×
10.05.2018
218.016.4e60

СПОСОБ ПОЛУЧЕНИЯ МИКРО-МЕЗОПОРИСТОГО ЦЕОЛИТА Y И ЦЕОЛИТ, ПОЛУЧЕННЫЙ ЭТИМ СПОСОБОМ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к неорганической химии, в частности к способам получения кристаллических цеолитных материалов, обладающих микро-мезопористой структурой и кислотными свойствами. Способ получения микро-мезопористого цеолита Y включает суспендирование и активацию деалюминированного цеолита Y в растворе гидроксида аммония с последующим смешением суспензии с катионным поверхностно-активным веществом ПАВ - галогенидом цетилтриметиламмония, гидротермальной обработкой в его присутствии, сушкой, прокаливанием и выделением готового продукта. Концентрацию раствора гидроксида аммония и галогенида цетилтриметиламмония выбирают так, чтобы обеспечить отношение ОН/цеолит 10-25 ммоль/г, отношение ПАВ/цеолит 0,8-2,0 ммоль/г, отношение HO/цеолит 1,8-3,6 моль/г, а гидротермальную обработку проводят при температуре 60-95°С и атмосферном давлении в течение 1-1,5 ч. Доля мезопор в общем объеме пор микро-мезопористого цеолита Y, полученного этим способом, составляет 0,5-0,7, а в его спектре кислотности доля кислотных центров с энергией активации десорбции аммиака 95-140 кДж/моль составляет 0,5-0,6. Технический результат заключается в повышении эффективности цеолита при его применении в каталитических превращениях крупных органических молекул, в том числе в процессе гидрокрекинга вакуумного газойля. 2 н.п. ф-лы, 3 ил., 2 табл., 19 пр.
Реферат Свернуть Развернуть

Изобретение относится к неорганической химии, в частности к способам получения кристаллических цеолитных материалов, обладающих микро-мезопористой структурой и кислотными свойствами.

Цеолит Y используется в качестве компонента катализаторов процессов нефтепереработки, нефтехимии и органического синтеза. Микропористая структура цеолита Y образована системой каналов размером 0,7 нм, соединяющих полости размером 1,3 нм. Размер канала в кристаллической структуре цеолита Y накладывает ограничения на размеры молекул, способных проникнуть внутрь цеолитного кристалла. В результате стерических ограничений в процессе каталитических превращений эффективно используются лишь приповерхностные слои цеолитного кристалла. В связи с этим практическую важность имеют способы регулирования текстурных свойств цеолитов с целью эффективного использования объема кристалла цеолита и обеспечения доступности реагентов к активным центрам цеолита и отвода продуктов реакции.

Каталитическая активность цеолита Y обусловлена совокупностью его кислотных и текстурных свойств. Кислотные центры в цеолите Y связаны с атомами алюминия в кристаллическом каркасе цеолита и распределены равномерно по объему цеолитного кристалла. Каталитические свойства цеолита Y зависят как от концентрации кислотных центров, так и от их типа. Описано, что для использования цеолита Y в качестве компонента катализатора процесса каталитического крекинга ключевым моментом является наличие двух типов кислотных центров, которые дифференцируются с использованием метода термопрограммированной десорбции (ТПД) аммиака как слабые и сильные центры, как показано в [М.-Y. He. The development of catalytic cracking catalyst: acidic property related catalytic performance. - Catalysis Today. - 2002. - v. 73. - p. 49-55] или с использованием ИК-спектроскопии адсорбированной молекулы-зонда пиридина, как Льюисовские и Бренстедовские центры, как показано в [D. Chen, S. Sharma, N. Cardona-Vartinez et al. Acidity Studies of fluid cracking catalysts by microcalorimetry and infrared spectroscopy. - Journal of Catalysis. - 1992. - V. 136. - Р. 392-402].

Описаны и широко используются на практике приемы регулирования кислотных свойств цеолита Y путем частичного деалюминирования цеолитного каркаса [Дж. Рабо. Химия цеолитов и катализа на цеолитах. - В 2-х томах. – Пер. с англ. - М. - Мир. - 1980]. Экстракция алюминия из тетраэдрических позиций каркаса происходит в результате термического и химического (кислотного) воздействия на цеолитный материал. Одновременно с деалюминированием в результате частичного разрушения кристаллического каркаса формируются мезопоры, способные облегчить транспорт реагентов и продуктов реакции. Однако образующиеся мезопоры по своей конфигурации (полости и нерегулярные поры с широким распределением по размеру) и локализации (каверны на поверхности кристалла или малодоступные полости в объеме кристалла) не являются оптимальными. Кроме того, доля мезопор в объеме пор цеолита определяется глубиной деалюминирования, поэтому достижение значительных объемов мезопор в деалюминированном цеолите Y сопряжено с уменьшением концентрации алюминия в цеолите и, следовательно, с уменьшением количества кислотных центров. В результате деалюминирования цеолита Y формируется спектр кислотности цеолита, в котором значительную долю составляют сильные кислотные центры, обладающие сильными крекирующими свойствами.

Описан прием регулирования текстурных характеристик деалюминированного цеолита Y путем щелочной обработки цеолита, приводящий к десилилированию цеолитного материала [K.P. de Jong, J. Zecevic, H. Friedrich et al. Zeolite Y crystals with trimodal porosity as ideal hydrocracking catalysts. - Angew. Chem. 2010. - V. 122. - Р. 10272-10276]. В результате щелочного воздействия на деалюминированный цеолит Y формируется материал, пористая структура которого образована цеолитными микропорами, небольшими мезопорами размером 2-8 нм и крупными мезопорами размером 8-50 нм. Образование развитой пористой структуры сопровождается ростом соотношения слабых и сильных кислотных центров в пользу слабых центров. На основе носителя с измененной кислотностью и тримодальной пористостью получены высокоэффективные катализаторы гидрокрекинга: платиносодержащий катализатор гидрокрекинга гексадекана и сквалана и никель-молибденсодержащий катализатор гидрокрекинга вакуумного газойля.

