×
27.05.2015
216.013.4eba

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ 5(6)-НИТРО-1-(4-НИТРОФЕНИЛ)-1,3,3-ТРИМЕТИЛИНДАНОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области органической химии, конкретно к способу получения 5- и 6-нитро-1-(4-нитрофенил)-1,3,3-триметилинданов взаимодействием 1,1,3-триметил-3-фенилиндана с азотной кислотой. Согласно предлагаемому способу нитрование 1,1,3-триметил-3-фенилиндана проводят в присутствии катализатора - модифицированного аморфного мезопористого алюмосиликата (фторированного или сульфатированного). Реакцию осуществляют при 80-130°C и мольном соотношении фенилиндан:HNO = 1:6÷14 в течение 8 ч в присутствии 2-4 мас.% (в расчете на реакционную смесь) катализатора. Данный способ позволяет отказаться от применения серной кислоты при нитровании, а также упростить и удешевить процесс. 1 ил., 2 табл., 26 пр.
Основные результаты: Способ получения 5- и 6-нитро-1-(4-нитрофенил)-1,3,3-триметилинданов взаимодействием 1,1,3-триметил-3-фенилиндана с азотной кислотой, отличающийся тем, что нитрование 1,1,3-триметил-3-фенилиндана проводят в присутствии катализатора - модифицированного аморфного мезопористого алюмосиликата (фторированного или сульфатированного) - при 80-130°C при мольном соотношении фенилиндан:HNO = 1:6÷14 в течение 8 ч в присутствии 2-4 мас.% (в расчете на реакционную смесь) катализатора.

Изобретение относится к области органической химии, в частности к способу получения 5- и 6-нитро-1-(4-нитрофенил)-1,3,3-триметилинданов или динитрофенилинданов.

Динитрофенилинданы используются в качестве исходных соединений при синтезе 5- и 6-амино-1-(4-аминофенил)-1,3,3-триметилинданов, которые служат мономерами для получения полиимидных материалов, применяемых в газоразделительных мембранах [1. Isaac V. Farr. Synthesis and characterization of novel polyimide gas separation membrane material systems. Blacksburg, Virginia, July 26, 1999].

В основе промышленных способов получения нитроароматических соединений лежит реакция жидкофазного нитрования аренов и их производных смесью концентрированных HNO3 и H2SO4. Нитрующая смесь, используемая в промышленных процессах нитрования, содержит около 30% HNO3, 60% H2SO4 и 10% H2O [2. Горелик М.В., Эфрос Л.С. Основы химии и технологии ароматических соединений. М.: Химия, 1992. 640 с.].

Процесс проводят до тех пор, пока концентрация H2SO4 не снизится до предельной величины, после чего процесс останавливают, поскольку при большем разбавлении серной кислоты процесс идет менее эффективно.

Обязательной стадией жидкофазного нитрования нитрующей смесью является регенерация отработанной H2SO4. Для регенерации отработанной H2SO4, которая кроме воды содержит также соединения азота и органические вещества, требуется специальная аппаратура и большой расход энергии. Кроме того, образование больших объемов сточных вод, содержащих разбавленную H2SO4, а также растворенные оксиды азота и фенольные примеси, создает серьезную угрозу для окружающей среды. Необходимость регенерации H2SO4 и утилизации больших количеств сернокислотных отходов является основным недостатком жидкофазного нитрования [3. Sheldon R.A., Downing R.S. // Appl. Catal., A: General, 1999, v.189, p.163-183].

Все это стимулирует поиск альтернативных способов нитрования, которые позволили бы резко сократить или даже полностью исключить использование в процессах нитрования H2SO4. Одним из решений данной проблемы является нитрование на гетерогенных катализаторах.

В литературе широко описаны способы газо- и жидкофазного нитрования бензола, толуола, ксилолов и нафталина на гетерогенных катализаторах.

Данный метод имеет несомненные преимущества, т.к. не требует применения серной кислоты и, следовательно, исключает необходимость ее регенерации для последующего возвращения в процесс. В литературных источниках [4-21] катализаторы, применяемые в процессе нитрования бензола и толуола, представлены весьма широко. Если исходить из природы каталитического действия, особенностей состава и строения, то все катализаторы, предлагаемые для процессов нитрования ароматических углеводородов, можно условно разделить на три группы.

