×
20.07.2015
216.013.62e1

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ЖИДКИХ УГЛЕВОДОРОДНЫХ СМЕСЕЙ ПУТЕМ ГИДРОКОНВЕРСИИ ЛИГНОЦЕЛЛЮЛОЗНОЙ БИОМАССЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к получению жидких углеводородных смесей из растительной лигноцеллюлозной биомассы, предназначенных для дальнейшей переработки в моторные топлива и химические продукты. Способ получения жидких углеводородных смесей осуществляют путем гидроконверсии лигноцеллюлозной биомассы в среде растворителя в присутствии прекурсора дисперсного катализатора, способ включает сушку биомассы, ее измельчение, приготовление пасты из измельченной биомассы, растворителя и прекурсора дисперсного катализатора, гидроконверсию приготовленной пасты, разделение полученных продуктов в системе сепараторов, способ отличается тем, что в качестве растворителя используют органический растворитель, имеющий в интервале температур 60-90°C вязкость от 0,5 до 2,5 Па·с, содержащий 2-5,5% маc. серы и 5-25% мас. полициклических ароматических углеводородов и/или их производных, а измельчение биомассы и приготовление указанной пасты осуществляют путем диспергирования с механоактивацией биомассы в среде растворителя, содержащего прекурсор катализатора, при этом предварительно осуществляют нагрев приготовленной пасты в инертной атмосфере до температуры 330-380°C при давлении 0,2-0,5 МПа до удаления основного количества кислорода биомассы в форме СО, CO и HO с последующей гидроконверсией. Технический результат - увеличение выхода жидких продуктов гидроконверсии биомассы, повышение глубины конверсии биомассы, упрощение технологического процесса. 9 з.п. ф-лы, 10 табл., 2 ил., 7 пр.

Настоящее изобретение относится к технологии получения жидких углеводородных смесей, предназначенных для дальнейшей переработки в моторные топлива и химические продукты, из твердых углеродсодержащих материалов, а именно растительной лигноцеллюлозной биомассы, в том числе отходов переработки древесины, водорослей и других видов растительного сырья, отходов производства бумаги и т.д., с использованием процесса гидроконверсии в среде углеводородного разбавителя (растворителя) и прекурсора ультрадисперсных катализаторов. В последние несколько лет наблюдается повышенный интерес к получению жидких углеводородов из возобновляемых видов сырья, которые могли бы частично заменить или дополнить топлива, получаемые из нефти. Одним из возможных источников производства углеводородов является переработка лигноцеллюлозной биомассы. Лигноцеллюлозная биомасса или целлюлозная биомасса состоит из трех основных биополимеров: целлюлозы, гемицеллюлозы и лигнина. В зависимости от природы биомассы соотношение компонентов может быть различным. Вещество биомассы имеет высокое содержание кислорода - до 50%. В процессе производства топлив из биомассы необходимо снизить содержание кислорода и увеличить соотношение Н/С.Существуют различные методы конверсии биомассы. В результате газификации биомассы получается синтез-газ, который можно использовать для производства жидких топлив по технологии Фишера-Тропша. Другими методами ожижения биомассы являются высокоскоростной пиролиз или гидротермальная обработка, в присутствии или без катализатора, но без добавления водорода.

Перечисленные методы позволяют удалить только часть кислорода. Получаемые жидкие продукты нестабильны, богаты кислородом и по комплексу физико-химических свойств очень отличаются от дистиллятных продуктов нефтяного происхождения и требуют дальнейшей переработки. Кроме того, эти чисто термические процессы обладают, по существу, очень плохой избирательностью; реакции сопровождаются значительным образованием газа и твердых частиц кокса.

Более эффективное решение проблемы переработки биомассы состоит в использовании каталитического процесса гидроконверсии в присутствии водорода и разбавителя (растворителя).

Известен способ гидроконверсии суспензии измельченной биомассы в продуктах переработки нефти, состоящих, по крайней мере, на 80% из фракций, выкипающих выше 343°C и содержащих 10-50% ароматических углеводородов. Гидроконверсию проводят при 350-500°C и давлении 8,0 -16,8 МПа в присутствии суспензии частиц катализатора на основе сульфида металла (заявка WO №2009/146225 А1, опубл. 03.12.2009, МПК C10G 45/04; С10С 3/02).

Недостатком изобретения является то, что нагрев суспензии биомассы до температуры гидроконверсии проводится в контакте с водородом, в результате чего образующиеся в значительном количестве (25 - 30% от веса биомассы) балластные газы СО и CO2 смешиваются с водородом и разбавляют его, снижая его парциальное давление. Это приводит к снижению глубины конверсии, необходимости использования высокого давления при гидроконверсии и существенно усложняет и удорожает процесс очистки рециркулирующего водородсодержащего газа.

В другом изобретении твердую биомассу или жидкие продукты ее переработки (например, смолу пиролиза, масла, извлеченные из водорослей, и т.п.) подвергают гидроконверсии в присутствии суспензии сульфидов металлов. Для формирования сульфида металла прекурсор предварительно сульфидируют в присутствии сульфидирующего агента в отдельном аппарате в атмосфере водорода при Т=250-350°C с получением суспензии катализатора в жидком продукте. В качестве среды для приготовления суспензии катализатора используют пиролитическую смолу, масла, полученные из биомассы, легкую нефть и др. В качестве прекурсоров используются водо- или маслорастворимые соединения элементов 6 и 8 групп периодической системы элементов. В качестве сульфидирующих агентов используют сероводород, органические сульфиды, такие как ДМДС (диметилдисульфид), полисульфиды, элементарную серу, сульфид натрия, тиофен, и так далее. Средний размер частиц катализатора предпочтительнее менее 20 мкм (заявка США №2009326285 А1, опубликовано 31.12.2009, МПК С07С 1/00). Недостатком изобретения является сложность технологического процесса и использование дополнительного сульфидирующего агента.