Описано, что регулирование спектра кислотности цеолитного носителя в составе катализатора гидрокрекинга высокомолекулярных продуктов синтеза Фишера-Тропша позволяет направленно изменять выход продуктов гидрокрекинга [T. Hanaoka, T. Miyazawa, K. Shimura, S. Hirata. Effect of catalyst preparation on hydrocarbon product distribution in hydrocracking of Fisher-Tropsch product with low Pt-loaded Catalysts. - Catalysis. - 2015. - V. 5 - Р. 1983-2000]. Показано, что при дифференциации кислотных центров по данным ТПД аммиака на слабые центры с температурой десорбции 100-250°С, центры средней силы с температурой десорбции 250-450°С и сильные центры с температурой десорбции 450-800°С существует прямая зависимость между ростом количества центров средней силы в катализаторе и увеличением выходов групп углеводородов С18 и C9-C15.

Анализ предшествующего уровня техники по типам и способам получения микро-мезопористых цеолитных материалов с регулируемой совокупностью текстурных и кислотных характеристик позволил обнаружить два существующих подхода.

Известен способ получения цеолита Y с внутрикристалличной тримодальной пористостью, образованной микропорами размером 0,7 нм и мезопорами двух типов 2-5 и 10-50 нм, предусматривающий суспендирование деалюминированного цеолита Y с отношением Si/Al=6-40 в растворе, содержащем гидроксид натрия или гидроксид калия, или карбонат натрия, или цитрат натрия с концентрацией 0,001-0,5 М, обработку цеолита в этом растворе при температуре окружающей среды с последующей фильтрацией, промывкой, сушкой, ионным обменом, промывкой, сушкой и прокаливанием (RU 2510293, 22.12.2009). В результате достигается регулирование текстурных и кислотных характеристик цеолита Y, заключающихся в увеличении объема мезопор на 0,05-0,21 мл/г и в уменьшении кислотности, измеренной методом термопрограммированной десорбции (ТПД) аммиака, на 0,05-0,10 ммоль/г.

Существенным недостатком данного способа является растворение и переход в раствор цеолитного материала с потерями цеолита 17-25% масс, что фиксируется по уменьшению объема микропор на 0,075-0,15 мл/г и уменьшению отношения Si/Al на 2-10 единиц.

Наиболее близкими по технической сущности и достигаемому результату являются способ получения цеолитного материала с микро-мезопористой структурой и кристаллической структурой исходного силиката, и цеолит, полученный этим способом, обладающий кислотными центрами с энергией активации десорбции аммиака 140-190 кДж/моль, доля которых в общем спектре кислотности составляет не менее 0,5, и развитой регулярной пористой структурой с объемом пор не менее 0,45 см3/г, в котором доля микропор составляет 0,01-0,60, а доля мезопор составляет 0,10,-0,85 (RU 2282587, 08.04.2005). Способ предусматривает суспендирование микропористого кристаллического силиката с цеолитной структурой в щелочном растворе с концентрацией гидроксид-ионов 0,2-0,3 моль/л до достижения остаточного содержания цеолитной фазы в суспензии 1-60% масс., введение в суспензию силиката катионного поверхностно-активного вещества с последующим добавлением кислоты до образования геля с pH=7,5-9,0, гидротермальную обработку геля при 100-150°С в течение 10-120 ч с последующим выделением готового продукта.

Недостатком данного способа является его многостадийность, необходимость длительной гидротермальной обработки, формирование мезопористой фазы за счет растворения исходного силиката, а также значительная доля сильных кислотных центров с энергией активации десорбции аммиака 140-190 кДж/моль.

В основу настоящего изобретения положена задача создания нового типа микро-мезопористого цеолита Y, обладающего совокупностью таких кислотных и текстурных характеристик, которые позволили бы эффективно его применять в каталитических превращениях крупных органических молекул, в том числе в процессе гидрокрекинга вакуумного газойля, состоящего из объемных молекул с числом атомов углерода до 20-25, а именно наличием кислотных центров с энергией активации десорбции аммиака 95-140 кДж/моль, доля которых в общем спектре кислотности составляет 0,5-0,6, и бимодальной пористой структурой с микропорами 0,7 нм и мезопорами 2-10 нм.

Решение поставленной задачи достигается тем, что предлагается способ получения микро-мезопористого цеолита Y, включающий суспендирование и активацию деалюминированного цеолита Y в растворе гидроксида аммония с последующим смешением суспензии с катионным поверхностно-активным веществом ПАВ-галогенидом цетилтриметиламмония, гидротермальной обработкой в его присутствии, сушкой, прокаливанием и выделением готового продукта, согласно которому концентрацию раствора гидроксида аммония и галогенида цетилтриметиламмония выбирают так, чтобы обеспечить отношение ОН/цеолит 10-25 ммоль/г, отношение ПАВ/цеолит 0,8-2,0 ммоль/г, отношение H2O/цеолит 1,8-3,6 моль/г, а гидротермальную обработку проводят при температуре 60-95°С и атмосферном давлении в течение 1-1,5 ч.

Решение поставленной задачи также достигается тем, что предлагается микро-мезопористый цеолит Y – компонент катализатора гидрокрекинга вакуумного газойля, полученный указанным способом, при этом доля мезопор в его общем объеме пор составляет 0,5-0,7, а в его спектре кислотности доля кислотных центров с энергией активации десорбции аммиака 95-140 кДж/моль составляет 0,5-0,6.

Предлагаемый способ позволяет получать микро-мезопористый цеолит Y, обладающий кислотными центрами с энергией активации десорбции аммиака 95-140 кДж/моль, концентрация которых в 1,1-1,3 раза выше, чем в исходном деалюминированном цеолите Y, и пористой структурой с долей мезопор в общем объеме пор в 1,25-1,75 раза больше, чем у него. Достижение заявляемых характеристик кислотности и текстуры происходит в результате процесса частичной рекристаллизации микропористой цеолитной структуры деалюминированного цеолита Y под совокупным воздействием гидроксида аммония и катионного ПАВ в ходе процедур активации и гидротермальной обработки.

Исходный деалюминированный цеолит Y суспендируют в растворе гидроксида аммония с концентрацией, обеспечивающей отношение ОН/цеолит 10-25 ммоль/г. В ходе активации цеолита при перемешивании суспензии при комнатной температуре в течение 20-30 мин происходит частичный разрыв связей Si-О-Si в кристалле цеолита, что в дальнейшем облегчает проникновение молекул и мицелл ПАВ в объем цеолитного кристалла. При отношении ОН/цеолит < 10 ммоль/г процесс активации цеолита замедляется, при отношении ОН/цеолит > 25 ммоль/г процесс деструкции цеолита Y интенсифицируется, в результате чего снижается объем микропор в микро-мезопористом цеолите Y.