В первую группу входят катализаторы, представляющие собой различные твердые носители, пропитанные неорганическими кислотами. Данный тип катализаторов можно рассматривать как модификацию жидкофазного процесса, направленную на уменьшение количества H2SO4 за счет нанесения ее на твердый носитель. Подобные каталитические системы подробно описаны в [4. US Patent 5030776, 1991.; 5. Smith A.C., Narvaez L.D., Akins B.G. e.a. Synth. Commun., v.29, №23, p.4187-4192].

Для нитрования бензола предлагается [6. US Patent 3928476, 1975] использовать Al2O3 и некоторые алюмосиликаты с нанесенными на них H2SO4 или H3PO4. Подобные каталитические системы описаны также в [7. Kogelbauer A., Vassena D., Prince R., Armor J.N. // Catal. Today, v.55, p.151-160; 8. Riego J.M., Sedin Z., Zaldivar J.M. e.a. // Tetrahedron Lett., 1996, v.37, №4, p.513-516].

Носитель пропитывают H2SO4 с последующим вакуумированием и сушкой при 130°C. В готовом катализаторе содержится до 70% H2SO4. Нитрование ведут при 25°C в растворе CH2Cl2, нитрующим агентом служит 70-90%-ная HNO3. В выбранных условиях бензол и толуол превращаются в соответствующие нитросоединения с выходом 98-100%; столь высокие выходы продуктов достигаются не более чем за 1 ч. Процесс высокоселективен.

Известен вариант нитрования толуола HNO3 в паровой фазе при 80-180°C и пониженном давлении [9. US Patent 4112006, 1978]. Здесь в качестве катализаторов выступают SiO2 или Al2O3, пропитанные H2SO4 или H3PO4 и содержащие также добавки солей этих кислот. Выход нитротолуола составляет 76,6%, причем отношение пара-нитротолуол : орто-нитротолуол достигает 1,84. Скорость нитрования замещенных аренов (толуол, ксилолы) удается повысить путем введения в систему небольшого количества безводного CaSO4 или CaO.

Для парофазного нитрования бензола диоксидом азота используют силикагель, пропитанный бензолсульфоновой кислотой (170°C, выход нитробензола составляет 75-77%) [10. Jap. Patent 1-213256, 1989].

Однако данные катализаторы пока недостаточно пригодны для крупномасштабного применения. Одной из причин является низкая стабильность используемых каталитических систем, которую авторы объясняет вымыванием серной кислоты с поверхности носителя, вследствие чего даже лучшие катализаторы теряют активность в процессе работы.

Ко второй группе относятся катализаторы, основу которых составляют различные оксидные системы. Многие из этих контактов содержат оксиды переходных металлов IV-VI групп Периодической системы.

В качестве катализатора парофазного нитрования ароматических углеводородов диоксидом азота (150-225°C) в патенте [11. US Patent 4347389, 1982] предлагается использовать оксидную фосфорнованадиевую систему. Атомное соотношение фосфора и ванадия в катализаторе варьируется в достаточно широких пределах, от 1:2 до 2:1. При нитровании толуола на этом катализаторе удается получить отношение пара-нитротолуол : орто-нитротолуол = 1:2.

В работе [12. Sato H., Hirose K., Nagai K. е.a. // Appl. Catal., A: Chemical, v.175, p.201-207. 13. Sato H., Hirose K. // Appl. Catal., A: Chemical, 1998, v.174, p.77-81. 14. US Patent 4551568, 1985. 15. US Patent 5004846, 1991] в качестве катализаторов парофазного нитрования бензола азотной кислотой была протестирована серия бинарных систем: TiO2-WO3, TiO2-MoO3, TiO2-ZnO, TiO2-ZrO2, TiO2-Al2O3, TiO2-SnO2, ZrO-WO3. Из всех катализаторов наибольшую активность показали контакты, в которых основными составляющими являются оксиды TiO2 или ZrO2, в частности такие, как TiO2-WO3, ZrO2-WO3, TiO2-MoO3, TiO2-ZnO. На них удалось получить конверсию HNO3 64,3-82,7% (при 160°C), тогда как на катализаторах TiO2-ZrO2, TiO2-Al2O3, TiO2-SnO2 конверсия HNO3 не превышала 51%. Различие в активности катализаторов авторы связывают с различием в их кислотности.

