая часть направляется непосредственно на приготовление кислого оборотного раствора, другая часть направляется на выделение примесей с помощью пирогидролиза.

Доля маточного раствора, направляемого на пирогидролиз, определяется допустимым содержанием примесей в оборотном растворе на выщелачивание. Ориентировочно, доля маточного раствора на пирогидролиз составит 15%. То есть содержание примесей в хлоридном растворе увеличится приблизительно в 6 раз по сравнению с выщелачиванием руды чистой соляной кислотой. В ходе пирогидролиза в газовую фазу переходит вся свободная кислота, содержащаяся в маточном растворе, а также HCl, образующийся при гидролизе хлоридов следующих металлов: Al, Fe, Са, Mg. Продуктами пирогидролиза будут отходящие газы и кек пирогидролиза, состоящий из оксида железа (Fe2O3) и отчасти из оксидов Al, Са, Mg и других малых примесей. Отходящие газы пирогидролиза содержат регенерированную HCl и поступают на абсорбцию HCl промывной водой сиштофа.

Полученный при ГХА поступает на кальцинацию с получением чернового глинозема и отходящих газов, содержащих HCl. Отходящие газы кальцинации поступают на абсорбцию, осуществляемую промывной водой сиштофа.

Кислый оборотный раствор, возвращаемый на кислотное вскрытие алюминий-содержащего сырья, представляет собой (как это следует из Фиг. 1) смесь растворов, в том числе:

- часть кислого маточного раствора после отделения кристаллизата гексагидрата хлорида алюминия;

- солянокислый раствор, образовавшийся в результате улавливания хлороводорода промводой сиштофа при абсорбции и ректификации HCl из отходящих газов кальцинации кристаллизата гексагидрата хлорида алюминия;

- солянокислый раствор, образовавшийся в результате улавливания хлороводорода промводой сиштофа при абсорбции отходящих газов пирогидролиза другой части маточного раствора.

Свежая кислота на компенсацию потерь вводится в маточный раствор, направляемый на выщелачивание, может также вводиться через промывку продукционного ГХА на ректификацию.

Свежая вода вводится на санитарную очистку отходящих газов кальцинации и пирогидролиза (после этого она используется для промывки сиштофа).

Достоинством этой схемы является то, что для выщелачивания руды в значительной части используется маточный раствор и лишь часть его поступает на вывод примесей методом пирогидролиза. Отсутствуют большие и сложные переделы выпарки и солевой ректификации, передел пирогидролиза сведен к минимуму и не связан с получением чернового глинозема, а предназначен для частичного вывода примесей, что существенно сокращает энергозатраты.

Следует отметить, что черновой глинозем по способу-прототипу содержит минимальное количество примесей, в т.ч. хлоридов. Для того чтобы добиться этого в способе-прототипе необходимо поддерживать в хлоридном растворе минимально допустимый уровень примесей, например, железа, а также калия, натрия, кальция, магния и др.,

поступающими с сырьем путем очистки кислого оборотного раствора от указанных примесей. В способе-прототипе указано, что такая очистка, например, от железа трудна. Обычным техническим приемом для этого является пирогидролиз, т.е. полное испарение кислого оборотного раствора при температуре до 850°C, как это указано в способе аналоге (Eisner D., Jenkins D.H. and Sinha H.N. Alumina via hydrochloric acid leaching of high silica bauxites - process development. Light metals, 1984, p. 423), поэтому энергетические затраты здесь очень велики.

Далее по заявляемому способу черновой глинозем поступает на щелочную перекристаллизацию, в основу которой положен известный процесс Байера. Продуктом процесса Байера является гидроксид алюминия, который после кальцинации превращается в металлургический глинозем.

На приготовление оборотного раствора также подается свежая каустическая щелочь. Ее расход обусловлен механическими потерями с отвальным шламом и продукционным глиноземом, а также потерями щелочи при декаустификации ее содержащимися в черновом глиноземе хлоридами металлов (AlCl3, FeCl3, MgCl2, CaCl2). При этом NaCl и KCl, содержащиеся в черновом глиноземе, просто переходят в раствор и не влекут потерь щелочи.