Суспензию деалюминированного цеолита Y в растворе гидроксида аммония смешивают с раствором катионного ПАВ, обеспечивающим в получаемой смеси отношение ПАВ/цеолит 0,8-2,0 ммоль/г и отношение H2O/цеолит 1,8-3,6 моль/г. Уменьшение отношения ПАВ/цеолит до величины ниже 0,8 ммоль/г приводит к уменьшению содержания мезопор в микро-мезопористом рекристаллизованном цеолите Y. Увеличение отношения ПАВ/цеолит до величины более 2,0 ммоль/г не влияет на содержание мезопор в рекристаллизованном цеолите Y и, следовательно, технологически нецелесообразно. В качестве катионного ПАВ используют галогенид цетилтриметиламмония C16H33N(CH3)3Hal, где Hal - Br или О.

Уменьшение отношения H2O/цеолит до величины ниже 1,8 моль/г не обеспечивает протекания процесса рекристаллизации и формирования микро-мезопористого цеолита Y, обладающего заявляемыми характеристиками. Увеличение отношения H2O/цеолит до величины более 3,6 моль/г не влияет на свойства микро-мезопористого цеолита Y, но приводит к уменьшению его выхода с единицы объема реакторного сосуда, в котором проводится синтез, и поэтому технологически нецелесообразно.

Гидротермальную обработку смеси суспензии деалюминированного цеолита Y в растворе гидроксида аммония и раствора катионного ПАВ проводят при температуре 60-95°С в течение 1,0-1,5 ч. Уменьшение температуры гидротермальной обработки ниже 60°С и длительности гидротермальной обработки ниже 1 часа приводит к уменьшению объема мезопор в микро-мезопористом цеолите Y. Увеличение температуры гидротермальной обработки выше 95°С не позволяет проводить синтез при атмосферном давлении и приводит к необходимости использования автоклавного оборудования, работающего под давлением, что технологически нецелесообразно. Увеличение длительности гидротермальной обработки более 1,5 ч не влияет на характеристики кислотности и текстуры микро-мезопористого цеолита Y и, следовательно, технологически нецелесообразно.

После гидротермальной обработки цеолит сушат и прокаливают по известной технологии.

Полученный предлагаемым способом материал имеет:

- кристаллическую структуру цеолита Y;

- химический состав, оцениваемый по отношению SiO2/Al2O3, близкий к химическому составу исходного деалюминированного цеолита Y;

- микро-мезопористую структуру с долей мезопор в общем объеме пор, составляющей 0,5-0,7, что в 1,25-1,75 раза выше, чем у исходного деалюминированного цеолита Y;

- кислотность с долей кислотных центров с энергией активации десорбции аммиака 95-140 кДж/моль, составляющей 0,5-0,6, что в 1,1-1,3 раза выше, чем у исходного деалюминированного цеолита Y.

Полученный материал сочетает в себе преимущества, заключающиеся в совокупности развитой микро-мезопористой структуры и кислотности с долей кислотных центров с энергией активации десорбции аммиака 95-140 кДж/моль, составляющей 0,5-0,6.

Далее изобретение будет подробно раскрыто в описании и примерах его реализации со ссылкой на прилагаемые чертежи, на которых:

- фиг. 1 изображает порошковые дифрактограммы исходного и получаемых материалов;

- фиг. 2 изображает изотермы низкотемпературной адсорбции - десорбции азота исходного и получаемых материалов;

- фиг. 3 изображает микрофотографии исходного и получаемого материалов, полученных с использованием метода просвечивающей электронной микроскопии (ПЭМ).

Предлагаемый способ получения микро-мезопористого цеолита Y включает стадию активации исходного деалюминированного цеолита Y в растворе гидроксида аммония с последующим смешиванием с раствором катионного поверхностно-активного вещества (ПАВ) и стадию гидротермальной обработки смеси с выделением готового продукта.

В качестве исходного материала используют деалюминированный цеолит Y, имеющий не более 8 атомов алюминия в составе элементарной ячейки. Полученный микро-мезопористый материал сохраняет кристаллическую структуру исходного деалюминированного цеолита Y, как это видно на фиг. 1, где кривая «а» изображает дифрактограмму исходного деалюминированного цеолита Y, а кривая «б» - дифрактограмму микро-мезопористого цеолита Y.

Активацию исходного деалюминированного цеолита Y осуществляют в виде его суспензии, после того, как его суспендируют в растворе гидроксида аммония с концентрацией, обеспечивающей отношение ОН/цеолит 10-25 ммоль/г, после чего щелочную суспензию цеолита смешивают с раствором катионного ПАВ, обеспечивающим в получаемой смеси отношение ПАВ/цеолит 0,8-2,0 ммоль/г и отношение H2O/цеолит 1,8-3,6 моль/г. Гидротермальную обработку смеси суспензии деалюминированного цеолита Y в растворе гидроксида аммония и раствора катионного ПАВ проводят при температуре 60-95°С в течение 1,0-1,5 ч, после чего материал сушат и прокаливают.

Полученный предлагаемым способом микро-мезопористый цеолит Y обладает кислотными центрами с энергией активации десорбции аммиака 95-140 кДж/моль, доля которых в общем спектре кислотности составляет 0,5-0,6, что в 1,1-1,3 раза выше, чем в исходном деалюминированном цеолите Y, и объемом пор, в 1,2-1,4 раза превышающим объем пор исходного деалюминированного цеолита Y. Концентрация кислотных центров a0(NH3) в микро-мезопористом цеолите Y и энергия активации десорбции аммиака Еакт(NH3), по которой оценивают силу кислотных центров, определяют с использованием метода термопрограммированной десорбции (ТПД) аммиака. Доли кислотных центров с энергией активации десорбции аммиака 95-140 кДж/моль определяют с использованием метода оценки неоднородности адсорбционных центров из данных о ТПД в соответствии с [В.В. Ющенко. Расчет спектров кислотности катализаторов по данным термопрограммированной десорбции аммиака, Журнал физической химии, 1997, том 71, №4, с. 628-632]. По этому методу профили ТПД разбивают на участки с одинаковым шагом температуры, как показано в табл. 1, для каждого участка вычисляют интервал изменения энергии активации десорбции и на основании этих величин определяют число центров в каждом участке.