Наиболее близким аналогом (прототипом) предлагаемого изобретения является способ гидроконверсии биомассы в реакторе в присутствии диспергированного катализатора (патент Франции №2974109 А1, опубликовано 19.10.2012, МПК С10 В 53/02; C10G 1/00; C10L 1/04). Отличительным признаком изобретения является термическая обработка биомассы при температуре от 200 до 300°C, предпочтительно между 225°C и 275°C, в отсутствие воздуха. Обработанную таким образом биомассу измельчают с предпочтительными размерами частиц менее 150 мкм. Для процесса гидроконверсии измельченную биомассу смешивают с растворителем. В качестве растворителя для гидроконверсии используют остатки переработки нефти, сырую нефть, тяжелые нефти, асфальты деасфальтизации, продукты гидроконверсии биомассы, углей, промышленных полимеров и т.д. Гидроконверсию проводят при температуре 300-450°C, общем давлении 2-35 МПа, расходе сырья 0,1-5 ч-1, соотношении водород/сырье от 0,1 до 2 нм3/кг, в присутствии дисперсных катализаторов на основе сульфидов Mo, Fe, Ni, W, Со, V, Ru. Дисперсный катализатор готовится в специальном автоклаве из прекурсоров - солей металлов (молибдена, никеля и др.) с добавлением сульфидирующего агента, например ДМДС. В качестве катализаторов могут также использоваться катализаторы на носителях с размерами гранул менее 1 мм. Продукты гидроконверсии разделяют на газ, нафту, керосин, дизельную фракцию, вакуумный газойль и тяжелый остаток, содержащий частицы катализатора. Часть дистиллятных продуктов может быть использована для приготовления суспензии биомассы. По одному из вариантов осуществления изобретения рециркулирующую фракцию подвергают гидрообработке. Кроме того, в патенте предусмотрена частичная рециркуляции остатка, содержащего частицы катализатора. Выводимая из процесса часть остатка, содержащего твердый катализатор, используется для получения прекурсора известными методами сжигания, сепарации экстрагентами и др. методами

Недостатки прототипа заключаются в следующем:

- недостаточная температура предварительной термической обработки биомассы. При заявленной температуре (до 300°C) процессы декарбонилирования (удаления карбонильных групп из вещества биомассы), декарбоксилирования (удаление карбоксильных групп) и гидродеоксигенирования (удаления гидроксильных групп) протекают в малой степени. В приведенном примере в результате термической обработки древесины бука содержание кислорода в образце снизилось незначительно - с 41,5 до 38,1%. В процессе гидроконверсии, осуществляемой при более высокой температуре, процессы дальнейшего декарбонилирования и декарбоксилирования станут источниками образования больших количеств оксидов углерода и воды. В результате этого в газовую фазу будет поступать СО и CO2, которые будут снижать парциальное давление водорода и создадут трудности при очистке рециркулирующего водородсодержащего газа. В результате этого снижается глубина конверсии и существенно усложняется технология концентрирования водорода;

- в данном способе дисперсный катализатор готовится в специальном автоклаве из прекурсоров - солей металлов (молибдена, никеля и др.) с добавлением сульфидирующего агента, например ДМДС, что существенно усложняет процесс гидроконверсии;

- недостатком процесса является низкий выход жидких продуктов - 24-32% и высокий выход газа - 66,8-73,9% на вещество биомассы.

Задачи изобретения - повысить выход жидких продуктов и упростить процесс, повысить глубину конверсии биомассы.

Для решения поставленной задачи в способе получения жидких углеводородных смесей путем гидроконверсии лигноцеллюлозной биомассы, включающем сушку биомассы, ее измельчение, приготовление пасты из измельченной биомассы, растворителя и прекурсора дисперсного катализатора, гидроконверсию приготовленной пасты, разделение полученных продуктов в системе сепараторов, в качестве растворителя используют органический растворитель, имеющий в интервале температур 60-90°C вязкость от 0,5 до 2,5 Па·с, содержащий 2-5,5% маc. серы и 5-25% мас. полициклических ароматических углеводородов и/или их производных, а измельчение биомассы и приготовление указанной пасты осуществляют путем диспергирования с механоактивацией биомассы в среде растворителя, содержащего прекурсор катализатора. При этом предварительно осуществляют нагрев приготовленной пасты в инертной атмосфере до температуры 330-380°C при давлении 0,2-0,5 МПа до удаления основного количества кислорода биомассы в форме СО, CO2 и H2O с последующей гидроконверсией.

Растворитель, содержащий прекурсор катализатора, могут получать смешением и диспергированием с механоактивацией водного раствора прекурсора катализатора, содержащего одно или более водорастворимых соединений элементов, выбранных из Mo, Fe, Ni, W, Со, с органическим растворителем с получением эмульсии с размерами капель от 0,1 до 3 мкм. Диспергирование с механоактивацией водного прекурсора катализатора с органическим растворителем предпочтительно осуществляют в роторно-кавитационном диспергаторе.