Особенностью щелочной переработки чернового глинозема способом Байера (в отличие о переработки природных бокситов) является тот факт, что ввиду крайне малого количества образующегося шлама, воды на его промывку также требуется мало. Благодаря этому водный баланс глиноземного производства может быть сведен без операции упарки полного потока маточного раствора, так как количество вводимой воды на промывку гидрата примерно соответствует количеству воды, удаляемой с продукционным гидроксидом алюминия. Более того, появляется возможность рекуперации тепла на операции автоклавного выщелачивания осуществить с помощью пульпо-пульповых теплообменников без

самоиспарения вареной пульпы, так как при малом количестве шлама не требуется такое количество конденсата для его промывки.

Операция глубокой упарки части маточного раствора, совмещенная с операцией кристаллизации, требуется для вывода хлора из цикла Байера. Растворимость NaCl в каустических растворах заметно снижается только в области высоких концентраций по Na2O, поэтому речь идет именно о глубокой упарке части маточного раствора до содержания каустической щелочи 25-33% (Na2O).

Количество маточного раствора, направляемого на упаривание, определяется допустимым уровнем накопления хлоридов в процессе Байера. Чем выше принятый допустимым уровень хлоридов в растворах, тем доля маточного раствора, направляемого на упарку, будет меньше и тем, соответственно, количество выпаренной воды (и расхода тепловой энергии) будет меньше (при одном и том же содержании хлоридов в черновом глиноземе).

По опыту авторов, в промышленных условиях допустимый уровень хлоридов в оборотном растворе процесса Байера составляет 90 г/л (по хлорид иону Cl-).

Выделенный после упаривания кристаллизат хлорида натрия и отчасти хлорида калия направляется на известную операцию диафрагменного или мембранного электролиза с выделением каустической щелочи и газообразных водорода и хлора, из которых синтезируется газообразный хлороводород. Каустическая щелочь и хлороводород возвращаются в кислотную и щелочную части технологии соответственно для восполнения неизбежных потерь этих реагентов.

Таким образом, заявляемый способ представляет собой замкнутую технологическую схему, позволяющую перерабатывать низкосортное (высококремнистое) алюминий-содержащее сырье на глинозем металлургического качества.

Поскольку черновой глинозем является промежуточным, а не товарным продуктом, нет необходимости добиваться минимально допустимого содержания в нем примесей железа, калия, натрия, кальция, магния и др., поступающими с сырьем. Поэтому концентрация этих примесей в кислотном цикле может быть повышена, что позволяет сократить затраты на выпаривание хлоридного раствора. С этой целью на стадии кристаллизации целесообразно наиболее полно и быстро выделять в твердую фазу гексагидрат хлорида алюминия, пользуясь простой аппаратурой и легко реализуемыми технологическими режимами, и не заботясь о чистоте кристаллизата ГХА, поступающего на кальцинацию с получением чернового глинозема. Более того, при кальцинации отпадает необходимость в глубокой прокалке продукта с целью полного разложения хлоридов. С одной стороны, это сокращает тепловые затраты на кальцинацию, с другой - не создает условий для образования труднорастворимой α-фазы в черновом глиноземе. Остаточный хлор, представленный, главным образом, хлоридами калия, натрия, кальция и магния, переходит с черновым глиноземом в кислотную часть технологической схемы и неизбежно будет там накапливаться. Однако проведенными исследованиями авторами показано, что накопление хлорид-иона в оборотном щелочном растворе до уровня 40-90 г/л не приводит к заметному снижению показателей процесса Байера. Во избежание дальнейшего накопления хлора в щелочном цикле технологии часть маточного раствора после декомпозиции и в количестве 10-40% от полного потока упаривают до выделения кристаллов хлорсодержащих соединений, которые выводят из процесса. Лабораторные опыты и циклические технологические расчеты показали, что такого приема достаточно, чтобы поддерживать концентрацию хлорид-иона в оборотном щелочном растворе на требуемом уровне и обеспечить водный баланс процесса Байера.

Определение оптимального сочетания режимных параметров такой многозвенной циклической технологии, какой является заявляемый способ, невозможно выполнить методом подбора. Авторы решали эту задачу на основе специально разработанных математических моделей материального теплового балансов технологии. При этом авторами неожиданно было установлено, что энергозатраты в виде топлива, тепловой и электрической энергии могут быть уменьшены, если целенаправленно допустить накопление примесей в кислотном и щелочном циклах технологии и черновом глиноземе, являющемся промежуточным продуктом, переходящим из кислотного цикла в щелочной.