Как следует из табл. 1, в интервале температур 148-340°С аммиак десорбируется с кислотных центров с энергией активации десорбции 95-140 кДж/моль, доля которых в исходном деалюминированном цеолите Y составляет 0,46, а в микро-мезопористом цеолите Y составляет 0,57. Таким образом, в результате реализации заявляемого способа доля кислотных центров с энергией активации десорбции 95-140 кДж/моль возрастает в 1,24 раза.

Объем пор, объем микропор, объем мезопор и диаметр мезопор рассчитывают по изотермам низкотемпературной адсорбции-десорбции азота, что показано на фиг. 2, где кривая «а» изображает изотерму низкотемпературной адсорбции-десорбции азота для исходного деалюминированного цеолита Y, а кривая «б» - для микро-мезопористого цеолита Y. Наличие подъема на кривой «б» по сравнению с кривой «а» в интервале относительных давлений p/p0 от 0,3 до 0,5 на оси абсцисс указывает на наличие мезопор в микро-мезопористом цеолите Y, в результате чего объем пор в этом материале увеличивается в 1,2-1,4 разапо сравнению с исходным деалюминированным цеолитом Y.

Для получения микро-мезопористого цеолита Y в качестве исходного был использован деалюминированный цеолит Y с следующими характеристиками:

- мольное отношение SiO2/Al2O3 = 30,

- объем пор 0,43 см3/г,

- объем микропор 0,26 см3/г,

- объем мезопор 0,17 см3/г,

- концентрация кислотных центров, a0(NH3) = 370 мкмоль/г,

- доля кислотных центров с энергией активации десорбции аммиака 95-140 кДж/моль, β=0,46.

Ниже приведены конкретные примеры, описывающие заявленный способ, а также приведены свойства полученных материалов.

Пример 1

Микро-мезопористый цеолит Y приготавливают следующим образом. В 316,7 г воды растворяют 14 г 25% раствора NH4OH. В полученный раствор добавляют 10 г деалюминированного цеолита Y. Полученную суспензию перемешивают при комнатной температуре в течение 20 минут, после чего смешивают с раствором 3,64 г бромида цетилтриметиламмония (далее ЦТМАБ) в 32,8 г воды. В полученной смеси отношение ОН/цеолит составляет 10 ммоль/г, отношение ЦТМАБ/цеолит составляет 1 ммоль/г, отношение H2O/цеолит составляет 2,0 моль/г. Смесь суспензии цеолита в растворе NH4OH и раствора ЦТМАБ перемешивают при комнатной температуре в течение 5 мин, после чего смесь подвергают гидротермальной обработке при 95°С в течение 1,5 ч. По окончании гидротермальной обработки материал отделяют на фильтре, промывают дистиллированной водой, высушивают при 100°С в течение 12 ч и прокаливают при 550°С в течение 18 ч. В результате получают материал с кристаллической структурой цеолита Y, отношением SiO2/Al2O3=28, объемом пор 0,52 см3/г с долей мезопор 0,56, и долей кислотных центров с энергией активации десорбции аммиака 95-140 кДж/моль β=0,54. Свойства полученного материала представлены в таблице 2.

Пример 2

Микро-мезопористый цеолит Y приготавливают следующим образом. В 300,9 г воды растворяют 35 г 25% раствора NH4OH. В полученный раствор добавляют 10 г деалюминированного цеолита Y. Полученную суспензию перемешивают при комнатной температуре в течение 20 минут, после чего смешивают с раствором ЦТМАБ, который готовят аналогично примеру 1. В полученной смеси отношение ОН/цеолит составляет 25 ммоль/г, отношение ЦТМАБ/цеолит составляет 1 ммоль/г, отношение H2O/цеолит составляет 2,0 моль/г. Дальнейшие обработки проводят аналогично примеру 1. В результате получают материал с кристаллической структурой цеолита Y, отношением SiO2/Al2O3=27, объемом пор 0,56 см3/г с долей мезопор 0,64, и долей кислотных центров с энергией активации десорбции аммиака 95-140 кДж/моль β=0,52. Свойства полученного материала представлены в таблице 2.

Пример 3

Микро-мезопористый цеолит Y приготавливают следующим образом. В 318,8 г воды растворяют 11,2 г 25% раствора NH4OH. В полученный раствор добавляют 10 г деалюминированного цеолита Y. Полученную суспензию перемешивают при комнатной температуре в течение 20 минут, после чего смешивают с раствором ЦТМАБ, который готовят аналогично примеру 1. В полученной смеси отношение ОН/цеолит составляет 8 ммоль/г, отношение ЦТМАБ/цеолит составляет 1 ммоль/г, отношение H2O/цеолит составляет 2,0 моль/г. Дальнейшие обработки проводят аналогично примеру 1. В результате получают материал с кристаллической структурой цеолита Y, отношением SiO2/Al2O3=29, объемом пор 0,48 см3/г с долей мезопор 0,50, и долей кислотных центров с энергией активации десорбции аммиака 95-140 кДж/моль β=0,45. Свойства полученного материала представлены в таблице 2.

Пример 4

Микро-мезопористый цеолит Y приготавливают следующим образом. В 295,7 г воды растворяют 42 г 25% раствора NH4OH. В полученный раствор добавляют 10 г деалюминированного цеолита Y. Полученную суспензию перемешивают при комнатной температуре в течение 20 минут, после чего смешивают с раствором ЦТМАБ, который готовят аналогично примеру 1. В полученной смеси отношение ОН/цеолит составляет 30 ммоль/г, отношение ЦТМАБ/цеолит составляет 1 ммоль/г, отношение H2O/цеолит составляет 2,0 моль/г. Дальнейшие обработки проводят аналогично примеру 1. В результате получают материал с кристаллической структурой цеолита Y, отношением SiO2/Al2O3=25, объемом пор 0,56 см3/г с долей мезопор 0,69, и долей кислотных центров с энергией активации десорбции аммиака 95-140 кДж/моль β=0,46. Свойства полученного материала представлены в таблице 2.

Примеры 1-4 показывают влияние отношения ОН/цеолит на свойства микро-мезопористого цеолита Y.