Растворитель, содержащий прекурсор катализатора, также могут получать предварительным растворением в органическом растворителе маслорастворимого прекурсора катализатора, содержащего одно или более соединений элементов, выбранных из Mo, Fe, Ni, W, Co.

Диспергирование с механоактивацией биомассы в среде растворителя, содержащего прекурсор катализатора, осуществляют в роторнокавитационном диспергаторе. Предпочтительно его осуществляют при 70-120°C.

Массовое отношение биомассы, растворителя и прекурсора катализатора в приготовленной пасте составляет (0,1-0,7):1:(0,005-0,1).

После указанного нагрева деоксигенированную пасту смешивают с подогретым до 400-450°C водородом при соотношении водород: паста = (500-1500): 1 нл/л, а гидроконверсию осуществляют при давлении 5-9 МПа, температуре 400-450°C, длительности пребывания сырья в реакционной зоне (времени контакта) 0,33 - 2 часа, в присутствии образующегося из прекурсора катализатора - одного или более сульфидов элементов, выбранных из Mo, Fe, Ni, W, Со, с размерами частиц 10-1000 нм.

Предпочтительно соотношение водород/паста составляет (800-1100):1 нл/л.

Основные отличия предлагаемого решения от прототипа состоят в следующем:

- синтез дисперсных частиц катализатора из прекурсора осуществляют не в отдельном блоке, в специальном аппарате, а непосредственно в сырьевой смеси, в процессе ее нагрева до температуры гидроконверсии и без ис-

пользования специальных сульфидирующих агентов;

- измельчение биомассы осуществляют путем ее диспергирования в среде растворителя с определенным набором физико-химических свойств, с использованием механоактивационных процессов, позволяющих получить высокодисперсные активные фрагменты полимерных молекул лигнина, целлюлозы и гемицеллюлозы;

- с целью повышения парциального давления водорода в газовой фазе реактора гидроконверсии, снижения содержаний балластных газов (CO и CO2) в рециркулирующем водородсодержащем газе, упрощения технологии очистки циркулирующего водородсодержащего газа проводится предварительная деоксигенация термической обработкой (нагревом) пасты при 330-380°C, предпочтительно 340-360°C.

Схема осуществления процесса приведена на фиг.1.

По одному из вариантов осуществления изобретения водный раствор прекурсора катализатора (2), содержащий одну или несколько солей элементов, выбранных из Mo, Fe, Ni, W, Co, смешивают и диспергируют с механоактивацией с использованием устройства (14) при температуре 60-90°C, предпочтительно 75-85°C, в органическом растворителе (1).

По другому варианту осуществления изобретения в качестве прекурсора используют маслорастворимые соединения элементов, выбранных из Mo, Fe, Ni, W, Co, которые растворяют в растворителе с использованием устройства 14. Массовое отношение растворителя и прекурсора катализатора составляет 1:(0,005-0,1), предпочтительно 1:(0,01-0,05). В качестве жидкой среды для приготовления дисперсии прекурсора используют органические растворители, содержащие 2-5,5% серы, 5-25% полициклических ароматических углеводородов (ПАУ) или алкилпроизводных ПАУ.

Наличие серусодержащих соединений в составе растворителя обеспечивает сульфидирование дисперсных катализаторов при нагреве пасты до температуры гидроконверсии. Полициклическая ароматика в интервале температур 350-400°С в присутствии сульфидных дисперсных катализаторов гидрируется с образованием гидропроизводных, являющихся в свою очередь донорами водорода по отношению к фрагментам полимерных молекул биомассы. Для обеспечения максимальной каталитической активности синтезируемого из прекурсора высокодисперсного катализатора вязкость растворителя в интервале температур 60-90°C должна составлять от 0,5 до 2,5 Па·с.

К полученной дисперсной системе, содержащей прекурсор катализатора, добавляют биомассу (3). Массовое отношение биомассы, растворителя и прекурсора катализатора составляет (0,1-0,7):1:(0,005-0,1), предпочтительно (0,4-0,55):1:(0,01-0,05). Биомассу подвергают механоактивации и диспергированию в среде растворителя, содержащего прекурсор катализатора, в устройстве (15) при температуре 60-90°C, предпочтительно 75-85°C. Механоактивацию вещества биомассы осуществляют без доступа воздуха. Для этого процесса пригодны диспергаторы, дезинтеграторы и другое оборудование, позволяющее получать пасты с диаметрами твердых частиц менее 30 мкм, но предпочтителен роторно-кавитационный диспергатор.

Крупность частиц биомассы после механоактивации - менее 30 мкм, в том числе содержание фракции диаметром до 7 мкм не менее 40%.

В результате механоактивации полимерные молекулы компонентов биомассы образуют активные радикалы, обладающие повышенной реакционной способностью. В процессе гомогенизации прекурсор частично сорбируется веществом биомассы, образуя поверхностные комплексные соединения, что дополнительно повышает ее реакционную способность.