В численных экспериментах по результатам оптимизационных итерационных вычислений на основе вышеупомянутых математических моделей было установлено, что если направлять на пирогидролиз порядка 15%, то содержание в нем примесей железа, натрия, калия, кальция магния и др., устанавливаются на равновесном уровне, который не снижает извлечение алюминия из сырья в черновой глинозем, но приводит к увеличению концентрации упомянутых примесей в гексагидрате хлорида алюминия и далее - в черновом глиноземе. Однако при выщелачивании чернового глинозема в щелочном цикле технологии соединения железа кальция и магния сразу переходят в нерастворимый осадок и удаляются. При этом следует учесть, что чем меньше доля кислого маточного раствора, направляемого на пирогидролиз, тем меньше энергозатраты, связанные с сжиганием топлива на этом переделе.

Затраты на пирогидролиз могут быть снижены, если черновой глинозем подвергать глубокой высокотемпературной кальцинации, и водной промывке для удаления растворимых хлоридов перед выщелачиванием в цикле Байера, как это предусмотрено в способе-прототипе. Содержание хлорид-иона в черновом глиноземе при этом снижается до сотых и десятых долей процента, но возрастает содержание

трудно растворимого альфа-оксида алюминия. Для его щелочной переработки необходимо высоко температурное автоклавное выщелачивание, и, как следствие повышенные затраты тепловой энергии.

С другой стороны очевидно, что если снизить температуру процесса или интенсивность тепло- и массообмена на переделе кальцинации то энергозатраты здесь значительно снизятся, но возрастет содержание хлора в черновом глиноземе, и это хлор в виде хлорид иона далее будет накапливаться в щелочном цикле технологии. Переход хлора из кислотного цикла в щелочной неизбежно приведет к потерям, как соляной кислоты, так и каустической щелочи. В заявляемом способе эти потери компенсируются путем вывода части хлоридов калия и натрия из щелочного цикла и их электролитической переработки на NaOH и газообразные хлор и водород, из которых синтезируется HCl. Но такая регенерация требует тепловой энергии при выпаривании хлоридов калия и натрия из щелочных растворов, и электроэнергии - для электролиза водного раствора этих хлоридов.

Однако численные эксперименты показали, что несмотря на сложность оптимизации материального и теплового балансов технологии, построенные авторами математические модели позволяют найти неочевидные компромиссные взаимно увязанные сочетания технологических параметров в кислотном и щелочном циклах, чтобы минимизировать энергозатраты при сохранении требуемого качества продукционного металлургического глинозема. Это достигается, когда концентрацию хлорид-иона в черновом глиноземе поддерживают на уровне 0,2-5,0%, концентрацию хлорид-иона в оборотном щелочном растворе поддерживают на уровне 40-90 г/л, щелочной оборотный раствор после декомпозиции в количестве 10-40 мас. % от полного потока упаривают до выделения кристаллов хлорсодержащих соединений, которые выводят из процесса. Экспериментальную реализацию

заявляемого способа проводили при вышеупомянутом оптимальном сочетании технологических параметров.

Пример

540 г алюминий-содержащего сырья (каолинового аргиллита), содержащего, мас. %: Al2O3 27,1; SiO2 56,8; Fe2O3 2,0; Na2O 0,31; K2O<0,15; TiO2 0,48; СаО 0,45; MgO 0,27; P2O5; 0,05; 11,8, измельченного до размера частиц <100 мкм смешивали с 1650 мл 20-процентной соляной кислоты, поместили в автоклав и выдерживали при перемешивании в течение 3 ч при 160°C. Полученную хлоридную пульпу разделяли фильтрованием, твердый осадок (отвальный сиштоф) промывали водой. Осветленный хлоридный раствор барботировали сухим газообразным хлороводородом при 70°C до прекращения выделения кристаллов ГХА. Кристаллизат ГХА отделяли на фильтре от маточного раствора и прокаливали при 600°C с получением чернового глинозема. Маточный раствор разбавляли промывной водой сиштофа до содержания свободного HCl 20% с получением кислого оборотного раствора, который направляли на повторное кислотное вскрытие каолинового аргиллита с повторением всех вышеописанных (циклических) операций.