Пример 5

Микро-мезопористый цеолит Y приготавливают следующим образом. В 317,9 г воды растворяют 21,2 г 25% раствора NH4OH. В полученный раствор добавляют 10 г деалюминированного цеолита Y. Полученную суспензию перемешивают при комнатной температуре в течение 20 минут, после чего смешивают с раствором 2,91 г ЦТМАБ в 26,2 г воды. В полученной смеси отношение ОН/цеолит составляет 15 ммоль/г, отношение ЦТМАБ/цеолит составляет 0,8 ммоль/г, отношение H2O/цеолит составляет 2,0 моль/г. Дальнейшие обработки проводят аналогично примеру 1. В результате получают материал с кристаллической структурой цеолита Y, отношением SiO2/Al2O3=28, объемом пор 0,55 см /г с долей мезопор 0,60, и долей кислотных центров с энергией активации десорбции аммиака 95-140 кДж/моль β=0,56. Свойства полученного материала представлены в таблице 2.

Пример 6

Микро-мезопористый цеолит Y приготавливают следующим образом. В 278,6 г воды растворяют 21,2 г 25% раствора NH4OH. В полученный раствор добавляют 10 г деалюминированного цеолита Y. Полученную суспензию перемешивают при комнатной температуре в течение 20 минут, после чего смешивают с раствором 7,28 г ЦТМАБ в 65,5 г воды. В полученной смеси отношение ОН/цеолит составляет 15 ммоль/г, отношение ЦТМАБ/цеолит составляет 2,0 ммоль/г, отношение H2O/цеолит составляет 2,0 моль/г. Дальнейшие обработки проводят аналогично примеру 1. В результате получают материал с кристаллической структурой цеолита Y, отношением SiO2/Al2O3=28, объемом пор 0,60 см3/г с долей мезопор 0,67, и долей кислотных центров с энергией активации десорбции аммиака 95-140 кДж/моль β=0,60. Свойства полученного материала представлены в таблице 2.

Пример 7

Микро-мезопористый цеолит Y приготавливают следующим образом. В 324,4 г воды растворяют 21,2 г 25% раствора NH4OH. В полученный раствор добавляют 10 г деалюминированного цеолита Y. Полученную суспензию перемешивают при комнатной температуре в течение 20 минут, после чего смешивают с раствором 2,18 г ЦТМАБ в 19,7 г воды. В полученной смеси отношение ОН/цеолит составляет 15 ммоль/г, отношение ЦТМАБ/цеолит составляет 0,6 ммоль/г, отношение H2O/цеолит составляет 2,0 моль/г Дальнейшие обработки проводят аналогично примеру 1. В результате получают материал с кристаллической структурой цеолита Y, отношением SiO2/Al2O3=28, объемом пор 0,47 см3/г с долей мезопор 0,53, и долей кислотных центров с энергией активации десорбции аммиака 95-140 кДж/моль β=0,48. Свойства полученного материала представлены в таблице 2.

Пример 8

Микро-мезопористый цеолит Y приготавливают следующим образом. В 245,8 г воды растворяют 21,2 г 25% раствора NH4OH. В полученный раствор добавляют 10 г деалюминированного цеолита Y. Полученную суспензию перемешивают при комнатной температуре в течение 20 минут, после чего смешивают с раствором 10,92 г ЦТМАБ в 98,3 г воды. В полученной смеси отношение ОН/цеолит составляет 15 ммоль/г, отношение ЦТМАБ/цеолит составляет 3,0 ммоль/г, отношение H2O/цеолит составляет 2,0 моль/г. Дальнейшие обработки проводят аналогично примеру 1. В результате получают материал с кристаллической структурой цеолита Y, отношением SiO2/Al2O3=28, объемом пор 0,60 см3/г с долей мезопор 0,67, и долей кислотных центров с энергией активации десорбции аммиака 95-140 кДж/моль β=0,56. Свойства полученного материала представлены в таблице 2.

Примеры 5-8 показывают влияние отношения ЦТМАБ/цеолит на свойства микро-мезопористого цеолита Y.

Пример 9

Микро-мезопористый цеолит Y приготавливают следующим образом. В 242,6 г воды растворяют 21,2 г 25% раствора NH4OH. В полученный раствор добавляют 10 г деалюминированного цеолита Y. Полученную суспензию перемешивают при комнатной температуре в течение 20 минут, после чего смешивают с раствором ЦТМАБ, который готовят аналогично примеру 6. В полученной смеси отношение ОН/цеолит составляет 15 ммоль/г, отношение ЦТМАБ/цеолит составляет 2,0 ммоль/г, отношение H2O/цеолит составляет 1,8 моль/г. Дальнейшие обработки проводят аналогично примеру 1. В результате получают материал с кристаллической структурой цеолита Y, отношением SiO2/Al2O3=28, объемом пор 0,56 см3/г с долей мезопор 0,64, и долей кислотных центров с энергией активации десорбции аммиака 95-140 кДж/моль β=0,56. Свойства полученного материала представлены в таблице 2.

Пример 10

Микро-мезопористый цеолит Y приготавливают следующим образом. В 566,6 г воды растворяют 21,2 г 25% раствора NH4OH. В полученный раствор добавляют 10 г деалюминированного цеолита Y. Полученную суспензию перемешивают при комнатной температуре в течение 20 минут, после чего смешивают с раствором ЦТМАБ, который готовят аналогично примеру 6. В полученной смеси отношение ОН/цеолит составляет 15 ммоль/г, отношение ЦТМАБ/цеолит составляет 2,0 ммоль/г, отношение H2O/цеолит составляет 3,6 моль/г. Дальнейшие обработки проводят аналогично примеру 1. В результате получают материал с кристаллической структурой цеолита Y, отношением SiO2/Al2O3=28, объемом пор 0,60 см3/г с долей мезопор 0,65, и долей кислотных центров с энергией активации десорбции аммиака 95-140 кДж/моль β=0,55. Свойства полученного материала представлены в таблице 2.