Для удаления основного количества кислорода из вещества биомассы приготовленную пасту (4) нагревают до температуры 330-380°C, предпочтительно до 340-360°C с получением потока (5), в трубчатой печи (16). Такая температура обеспечивает наилучшие условия для удаления кислорода из вещества биомассы. Образовавшийся газ (7), содержащий CO, CO2, метан, этан, пары воды, отделяют от жидкого продукта в сепараторе (17) при давлении 0,2-0,5 МПа. Далее жидкий продукт (6) с температурой 330-380°C смешивают с предварительно нагретым водородом (8). К нему могут добавлять рециркулирующий газ, также содержащий водород (13). Далее газожидкостную смесь под давлением 5-9 МПа, предпочтительно 6-8 МПа подают в печь (18), где нагревают до 400-450°C (поток 9) и затем направляют в реактор гидроконверсии (19). В процессе нагрева сырьевой смеси исходный прекурсор подвергается термохимическому превращению и сульфидируется с образованием частиц катализаторов - сульфидов металлов с размером частиц от 10 до 1000 нм. Гидроконверсию проводят при температуре 400-450°C, давлении 5-9 МПа, объемной скорости 0,5-3 ч-1 (что соответствует времени контакта 0,33-2 часа), соотношении водород/сырьевая смесь (500-1500) нл/л сырьевой пасты. Оптимальные значения параметров гидроконверсии определяются свойствами биомассы, растворителя и используемого катализатора.

Продукты гидроконверсии (10) поступают в блок сепарации продуктов (20). Разделение продуктов осуществляется по обычным схемам разделения продуктов гидроконверсии нефтяного сырья. В результате разделения получают жидкий продукт (гидрогенизат) и газ, содержащий водород (13). Гидрогенизат подвергают атмосферно-вакуумной дистилляции с получением бензиновой, дизельной, газойлевой дистиллятных фракций и остатка вакуумной дистилляции с температурой кипения выше 500°C. В вакуумном остатке присутствует ультрадисперсный катализатор. Для снижения расхода катализатора часть остатка вакуумной дистилляции (11) возвращают в процесс гидроконверсии на смешение с биомассой в устройстве 15. Другую часть остатка (12) используют для извлечения и регенерации прекурсора в блоке регенерации катализатора (21). Регенерированный прекурсор катализатора (РПК

возвращается в узел диспергирования прекурсора в растворителе в устройстве Д1.

Техническими результатами изобретения являются:

- увеличение выхода жидких продуктов гидроконверсии биомассы в результате использования метода механоактивации в среде растворителя, использования растворителя с оптимальным набором физико-химических свойств, взаимодействия прекурсора с поверхностью частицы биомассы в процессе приготовления пасты, предварительного удаления основного количества кислорода из вещества биомассы;

- повышение глубины конверсии биомассы;

- упрощение технологического процесса за счет исключения операции приготовления дисперсного сульфидного катализатора в атмосфере водорода с добавлением специальных сульфидирующих агентов.

Пример 1

Биомасса - высушенные при 110°C сосновые опилки крупностью 0,3 мм и остаточной влажностью 5,1% мас. В качестве растворителя используют остаток вакуумной перегонки нефти - гудрон. Составы биомассы и растворителя приведены в таблице 1. К 100 г нагретого до 80°C гудрона добавляют 10 г водного раствора прекурсора, содержащего 0,155 г парамолибдата аммония из расчета 0,05% молибдена на органическую массу пасты. Массовое отношение растворителя и водного раствора прекурсора катализатора составляет 1:0,1. Смесь диспергируют с механоактивацией при 80°C в течение 40 мин с помощью роторно-кавитационного диспергатора. В приготовленной эмульсии размеры капель находятся в пределах 0,1-3 мкм.

Полученную эмульсию смешивают с 70 г древесной биомассы. Смесь диспергируют с помощью роторно-кавитационного диспергатора при 120°C в течение 40 минут. Массовое отношение биомассы, растворителя и водного раствора прекурсора катализатора составляет 0,7:1:0,1. На фиг.2. приведен дисперсный состав частиц биомассы в пасте до и после диспергирования.

Таблица 1
Физико-химические свойства древесной биомассы и гудрона
№ п/п Показатель Гудрон Древесная биомасса
1 Плотность, кг/м3 при 15°C 1011 903
2. Фракционный состав. Выкипает в % при температуре:
температура начала кипения 388 -
5 502 -
10 519 -
20 545 -
30 565 -
40 577 -
3 Элементный состав, %
Углерод 83,9 51*
Водород 10,1 6,4*
Кислород од 42,55*
Азот 0,38 0,05*
Сера 5,50 -
4. Микрококсовый остаток, % 17,1 -
5. Зольность при 550°C 0,17 -
6 Динамическая вязкость при 60°C, Па·с 2,49 -
7 Температура застывания, °C 56 -
8 Групповой углеводородный состав, %
Парафино-нафтеновые 31,8 -
Смолы 17,6 -
Асфалътены 5,1 -
Ароматические, в том числе: 45,5 -
полициклические ароматические и их производные 25 -
9 Содержание влаги, % - 5,1
* - на сухую массу

Далее пасту загружают в обогреваемый автоклав, оборудованный перемешивающим устройством, объемом 1 л. Автоклав герметизируют и включают продув азотом со скоростью 2 нл/мин под давлением 0,2 МПа. Автоклав нагревают до 380°C в течение 1 часа и выдерживают при этой температуре 30 мин при постоянном протоке азота. Выходящий из автоклава газ охлаждают в холодильнике до 25°C. Сконденсировавшуюся воду и газ разделяют в сепараторе. Газ анализируют на хроматографе. В результате термической обработки пасты образовалось 52,6 г газа, в том числе 27,7 г паров воды, в том числе 9,8 г - из прекурсора катализатора, 15,2 г CO2, 5,2 г СО, 4,5 г углеводородов C1-C4. Выход газа на сухую биомассу (исключая гигроскопическую влагу древесины и воду прекурсора катализатора) составил 59,1%. Степень удаления кислорода из вещества биомассы составила 96%. Далее подаваемый в автоклав азот заменяют водородом, нагретым до 450°С, который постоянно подают со скоростью 13,1 нл/мин под давлением 9 МПа. Автоклав нагревают до температуры гидроконверсии - 450°C и выдерживают при этой температуре 20 мин. Время контакта - 0,33 часа.