Всего было выполнено 6 вышеописанных циклов, после чего была отмечена стабилизация содержания компонентов кислого оборотного раствора на уровне, мас. %: AlCl3 20,5-21,5; FeCl3 3,9-4,2; TiCl2 0,001; СаС12 0,4-0,48; NaCl 0,1-0,12; KCl 0,1-0,11. Снижения степени извлечения алюминия из алюминий-содержащего сырья не наблюдалось, оно составило 95,5-97,5%. После каждого опыта 15% маточного раствора замещали на чистую 20-процентную соляную кислоту, имитируя этим вывод примесей из цикла путем пирогидролиза или обработкой концентрированной серной кислотой с образованием малорастворимых сульфатов соответствующих металлов.

Средний состав полученного отвального сиштофа, мас. %: Al2O3 2,0; SiO2 90,5; Fe2O3 0,16; Na2O 0,2; K2O<0,15; TiO2 0,7; CaO 0,12; MgO<0,025; P2O5; <0,02; 4,2.

После стабилизации состава кислого оборотного раствора было проведено еще 10 циклических опытов в результате которых был получен черновой глинозем следующего состава, мас. %: Al2O3 86,0; SiO2 0,08; Fe2O3 2,9; Na2O 0,61; K2O<0,15;<TiO2 0,05; СаО 0,3; MgO<0,025; P2O5; 0,06; Cl- 3,5; 7,0.

Для получения металлургического глинозема из чернового путем щелочной переработки в цикле Байера 500 г чернового глинозема растворили в автоклаве при 150°C в щелочном алюминатном растворе следующего состава, г/л: Al2O3 102,0; Na2O 174,0; NaCl 63,3 в течение 2 ч.

Полученный отфильтрованный алюминатный раствор содержал, г/л: Al2O3167,3; Na2O 149,2; NaCl 57,7. Путем декомпозиции этого раствора в соответствии с технологией Байера был выделен гидроксид алюминия, из которого после обычной промывки горячей водой, %:и кальцинации при температуре 1100°C, получили глинозем следующего химического состава, мас. % Al2O3 98,7; SiO2 0,004; Fe2O3 0,008; Na2O 0,15; K2O 0,01; TiO2 0,001; СаО 0,004; MgO 0,0025; P2O5; 0,0007; V2O5 0,0002; Cr2O3 0,0003 0,02; Cl- 0,013.

При определении физико-механических свойств этого глинозема стандартными методами было установлено следующее:

Полученный глинозем полностью соответствует российским (ГОСТ 30558-98 «Глинозем металлургический») и международным требованиям к металлургическому глинозему марки «сэнди», несмотря на высокое содержание хлоридов в щелочном цикле.

Ввиду отсутствия опубликованных данных по энергетическим затратам в способах-аналогах за исключением аналога (Eisner D., Jenkins D.H. and Sinha H.N. Alumina via hydrochloric acid leaching of high silica bauxites-process development. Light metals, 1984, p. 411-426) для сопоставления энергоэффективности всех технологий, упомянутых в настоящем описании изобретения авторами были выполнены расчеты по потреблению тепловой и электрической энергии на получение 1 кг глинозема и проведено их сравнение, результаты приведены ниже.

Очевидно, что предложенный способ по энергоэффективности при переработке высококремнистого сырья уступает только аналогу 1, который, однако, не обеспечивает получение глинозема, пригодного для металлургических целей. Прочие способы-аналоги требуют гораздо более высоких затрат энергии.

Указанная энергоэффективность заявляемого способа оптимально достигается в случае, когда порядка 15% кислого маточного раствора подвергают пирогидролизу, концентрацию хлорид-иона в промежуточном алюмооксидном продукте поддерживают на уровне 0,2-5,0%, концентрацию хлорид-иона в оборотном щелочном растворе поддерживают на уровне 40-90 г/л, маточный раствор после декомпозиции в количестве 10-40 мас. % от полного потока упаривают до выделения кристаллов хлорсодержащих соединений, которые выводят из процесса. Указанные интервалы концентраций и потоков рассчитаны на основе математической модели совокупного материального баланса кислотной и щелочной частей технологии. При любом сочетании режимных параметров в рамках заявляемых интервалов суммарные расчетные энергозатраты не превысили 41,2 кДж/кг.

Хотя описание имеет отдельные ссылки на определенные варианты воплощения, многочисленные модификации должны быть очевидны специалистам в данной области техники и не ограничены строго примером, описанием и схемой.


СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛУРГИЧЕСКОГО ГЛИНОЗЕМА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛУРГИЧЕСКОГО ГЛИНОЗЕМА (ВАРИАНТЫ)
Источник поступления информации: Роспатент

Showing 1-10 of 230 items.
20.05.2013
№216.012.410e

Катодное устройство алюминиевого электролизера с рельефной подиной

Изобретение относится к конструкции катодного устройства электролизера в электролизерах Содерберга или электролизерах с обожженными анодами. Катодное устройство алюминиевого электролизера с рельефной подиной содержит футерованный катодный кожух и подину, выполненную из подовых блоков большей...
Тип: Изобретение
Номер охранного документа: 0002482224
Дата охранного документа: 20.05.2013
27.05.2013
№216.012.449d

Катодное устройство электролизера для получения алюминия и способ его ремонта

Изобретение относится к катодному устройству алюминиевого электролизера и способу его ремонта. Катодное устройство содержит катодный кожух и футеровку, имеющую цоколь из теплоизоляционного и огнеупорного материалов, бортовую футеровку, подину из подовых секций с катодными стержнями и катодными...
Тип: Изобретение
Номер охранного документа: 0002483142
Дата охранного документа: 27.05.2013
27.06.2013
№216.012.4fd2

Устройство для непрерывного литья, прокатки и прессования катанки

Изобретение относится к металлургии, в частности к непрерывному литью металлов с одновременным их прессованием. Устройство содержит печь-миксер, валки с ручьем и с выступом, образующие рабочий калибр. На выходе из калибра установлена матрица с охлаждающими каналами на наружной поверхности....
Тип: Изобретение
Номер охранного документа: 0002486027
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.509f

Способ получения топливных брикетов

Изобретение относится к способу получения топливных брикетов, включающий смешение углеродного наполнителя с измельченным углем, добавление связующего вещества и брикетирование смеси под давлением, при этом осуществляют сухое смешение углеродного наполнителя, представляющего собой отходы...
Тип: Изобретение
Номер охранного документа: 0002486232
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.50db

Способ создания смачиваемого покрытия углеродной подины алюминиевого электролизера

Изобретение относится к способу создания смачиваемого покрытия углеродной подины алюминиевого электролизера. Способ включает высокотемпературное электрохимическое осаждение компонентов покрытия из расплавленного электролита и синтез карбидов и боридов тугоплавких металлов на поверхности...
Тип: Изобретение
Номер охранного документа: 0002486292
Дата охранного документа: 27.06.2013
10.07.2013
№216.012.53e7

Способ получения фторида кальция

Изобретение может быть использовано в химической промышленности. Способ получения фторида кальция включает обработку осветленного раствора газоочистки электролитического производства алюминия гидроокисью кальция с последующим разделением раствора и пульпы и выделением фторида кальция....
Тип: Изобретение
Номер охранного документа: 0002487082
Дата охранного документа: 10.07.2013
20.09.2013
№216.012.6a85

Мешалка

Изобретение относится к мешалкам для гомогенизации больших объемов суспензии и может применяться на предприятиях химической и металлургической промышленности. Мешалка содержит расположенный в баке вертикальный вал, вращаемый приводом. В верху вала установлены наклоненные к вертикали лопасти,...
Тип: Изобретение
Номер охранного документа: 0002492920
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6b4e

Смесь для приклеивания плит

Смесь для приклеивания плит предназначена для приклеивания керамических плиток и плит из натурального камня и содержит, масс.% портландцемент - 30-34,5, кварцевый песок - 55-59,5, известняк - 5-7, эфир целлюлозы - 0,20-0,25, сополимер винилацетата с винилверсататом - 1,0-1,5, сополимер...
Тип: Изобретение
Номер охранного документа: 0002493121
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6b51

Кладочная смесь

Кладочная смесь предназначена для приготовления растворов, для соединения элементов различных кладок (кирпича, природного камня, бетонных блоков). Технический результат заключается в вовлечении отхода производства глинозема - красного шлама - в изготовление сухих строительных смесей, что...
Тип: Изобретение
Номер охранного документа: 0002493124
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6b52

Финишная шпатлевочная смесь

Изобретение относится к производству строительных материалов и может быть использовано при выравнивании поверхностей при отделочных работах. Финишная шпатлевочная смесь содержит, мас.%: портландцемент 30,85-32; гашеную известь 1-2; сополимер винилацетата с винилверсататом 0,7-1,2; эфир...
Тип: Изобретение
Номер охранного документа: 0002493125
Дата охранного документа: 20.09.2013
Showing 1-10 of 19 items.
10.06.2014
№216.012.cc3b