Пример 11

Микро-мезопористый цеолит Y приготавливают следующим образом. В 170,6 г воды растворяют 21,2 г 25% раствора NH4OH. В полученный раствор добавляют 10 г деалюминированного цеолита Y. Полученную суспензию перемешивают при комнатной температуре в течение 20 минут, после чего смешивают с раствором ЦТМАБ, который готовят аналогично примеру 6. В полученной смеси отношение ОН/цеолит составляет 15 ммоль/г, отношение ЦТМАБ/цеолит составляет 2,0 ммоль/г, отношение Н2О/цеолит составляет 1,4 моль/г. Дальнейшие обработки проводят аналогично примеру 1. В результате получают материал с кристаллической структурой цеолита Y, отношением SiO2/Al2O3=28, объемом пор 0,46 см3/г с долей мезопор 0,48, и долей кислотных центров с энергией активации десорбции аммиака 95-140 кДж/моль β=0,46. Свойства полученного материала представлены в таблице 2.

Пример 12

Микро-мезопористый цеолит Y приготавливают следующим образом. В 638,6 г воды растворяют 21,2 г 25% раствора NH4OH. В полученный раствор добавляют 10 г деалюминированного цеолита Y. Полученную суспензию перемешивают при комнатной температуре в течение 20 минут, после чего смешивают с раствором ЦТМАБ, который готовят аналогично примеру 6. В полученной смеси отношение ОН/цеолит составляет 15 ммоль/г, отношение ЦТМАБ/цеолит составляет 2,0 ммоль/г, отношение Н2О/цеолит составляет 4,0 моль/г. Дальнейшие обработки проводят аналогично примеру 1. В результате получают материал с кристаллической структурой цеолита Y, отношением SiO2/Al2O3=28, объемом пор 0,60 см3/г с долей мезопор 0,65, и долей кислотных центров с энергией активации десорбции аммиака 95-140 кДж/моль β=0,58. Свойства полученного материала представлены в таблице 2.

Примеры 9-12 показывают влияние отношения H2O/цеолит на свойства микро-мезопористого цеолита Y.

Пример 13

Микро-мезопористый цеолит Y получают аналогично примеру 6, но гидротермальную обработку проводят при 60°С. В результате получают материал с кристаллической структурой цеолита Y, отношением SiO2/Al2O3=28, объемом пор 0,52 см3/г с долей мезопор 0,60, и долей кислотных центров с энергией активации десорбции аммиака 95-140 кДж/моль β=0,58. Свойства полученного материала представлены в таблице 2.

Пример 14

Микро-мезопористый цеолит Y получают аналогично примеру 6, но гидротермальную обработку проводят при 80°С. В результате получают материал с кристаллической структурой цеолита Y, отношением SiO2/Al2O3=28, объемом пор 0,53 см3/г с долей мезопор 0,60, и долей кислотных центров с энергией активации десорбции аммиака 95-140 кДж/моль β=0,58. Свойства полученного материала представлены в таблице 2.

Пример 15

Микро-мезопористый цеолит Y получают аналогично примеру 6, но гидротермальную обработку проводят при 45°С. В результате получают материал с кристаллической структурой цеолита Y, отношением SiO2/Al2O3=29, объемом пор 0,50 см3/г с долей мезопор 0,56, и долей кислотных центров с энергией активации десорбции аммиака 95-140 кДж/моль β=0,46. Свойства полученного материала представлены в таблице 2.

Пример 16

Микро-мезопористый цеолит Y получают аналогично примеру 6, но гидротермальную обработку проводят при 110°С в автоклаве при повышенном давлении. В результате получают материал с кристаллической структурой цеолита Y, отношением SiO2/Al2O3=27, объемом пор 0,60 см3/г с долей мезопор 0,67, и долей кислотных центров с энергией активации десорбции аммиака 95-140 кДж/моль β=0,56. Свойства полученного материала представлены в таблице 2.

Примеры 6, 13-16 показывают влияние температуры гидротермальной обработки на свойства микро-мезопористого цеолита Y.

Пример 17

Микро-мезопористый цеолит Y получают аналогично примеру 6, но гидротермальную обработку проводят в течение 1 ч. В результате получают материал с кристаллической структурой цеолита Y, отношением SiO2/Al2O3=28, объемом пор 0,52 см3/г с долей мезопор 0,57, и долей кислотных центров с энергией активации десорбции аммиака 95-140 кДж/моль β=0,52. Свойства полученного материала представлены в таблице 2.

Пример 18

Микро-мезопористый цеолит Y получают аналогично примеру 6, но гидротермальную обработку проводят в течение 0,5 ч. В результате получают материал с кристаллической структурой цеолита Y, отношением SiO2/Al2O3=29, объемом пор 0,50 см3/г с долей мезопор 0,56, и долей кислотных центров с энергией активации десорбции аммиака 95-140 кДж/моль β=0,48. Свойства полученного материала представлены в таблице 2.

Пример 19

Микро-мезопористый цеолит Y получают аналогично примеру 6, но гидротермальную обработку проводят в течение 2,5 ч. В результате получают материал с кристаллической структурой цеолита Y, отношением SiO2/Al2O3=27, объемом пор 0,60 см3/г с долей мезопор 0,67, и долей кислотных центров с энергией активации десорбции аммиака 95-140 кДж/моль β=0,56. Свойства полученного материала представлены в таблице 2.

Примеры 6, 17-19 показывают влияние длительности гидротермальной обработки на свойства микро-мезопористого цеолита Y.

Вместо бромида цетилтриметиламмония может быть использован другой его галогенид, например, хлорид, что не оказывает существенного влияния на свойства цеолита.

Таким образом, как видно из приведенных выше примеров, получен новый материал микро-мезопористый цеолит Y, обладающий пористой структурой, образованной двумя типами пор - цеолитных микропор и мезопор. На фиг. 3 представлены изображения ПЭМ-изображения материалов: фиг. 3а и 3б - исходного деалюминированного цеолита Y, а фиг. 3в и 3г - микро-мезопористого цеолита Y по примеру 6. В исходном деалюминированном цеолите Y мезопоры присутствуют в виде каналов, хаотично расположенных в цеолитном кристалле, как показывает фиг. 3а. В микро-мезопористом цеолите Y мезопоры равномерно распределены по объему цеолитного кристалла, как показывает фиг. 3в. Фиг. 3г показывает, что в результате реализации заявляемого способа в цеолитном кристалле микро-мезопористого цеолита Y создается система взаимосвязанных микро- и мезопор, в результате чего для крупных органических молекул доступным становится весь объем цеолитного кристалла, тогда как в исходном деалюминированном цеолите Y доступными оказываются лишь участки в объеме цеолитного кристалла, граничащие с мезопорами.