Соотношение водород/паста составляет 1497 нл/л сырья. Выходящую из реактора парогазовую смесь охлаждают в системе сепараторов с улавливанием жидких продуктов. Затем автоклав охлаждают до комнатной температуры. Прекращают подачу водорода и разгружают автоклав. Остаток в автоклаве объединяют с уловленными в сепараторах дистиллятными фракциями. Гидрогенизат подвергают атмосферно-вакуумной разгонке на фракции «н-к-180°C», «180-350°C», «350-500°C» и анализировали. В остатке после разгонки определяют размеры частиц образовавшегося из прекурсора катализатора - MoS2. По данным электронной микроскопии средний диаметр частиц катализатора составили от 10 до 1000 нм.

В табл.2 и 3 приведены составы и выход продуктов гидроконверсии. Как видно из таблицы, выход жидких органических продуктов из биомассы составил 38,7%, что выше, чем в известных патентах. Например, в прототипе выход жидких продуктов составил от 23,7 до 32%.

Таблица 3
Состав и свойства гидрогенизата
Состав сырья Биомасса + гудрон Гудрон
Плотность при 20°C, кг/м3 910 933
Йодное число, г/100 г 34,8 48,8
Элементный состав, %:
C 85,93 86,9
H 12,1 11,1
N 0,21 0,2
S 0,98 1,6
O 0,78 0,2

Пример 2

Для приготовления сырьевой смеси используют 20 г предварительно высушенных при 110°C сосновых опилок с крупностью до 0,3 мм и остаточной влажностью 5,1%. В качестве растворителя используют остаток атмосферной дистилляции нефти - мазут. Составы биомассы и растворителя приведены в таблице 4.

К 200 г нагретого до 70°C мазута добавляют 1 г водного раствора прекурсора, содержащего 0,2 г парамолибдата аммония из расчета 0,05% молибдена на пасту. Массовое отношение растворителя и водного раствора прекурсора катализатора составляет 1:0,005. Смесь диспергируют при 70°C в течение 40 мин с помощью роторно-кавитационного диспергатора.

В приготовленной эмульсии размеры капель находятся в пределах 0,5-3 мкм. Полученную эмульсию смешивают с 70 г древесной биомассы. Смесь диспергируют с помощью роторно-кавитационного диспергатора при 70°C в течение 40 минут. Массовое отношение биомассы, растворителя и водного раствора прекурсора катализатора составляет 0,1:1:0,005.

Таблица 4.
Физико-химические свойства древесной биомассы и мазута
№ п/п Показатель Мазут Древесная биомасса
1 Плотность, кг/м3 при 15°C 0,937 903
2. Фракционный состав. Выкипает в % при температуре:
температура начала кипения 330 -
5 348 -
10 363 -
30 414 -
50 444 -
80 502 -
3 Элементный состав, %
Углерод 85,4 51*
Водород 11,47 6,4*
Кислород 0,88 42,55*
Азот 0,15 0,05*
Сера 2,1 -
4. Микрококсовый остаток, % 3,5 -
5. Зольность при 550°C 0,07 -
6 Динамическая вязкость при 60°C, Па·с 0,52 -
7 Температура застывания, °C 47 -
8 Групповой углеводородный состав, %
Парафино-нафтеновые 53,1 -
Смолы 8,9 -
Асфальтены 3,8 -
Ароматические, в том числе: 34,2 -
полициклические ароматические и их производные 5 -
9 Содержание влаги, % - 5,1
* - на сухую массу

Далее пасту загружают в обогреваемый автоклав, оборудованный перемешивающим устройством, объемом 1 л. Автоклав герметизируют и включают продув азотом со скоростью 2 нл/мин под давлением 0,5 МПа. Далее автоклав нагревают до 330°C в течение 1 часа и выдерживают при этой температуре 1 час при постоянном токе азота. Выходящий из автоклава газ охлаждают в холодильнике до 25°C. Сконденсировавшуюся воду и газ разделяют в сепараторе. Газ анализируют на хроматографе. В результате термической обработки пасты образовалось 11,84 г газа, в том числе 5,8 г паров воды, в том числе 0,8 г - из прекурсора катализатора, 4,21 г CO2, 0,89 г CO, 0,94 г углеводородов C1-C4. Выход газа на сухую биомассу (исключая гигроскопическую влагу древесины и воду прекурсора катализатора) составил 52,8%. Степень удаления кислорода из вещества биомассы составила 88%. Далее подаваемый в автоклав азот заменяют водородом, нагретым до 450°C, который постоянно подают со скоростью 0,98 нл/мин под давлением 5 МПа. Автоклав нагревают до температуры гидроконверсии - 400°C и выдерживают при этой температуре 2 часа. Время контакта - 2 часа.