Система радиосвязи с подвижными объектами

Изобретение относится к радиосистемам обмена данными и может быть использовано для помехозащищенного информационного обмена между подвижными системами обмена данными. Технический результат состоит в повышении помехозащищенности информационного обмена между подвижными воздушными объектами (ВО)...
Тип: Изобретение
Номер охранного документа: 0002518054
Дата охранного документа: 10.06.2014
27.12.2014
№216.013.14aa

Способ получения скандиевого концентрата из красных шламов

Изобретение относится к извлечению оксида скандия из красных шламов - отходов глиноземного производства. Способ включает выщелачивание красного шлама карбонатными растворами при одновременной газации шламовой пульпы газо-воздушной смесью, содержащей CO, фильтрацию пульпы с получением...
Тип: Изобретение
Номер охранного документа: 0002536714
Дата охранного документа: 27.12.2014
20.03.2015
№216.013.33c2

Способ кислотной переработки красных шламов

Изобретение относится к способу кислотной переработки красных шламов, получаемых в процессе производства глинозема, и может применяться в технологиях утилизации отходов шламовых полей глиноземных заводов. Способ включает выщелачивание с использованием в качестве выщелачивающего реагента...
Тип: Изобретение
Номер охранного документа: 0002544725
Дата охранного документа: 20.03.2015
10.04.2015
№216.013.3fd9

Способ получения оксида алюминия

Изобретение относится к способу получения оксида алюминия в виде порошков или агломератов с частицами, имеющими сотовую пористую структуру. Способ включает обработку соли алюминия раствором щелочного реагента, промывку осадка и его термообработку. В качестве соли алюминия используют кристаллы...
Тип: Изобретение
Номер охранного документа: 0002547833
Дата охранного документа: 10.04.2015
10.05.2015
№216.013.49ad

Оксид алюминия

Изобретение относится к оксиду алюминия, представленному отдельными частицами с пористой структурой. При этом пористость частиц составляет 60-80%, а пористая структура представлена протяженными, параллельно расположенными каналами с плотной упаковкой, с размером каналов в поперечнике 0,3-1,0...
Тип: Изобретение
Номер охранного документа: 0002550368
Дата охранного документа: 10.05.2015
27.06.2015
№216.013.5843

Способ получения глинозема

Изобретение относится к кислотным способам получения глинозема и может быть использовано при переработке низкосортного алюминийсодержащего сырья. Способ получения глинозема включает обжиг сырья, обработку его соляной кислотой, высаливание хлорида алюминия путем насыщения осветленного хлоридного...
Тип: Изобретение
Номер охранного документа: 0002554136
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.5f76

Способ получения высокопрочного гипсового вяжущего

Изобретение относится к производству строительных материалов и может быть использовано на промышленных предприятиях, выпускающих кладочные и отделочные строительные смеси, в состав которых входят гипсовые вяжущие. Технический результат заключается в сокращении продолжительности процесса...
Тип: Изобретение
Номер охранного документа: 0002555979
Дата охранного документа: 10.07.2015
10.09.2015
№216.013.7782

Способ получения скандиевого концентрата из красного шлама

Изобретение относится к области металлургии редких металлов, в частности к способу извлечения скандия из красных шламов - отходов глиноземного производства. Способ включает многократное последовательное выщелачивание красного шлама карбонатным раствором при пропускании через пульпу...
Тип: Изобретение
Номер охранного документа: 0002562183
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.77f9

Способ получения глинозема из низкосортного алюминийсодержащего сырья

Изобретение относится к металлургии, в частности к кислотным способам получения глинозема, и может быть использовано при переработке низкосортного алюминийсодержащего сырья. Способ получения глинозема включает обработку алюминийсодержащего сырья соляной кислотой с образованием хлоридной пульпы,...
Тип: Изобретение
Номер охранного документа: 0002562302
Дата охранного документа: 10.09.2015
27.09.2015
№216.013.7ffb

Способ получения глинозема

Изобретение может быть использовано в металлургической области, при переработке алюминийсодержащего сырья. Способ получения глинозема включает обработку алюминийсодержащего сырья соляной кислотой, выделение из осветленного хлоридного раствора кристаллов гексагидрата хлорида алюминия и их...
Тип: Изобретение
Номер охранного документа: 0002564360
Дата охранного документа: 27.09.2015
+ добавить свой РИД