Как следует из приведенных выше примеров, в результате реализации заявляемого способа достигается увеличение объема пор микро-мезопористых цеолитов Y в 1,2-1.4 раза по сравнению с исходным деалюминированным цеолитом Y. При этом полученные материалы сохраняют высокую кристалличность, что подтверждается рентгенофазовым анализом и высокими величинами объемов микропор 0,20-0,23 см3/г.

Как следует из приведенных выше примеров, в результате реализации заявляемого способа формируется спектр кислотности микро-мезопористых цеолитов Y с кислотными центрами с энергией активации десорбции аммиака 95-140 кДж/моль, доля которых в общем спектре кислотности составляет 0,5-0,6.

Как видно из приведенных выше примеров, достигнуто упрощение способа получения микро-мезопористых цеолитов Y, при котором процесс осуществляют в две стадии: активации цеолита при комнатной температуре и гидротермальной обработки суспензии цеолита при температуре 60-95°С в течение 1-1,5 ч.

Областью использования микро-мезопористого цеолита Y являются различные сорбционные и каталитические процессы с участием крупных органических молекул, в первую очередь процесса гидрокрекинга вакуумного газойля, состоящего из объемных молекул с числом атомов углерода до 20-25, размер которых сопоставим с размерами мезопор в микро-мезопористом цеолите Y.


СПОСОБ ПОЛУЧЕНИЯ МИКРО-МЕЗОПОРИСТОГО ЦЕОЛИТА Y И ЦЕОЛИТ, ПОЛУЧЕННЫЙ ЭТИМ СПОСОБОМ
СПОСОБ ПОЛУЧЕНИЯ МИКРО-МЕЗОПОРИСТОГО ЦЕОЛИТА Y И ЦЕОЛИТ, ПОЛУЧЕННЫЙ ЭТИМ СПОСОБОМ
СПОСОБ ПОЛУЧЕНИЯ МИКРО-МЕЗОПОРИСТОГО ЦЕОЛИТА Y И ЦЕОЛИТ, ПОЛУЧЕННЫЙ ЭТИМ СПОСОБОМ
Источник поступления информации: Роспатент

Showing 1-10 of 141 items.
10.02.2013
№216.012.2309

Коллоидный раствор наночастиц серебра, металл-полимерный нанокомпозитный пленочный материал, способы их получения, бактерицидный состав на основе коллоидного раствора и бактерицидная пленка из металл-полимерного материала

Изобретение может найти применение в качестве стерилизующей среды или антибактериального компонента, в частности, при создании бактерицидных жидких пластырей, компонента при создании материалов для восстановления костных и других тканей организма в репаративной медицине, пленочный материал как...
Тип: Изобретение
Номер охранного документа: 0002474471
Дата охранного документа: 10.02.2013
10.04.2013
№216.012.3256

Катализатор, способ его получения и способ трансалкилирования бензола диэтилбензолами с его использованием

Изобретение относится к катализаторам трансалкилирования. Описан катализатор трансалкилирования бензола диэтилбензолами в виде цилиндрических гранул правильной формы, включающий цеолит типа Y в кислотной Н-форме, который содержит 100 мас.% цеолита со степенью замещения ионов Na на H не менее...
Тип: Изобретение
Номер охранного документа: 0002478429
Дата охранного документа: 10.04.2013
27.05.2013
№216.012.43bc

Способ получения гетерогенного катализатора для получения ценных и энергетически насыщенных компонентов бензинов

Изобретение относится к способам получения катализаторов. Описан способ получения гетерогенного катализатора для получения ценных и энергетически насыщенных компонентов бензинов путем алкилирования изобутана олефинами на основе цеолита типа NaNHY при остаточном содержании оксида натрия не более...
Тип: Изобретение
Номер охранного документа: 0002482917
Дата охранного документа: 27.05.2013
10.06.2013
№216.012.49cf

Способ получения биоспецифического гидрогелевого сорбента для выделения протеиназ

Настоящее изобретение относится к области медицины и описывает способ получения биоспецифического гидрогелевого сорбента для выделения протеиназ путем радикальной полимеризации при комнатной температуре под действием окислительно-восстановительного катализатора полимеризации водного раствора,...
Тип: Изобретение
Номер охранного документа: 0002484475
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4b74

Способ повышения времени стабильной работы катализатора в реакции гидроалкилирования бензола ацетоном с получением кумола и способ получения кумола гидроалкилированием бензола ацетоном

Изобретение относится к каталитическим процессам получения кумола. Описан способ повышения времени стабильной работы катализатора, содержащего гидрирующий и алкилирующий компоненты, в реакции получения кумола гидроалкилированием бензола ацетоном, включающим послойное размещение гидрирующего и...
Тип: Изобретение
Номер охранного документа: 0002484898
Дата охранного документа: 20.06.2013
10.07.2013
№216.012.5369

Способ получения модифицированного титан-магниевого нанокатализатора

Изобретение относится к производству полимеров, а именно: к металлокомплексным катализаторам полимеризации, и может быть использовано для получения транс-1,4-полиизопрена. Описан способ получения модифицированного титан-магниевого нанокатализатора для полимеризации изопренат путем...
Тип: Изобретение
Номер охранного документа: 0002486956
Дата охранного документа: 10.07.2013
20.07.2013
№216.012.56ea

Способ трансалкилирования бензола полиалкилбензолами

Изобретение относится к способу трансалкилирования бензола полиалкилбензолами на цеолитсодержащем катализаторе с получением этилбензола или изопропилбензола. Способ характеризуется тем, что в качестве полиалкилбензолов используют диэтилбензолы или диизопропилбензолы, процесс проводят в...
Тип: Изобретение
Номер охранного документа: 0002487858
Дата охранного документа: 20.07.2013
10.08.2013
№216.012.5c22

Катализатор и способ получения алифатических углеводородов из оксида углерода и водорода в его присутствии

Изобретение относится к катализаторам получения алифатических углеводородов. Описан катализатор для получения алифатических углеводородов из оксида углерода и водорода, содержащий наноразмерные частицы железа и сформированный in situ непосредственно в зоне реакции в процессе термообработки...
Тип: Изобретение
Номер охранного документа: 0002489207
Дата охранного документа: 10.08.2013
20.09.2013
№216.012.6b82