Соотношение водород/паста составляет 505 нл/л сырья. Выходящую из реактора парогазовую смесь охлаждают в системе сепараторов с улавливанием жидких продуктов. Затем автоклав охлаждают до комнатной температуры. Прекращают подачу водорода и разгружают автоклав. Остаток в автоклаве объединяют с уловленными в сепараторах дистиллятными фракциями. Гидрогенизат подвергают атмосферно-вакуумной разгонке на фракции «н-к-170°C», «170-350°C», «350-500°C» и анализируют. В остатке после разгонки определяют размеры частиц образовавшегося из прекурсора катализатора - MoS2. По данным электронной микроскопии диаметры частиц катализатора составили от 10 до 1000 нм. В табл.5 и 6 приведены составы и выход продуктов гидроконверсии. Как видно из таблицы, выход жидких органических продуктов из биомассы составил 35,3%, что выше, чем в известных способах. Например, в прототипе выход жидких продуктов составил 23,7-32%.

Таблица 6
Состав и свойства гидрогенизата
Состав сырья Биомасса + мазут Мазут
Плотность при 20°C, кг/м3 910 906
Йодное число, г/100 г 35,9 38,2
Элементный состав, %:
C 86,53 86,57
Н 11,84 11,8
N 0,1 0,1
S 1,07 1,21
О 0,46 0,32

Пример 3

Сырье - как в примере 1. Составы биомассы и растворителя приведены в таблице 1.

К 120 г нагретого до 80°C гудрона добавляют 1,5 г маслорастворимого прекурсора - нафтената молибдена, содержащего 0,09 г молибдена из расчета 0,05% молибдена на органическую массу пасты. Массовое отношение растворителя и прекурсора катализатора составляет 1:0,0125. Смесь перемешивают при 80°C в течение 20 мин с помощью роторно-кавитационного диспергатора.

Полученный раствор прекурсора в гудроне смешивают с 60 г древесной биомассы. Смесь диспергируют с помощью роторно-кавитационного диспергатора при 90°C в течение 40 минут. Массовое отношение биомассы, растворителя и прекурсора катализатора составляет 0,5:1:0,0125.

Далее пасту загружают в обогреваемый автоклав, оборудованный перемешивающим устройством, объемом 1 л. Автоклав герметизируют и включают продув азотом со скоростью 2 нл/мин под давлением 0,2 МПа. Далее автоклав нагревают до 370°C в течение 1 часа и выдерживают при этой температуре 30 мин при постоянном токе азота. Выходящий из автоклава газ охлаждают в холодильнике до 25°C. Сконденсировавшуюся воду и газ разделяют в сепараторе. Газ анализируют на хроматографе. В результате термической обработки пасты образуется 35,37 г газа, в том числе 14,5 г паров воды, 12,9 г CO2, 4,32 г CO, 3,65 г углеводородов С1-С4. Выход газа на биомассу составил 58,9%. Степень удаления кислорода из вещества биомассы составила 94,3%.

Далее подаваемый в автоклав азот заменяют водородом, нагретым до 430°C, который постоянно подают со скоростью 3 нл/мин под давлением 7 МПа. Автоклав нагревают до температуры гидроконверсии - 430°C и выдерживают при этой температуре 90 мин. Время контакта - 1,5 часа.

Соотношение водород/паста составляет 950 нл/л сырья. Выходящую из реактора парогазовую смесь охлаждают в системе сепараторов с улавливанием жидких продуктов. Затем автоклав охлаждают до комнатной температуры. Прекращают подачу водорода и разгружают автоклав. Остаток в автоклаве объединяют с уловленными в сепараторах дистиллятными фракциями. Гидрогенизат подвергают атмосферно-вакуумной разгонке на фракции «н-к-170°C», «170-350°C», «350-500°C» и анализируют. В остатке после разгонки определяют размеры частиц образовавшегося из прекурсора катализатора - MoS2. По данным электронной микроскопии диаметры частиц катализатора составляют от 10 до 500 нм.

В табл.7 и 8 приведены составы и выход продуктов гидроконверсии. Как видно из таблицы, выход жидких органических продуктов из биомассы составил 38,7%, что выше, чем в известных способах. Например, в прототипе выход жидких продуктов составил от 23,7 до 32%.

Таблица 8
Состав и свойства гидрогенизата
Состав и свойства гидрогенизата Биомасса + гудрон Гудрон
Плотность при 20°C, кг/м3 910 933
Йодное число, г/100 г 34,8 48,8
Элементный состав, %:
С 85,93 86,9
Н 12,1 11,1
N 0,21 0,2
S 0,98 1,6
О 0,78 0,2

Примеры 4-7

Сырье - как в примере 1. Составы биомассы и растворителя приведены в таблице 1. Условия опыта идентичны, приведенным в опыте 1. В примерах 4, 5 и 6 в качестве прекурсоров использовали 10 г водных растворов, содержащих соответственно сульфат двухвалентного железа, сульфат никеля и сульфат кобальта из расчета 0,1% активного компонента (металла) на органическую массу пасты. В примере 7 в качестве прекурсора использовали 10 г водного раствора вольфрамата аммония из расчета 0,05% вольфрама на органическую массу пасты.

Смешение компонентов, термическую обработку и гидроконверсию пасты проводили так же, как описано в примере 1.

В табл.9 и 10 приведены составы и выход продуктов гидроконверсии. Как видно из таблицы, выход жидких органических продуктов из биомассы составил 33,8-38,7%, что выше, чем в известных способах. Например, в прототипе выход жидких продуктов составил от 23,7 до 32%.