Способ получения полиакриламидного гидрогеля

Настоящее изобретение относится к способу получения полиакриламидного гидрогеля, который применяется в качестве разделяющей среды в жидкостной хроматографии, в качестве носителя иммобилизованных биологически активных веществ, а также для изготовления эндопротезов мягких тканей. Данный способ...
Тип: Изобретение
Номер охранного документа: 0002493173
Дата охранного документа: 20.09.2013
10.11.2013
№216.012.7caa

Способ получения мембранного катализатора и способ дегидрирования углеводородов с использованием полученного катализатора

Изобретение относится к области создания и использования катализаторов дегидрирования углеводородов, представляющего собой пористую подложку из нержавеющей стали, никеля или меди, на одну сторону которой нанесен слой пиролизованного инфракрасным излучением полиакрилонитрила (ИК-ПАН), а на...
Тип: Изобретение
Номер охранного документа: 0002497587
Дата охранного документа: 10.11.2013
Showing 1-10 of 27 items.
10.01.2013
№216.012.19f7

Ячейка для осуществления спектральных измерений методом спектроскопии ядерного магнитного резонанса при вращении образца вещества под магическим углом

Использование: для осуществления спектральных измерений методом спектроскопии ядерного магнитного резонанса при вращении образца вещества под магическим углом. Сущность: ячейка выполнена в виде двух цилиндрических стаканов с герметично закрывающимися крышками, установленных один в другом без...
Тип: Изобретение
Номер охранного документа: 0002472139
Дата охранного документа: 10.01.2013
20.02.2013
№216.012.26de

Способ скелетной изомеризации н-бутенов в изобутилен

Изобретение относится к способу скелетной изомеризации н-бутенов в изобутилен в газовой среде. Способ характеризуется тем, что процесс проводят в присутствии катализатора с микро-мезопористой структурой, характеризующейся долей микропор от 0,10 до 0,90 и долей мезопор от 0,90 до 0,10 при общем...
Тип: Изобретение
Номер охранного документа: 0002475470
Дата охранного документа: 20.02.2013
20.06.2013
№216.012.4b74

Способ повышения времени стабильной работы катализатора в реакции гидроалкилирования бензола ацетоном с получением кумола и способ получения кумола гидроалкилированием бензола ацетоном

Изобретение относится к каталитическим процессам получения кумола. Описан способ повышения времени стабильной работы катализатора, содержащего гидрирующий и алкилирующий компоненты, в реакции получения кумола гидроалкилированием бензола ацетоном, включающим послойное размещение гидрирующего и...
Тип: Изобретение
Номер охранного документа: 0002484898
Дата охранного документа: 20.06.2013
27.01.2014
№216.012.9ae2

Способ получения катализатора и способ синтеза олефинов c-c в присутствии катализатора, полученного этим способом

Изобретение относится к нефтеперерабатывающей промышленности и, более конкретно к катализатору и к способу синтеза олефинов С2-С4. Способ получения катализатора включает модифицирование катализатора на основе силикоалюмофосфатов методом пропитки по влагоемкости из раствора источника кремния или...
Тип: Изобретение
Номер охранного документа: 0002505356
Дата охранного документа: 27.01.2014
27.05.2014
№216.012.c994

Способ диагностики нарушений вегетативной регуляции сердечного ритма у детей с гастроэзофагеальной рефлюксной болезнью

Изобретение относится к медицине, а именно к педиатрии. Проводят суточное мониторирование внутрипищеводного pH и холтеровское мониторирование. Вариабельность сердечного ритма оценивают в совокупности с анализом тренда частоты сердечных сокращений в период ночного сна. При обнаружении более 5...
Тип: Изобретение
Номер охранного документа: 0002517370
Дата охранного документа: 27.05.2014
20.07.2014
№216.012.ddd6

Способ каталитического пиролиза хлористого метила

Изобретение относится к способу каталитического пиролиза хлористого метила в процессе получения низших олефинов C-C, преимущественно этилена и пропилена, в присутствии силикоалюмофосфатного катализатора типа SAPO. Способ характеризуется тем, что пиролиз хлористого метила проводят на...
Тип: Изобретение
Номер охранного документа: 0002522576
Дата охранного документа: 20.07.2014
27.10.2014
№216.013.025f

Способ получения изопрена

Изобретение относится к способу получения изопрена, путем взаимодействия компонентов сырья, содержащего формальдегид, изобутилен, производные изобутилена и, предшественники изопрена, в присутствии кислого твердофазного катализатора, содержащего фосфат ниобия с последующим выделением целевого...
Тип: Изобретение
Номер охранного документа: 0002532005
Дата охранного документа: 27.10.2014
20.01.2016
№216.013.a3bf

Катализатор гидрообессеривания, способ его приготовления и процесс глубокой гидроочистки углеводородного сырья

Изобретение относится к катализатору гидрообессеривания углеводородного сырья, состоящему из гетерополисоединения, содержащего как минимум один из следующих гетерополианионов [CoMoOH], [Co(OH)MoO], [Ni(OH)MoO], [NiMoOH], [PMoO], [РМоО], [SiMoO], [Co(OH)WO], [PWO], [SiWO], [PMoWO] (где n=1-11),...
Тип: Изобретение
Номер охранного документа: 0002573561
Дата охранного документа: 20.01.2016
10.02.2016
№216.014.c2cb

Способ получения метилэтилкетона и бутадиена-1,3

Изобретение относится к синтезу метилэтилкетона и бутадиена-1,3 в одном процессе. Метилэтилкетон используется в качестве растворителя различных лакокрасочных материалов, клеев, а также для депарафинизации смазочных масел и обезмасливания парафинов. Бутадиен-1,3 является одним из основных...
Тип: Изобретение
Номер охранного документа: 0002574060
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c442

Способ получения носителя на основе активного оксида алюминия для катализаторов гидроочистки

Изобретение относится к способу получения носителя на основе активного оксида алюминия для катализаторов гидроочистки. Данный способ включает осаждение гидроксида алюминия из раствора алюмината натрия азотной кислотой, его стабилизацию, обработку кислотой, формовку, сушку и прокаливание. При...
Тип: Изобретение
Номер охранного документа: 0002574583
Дата охранного документа: 10.02.2016
+ добавить свой РИД