Таблица 10
Состав и свойства гидрогенизата
Прекурсор катализатора Сульфат железа (II) Сульфат никеля Сульфат кобальта Вольфрамат аммония
Плотность при 20°C, кг/м3 985 938 949 952
Йодное число, г/100 г 65,9 46,4 51,5 40,1
Элементный состав, %:
C 86,6 86,02 85,72 85,81
H 10,58 11,73 11,34 11,94
N 0,25 0,18 0,24 0,11
S 1,19 0,88 1,07 0,83
O 1,38 1,19 1,63 1,31


СПОСОБ ПОЛУЧЕНИЯ ЖИДКИХ УГЛЕВОДОРОДНЫХ СМЕСЕЙ ПУТЕМ ГИДРОКОНВЕРСИИ ЛИГНОЦЕЛЛЮЛОЗНОЙ БИОМАССЫ
СПОСОБ ПОЛУЧЕНИЯ ЖИДКИХ УГЛЕВОДОРОДНЫХ СМЕСЕЙ ПУТЕМ ГИДРОКОНВЕРСИИ ЛИГНОЦЕЛЛЮЛОЗНОЙ БИОМАССЫ
Источник поступления информации: Роспатент

Showing 81-90 of 150 items.
10.05.2018
№218.016.4ccd

Способ получения композиционной мембраны и композиционная мембрана, полученная этим способом

Изобретение относится к области композиционных мембран разделения газовых смесей и/или смеси газов и паров органических растворителей, и/или первапорации водно-органических или органических-органических смесей. Способ получения композиционной мембраны для газоразделения и первапорации включает...
Тип: Изобретение
Номер охранного документа: 0002652228
Дата охранного документа: 25.04.2018
10.05.2018
№218.016.4e60

Способ получения микро-мезопористого цеолита y и цеолит, полученный этим способом

Изобретение относится к неорганической химии, в частности к способам получения кристаллических цеолитных материалов, обладающих микро-мезопористой структурой и кислотными свойствами. Способ получения микро-мезопористого цеолита Y включает суспендирование и активацию деалюминированного цеолита Y...
Тип: Изобретение
Номер охранного документа: 0002650897
Дата охранного документа: 18.04.2018
09.06.2018
№218.016.5b72

Способ получения стирола из отходов полистирола

Изобретение относится к способу получения стирола из отходов полистирола, включающему растворение отходов полистирола в органическом растворителе, введение полученного раствора в реактор и разложение полистирола в отсутствие катализатора при повышенной температуре и атмосферном давлении. Способ...
Тип: Изобретение
Номер охранного документа: 0002655925
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5f20

Способ удаления диоксида углерода из газовых смесей

Изобретение относится к области очистки от диоксида углерода различных газовых смесей, таких как природный газ, газы конверсии углеводородов, дымовые газы и др. методом абсорбции. Способ удаления диоксида углерода из газовых смесей включает абсорбцию диоксида углерода водным раствором...
Тип: Изобретение
Номер охранного документа: 0002656661
Дата охранного документа: 06.06.2018
16.06.2018
№218.016.6221

Способ получения высокоплотного реактивного топлива для сверхзвуковой авиации

Изобретение относится к способу получения высокоплотного реактивного топлива. Способ получения высокоплотного реактивного топлива для сверхзвуковой авиации осуществляют путем гидрирования фракций каменноугольной смолы при повышенных температуре и давлении в присутствии водорода и катализатора,...
Тип: Изобретение
Номер охранного документа: 0002657733
Дата охранного документа: 15.06.2018
26.07.2018
№218.016.74ae

Способ получения катализатора и способ получения этиллевулината с применением полученного катализатора

Изобретение относится к области получения эфиров путем каталитических превращений спиртов, а именно фурфурилового спирта, и может найти применение в парфюмерной промышленности, производстве моторных топлив и других областях, в которых применяют эфиры левулиновой кислоты. В способе получения...
Тип: Изобретение
Номер охранного документа: 0002662165
Дата охранного документа: 24.07.2018
09.08.2018
№218.016.79f8

Нанокомпозитный магнитный материал и способ его получения

Изобретение относится к области нанокомпозитных материалов на основе электроактивных полимеров с системой сопряжения и магнитных наночастиц FeO, закрепленных на углеродных нанотрубках. Нанокомпозитный магнитный материал включает полимер - полидифениламин-2-карбоновую кислоту (ПДФАК) и...
Тип: Изобретение
Номер охранного документа: 0002663049
Дата охранного документа: 01.08.2018
01.09.2018
№218.016.81b6

Гибридный электропроводящий материал на основе полимера и углеродных нанотрубок и способ его получения

Изобретение относится к области создания новых структурированных гибридных наноматериалов на основе электроактивных полимеров с системой сопряжения и одностенных углеродных нанотрубок (ОУНТ) и может быть использовано в качестве носителей для катализаторов, в том числе в топливных элементах с...
Тип: Изобретение
Номер охранного документа: 0002665394
Дата охранного документа: 29.08.2018
01.09.2018
№218.016.81e5

Способ получения катализатора и способ гидрирования нефтеполимерных смол в его присутствии

Изобретение относится к процессам получения светлых нефтеполимерных смол гидрированием при повышенной температуре при давлении водорода в присутствии катализатора и может быть использовано для получения компонентов адгезивов и клеев-расплавов, а также в пищевой и полиграфической промышленности....
Тип: Изобретение
Номер охранного документа: 0002665484
Дата охранного документа: 30.08.2018
01.09.2018
№218.016.8248

Способ получения металлсодержащих наноразмерных дисперсий

Настоящее изобретение относится к нефтехимической промышленности, а именно к способам получения низкоконцентрированных каталитических дисперсий для процесса получения алифатических углеводородов по методу Фишера-Тропша в трехфазном сларри-реакторе. Способ получения металлсодержащей...
Тип: Изобретение
Номер охранного документа: 0002665575
Дата охранного документа: 31.08.2018
Showing 81-90 of 92 items.
09.06.2018
№218.016.5f73

Способ гидрогенизационной переработки нефтяного шлама

Изобретение относится к области переработки нефтяных отходов, а именно нефтяных шламов, в нефтепродукты, и может быть использовано для утилизации нефтяных шламов и получения дистиллятных фракций с температурой не выше 520°С. Для подготовки нефтяного шлама осуществляют его контакт с...
Тип: Изобретение
Номер охранного документа: 0002656673
Дата охранного документа: 06.06.2018
01.09.2018
№218.016.8248

Способ получения металлсодержащих наноразмерных дисперсий

Настоящее изобретение относится к нефтехимической промышленности, а именно к способам получения низкоконцентрированных каталитических дисперсий для процесса получения алифатических углеводородов по методу Фишера-Тропша в трехфазном сларри-реакторе. Способ получения металлсодержащей...
Тип: Изобретение
Номер охранного документа: 0002665575
Дата охранного документа: 31.08.2018
15.10.2018
№218.016.9271

Способ получения дивинила

Изобретение раскрывает способ получения дивинила путем превращения кислородсодержащего органического вещества при повышенной температуре в присутствии катализатора, включающего оксид цинка ZnO, оксид калия KO, оксид магния MgO и γ-оксид алюминия γ-AlOхарактеризующийся тем, что в качестве...
Тип: Изобретение
Номер охранного документа: 0002669561
Дата охранного документа: 12.10.2018
11.11.2018
№218.016.9c45

Способ получения катализатора, полученный этим способом катализатор и способ жидкофазного алкилирования изобутана бутиленами в его присутствии

Изобретение относится к технологии производства гетерогенных катализаторов. Предложен способ получения катализатора алкилирования изобутана бутиленами на основе цеолита, включающий ионный обмен путем обработки цеолита типа фожазит, гранулированного без связующего, при 70÷90°C с одновременным...
Тип: Изобретение
Номер охранного документа: 0002672063
Дата охранного документа: 09.11.2018
14.11.2018
№218.016.9d13

Способ комплексной переработки остатка атмосферной дистилляции газового конденсата и установка для его осуществления

Изобретение относится к способам переработки тяжелого углеводородного сырья с чрезвычайно высоким содержанием парафино-нафтеновых углеводородов и низким содержанием нативных смол и асфальтенов под давлением водорода в присутствии гетерогенных наноразмерных катализаторов и может быть...
Тип: Изобретение
Номер охранного документа: 0002672254
Дата охранного документа: 13.11.2018
07.12.2018
№218.016.a458

Способ гидроконверсии остатка атмосферной дистилляции газового конденсата

Изобретение относится к способам переработки тяжелого углеводородного сырья с чрезвычайно высоким содержанием парафино-нафтеновых углеводородов и низким содержанием нативных смол и асфальтенов и может быть использовано при переработке остатка атмосферной дистилляции газового конденсата АОГК. В...
Тип: Изобретение
Номер охранного документа: 0002674160
Дата охранного документа: 05.12.2018
14.12.2018
№218.016.a759

Комбинированный катализатор и способ получения обогащённого триптаном экологически чистого высокооктанового бензина в его присутствии

Настоящее изобретение относится к получению высокооктанового бензина с низким содержанием ароматических соединений, но с высоким содержанием триптана (2,2,3-триметилбутана), и может применяться в области получения моторного топлива. Комбинированный катализатор получения обогащенного триптаном...
Тип: Изобретение
Номер охранного документа: 0002674769
Дата охранного документа: 13.12.2018
14.12.2018
№218.016.a76b

Способ переработки тяжелых нефтяных фракций

Изобретение относится к способу переработки тяжелых нефтяных фракций, включающему предварительное введение в сырье - тяжелые нефтяные фракции - водного раствора соли аммония и переходного металла, взаимодействие указанной соли с серосодержащим агентом, получение микроэмульсии серосодержащей...
Тип: Изобретение
Номер охранного документа: 0002674773
Дата охранного документа: 13.12.2018
19.12.2018
№218.016.a8ec

Способ получения суспензии молибденсодержащего композитного катализатора гидроконверсии тяжелого нефтяного сырья

Предлагаемое изобретение относится к способу получения суспензии молибденсодержащего композитного катализатора гидроконверсии тяжелого нефтяного сырья, который включает введение водного раствора прекурсора катализатора в смесь углеводородов с последующим его сульфидированием. Для получения...
Тип: Изобретение
Номер охранного документа: 0002675249
Дата охранного документа: 18.12.2018
30.03.2019
№219.016.f92e

Способ регенерации молибденсодержащего катализатора гидроконверсии тяжелого углеводородного сырья

Изобретение относится к способу регенерации молибденсодержащего катализатора из выкипающего выше 500°С остатка гидроконверсии тяжелого углеводородного сырья. Способ включает в себя: выделение методом фильтрации из остатка гидроконверсии, выкипающего выше 500°С, который растворяют при массовом...
Тип: Изобретение
Номер охранного документа: 0002683283
Дата охранного документа: 27.03.2019
+ добавить свой РИД