В работе [16. Sato H., Nagai K, Yoshioka., Nagaoka Y. // Appl. Catal., A: Chemical, 1998, v.175, p.209-213] показано, что высокой активностью в парофазном нитровании бензола азотной кислотой (67%-ной) обладают сульфатированные оксиды металлов. Их готовили, обрабатывая соответствующие оксиды серной кислотой с последующим прокаливанием при 500°C. Полученные таким образом катализаторы SO42-/TiO2 (80%)-MoO3 (20%), SO42-/TiO2 (75%)-WO3 (25%) и SO42-/TiO2 проявляли более высокую нитрующую активность (по сравнению с несульфатированными образцами). Данный эффект, по мнению авторов, объясняется увеличением бренстедовской кислотности. Среди изученных катализаторов наилучшим оказался образец SO42-/TiO2 (80%)-MoO3 (20%), выход нитробензола на котором составил 87%, производительность составляла 0,72 кг/кг·ч.

Общим недостатком смешанных оксидов переходных металлов является высокая стоимость и сложность приготовления, а также сложность регулирования пористой структуры.

Третью группу составляют катализаторы на основе различных цеолитов и алюмосиликатов, природных и синтетических [17. US Patent 4754083, 1988]. В этом случае речь чаще всего идет о газофазном нитровании аренов, где в качестве нитрующих веществ выступают оксиды азота, в частности NO2. Более того, такие цеолиты как H-морденит, H-Y, H-ZSM-5 и H-эрионит, были исследованы даже в газофазном нитровании нитробензола. Правда, они показали сравнительно низкую активность и невысокую стабильность, а продолжительность их непрерывной работы измерялась несколькими часами.

Высокоэффективные катализаторы для парофазного нитрования бензола разбавленной HNO3 получаются из модифицированных цеолитов Y [18. Bertea L.E., Kouwenhoven H.W., Prins R. // Studies in Surface Science and Catalysis., 1993, v.78, p.607-614] и морденита [19. Bertea L.E., Kouwenhoven H.W., Prins R. // Appl. Catal., A: Chemical, 1995, v.129, p.229-250]. Последний позволяет получать нитробензол при 170°C с выходом до 80-85% и производительностью 0,6 г/г·ч при стабильной работе в течение 120 ч.

Наиболее активным и стабильным в парофазном нитровании бензола оказался катализатор на основе природного цеолита клиноптилолита [20. Bertea L.E., Kouwenhoven H.W., Prins R. // Stud. Surf. Sci. Catal., 1994, v.84, p.1973-1980]. На нем производительность по нитробензолу составила 0,65 г/г·ч.

Японские исследователи [21. Sato H., Hirose K., Nagai K. е.а. // Appl. Catal., A: Chemical, 1998, v.175, p.201-207.; 22. EP 0343048 A1, B1, 1993.; 23. Sato H., Hirose K. // Appl. Catal., A: Chemical, 1998, v.174, p.77-81] изучили парофазное нитрование бензола разбавленной HNO3 на катализаторах, полученных из монтмориллонита. Оказалось, что каталитическая активность исходного H-монтмориллонита сравнительно мала, но после ионного обмена Н-монтмориллонита с многовалентными катионами металлов (группы IIA-IIIA и IB-IVB Периодической таблицы) его активность резко повышалась, при этом увеличивалась и кислотность монтмориллонита. Степень повышения нитрующей активности катализатора зависит от типа вводимого в него катиона. Наибольшая конверсия HNO3 (93,4%) достигается на Al-монтмориллоните (160°C): селективность по нитробензолу составляет 97,8%, а производительность катализатора равна 3,65 г/г·ч.

Существенным недостатком для цеолитов и модифицированных глин является наличие микропористости, что делает невозможным их применение для каталитических превращений объемных молекул с диаметром d≥0.1 нм, а также недостаточная кислотность для превращения мало реакционноспособных соединений.

Синтез 5- и 6-нитро-1-(4-нитрофенил)-1,3,3-триметилинданов в присутствии гетерогенных катализаторов, в том числе цеолитов и аморфных алюмосиликатов, в литературе не описан.

Известные способы получения 5- и 6-нитро-1-(4-нитрофенил)-1,3,3-триметилинданов [24. US Patent 1470705, 1974; 25. US Patent 3856752, 1974; 26. US Patent 3983092, 1976; 27. US Patent 1492511, 1976] предусматривают проведение жидкофазного нитрования 1,1,3-триметил-3-фенилиндана (фенилиндан) нитрующей смесью. Как указано в патенте [26. US Patent 3983092, 1976], нитрующая смесь содержит около 25% HNO3 и 75% H2SO4, при этом мольное отношение фенилиндан : HNO3 составляет 1:8. Процесс проводят при 5°C в течение 4 ч. Выход 5(6)-нитро-1-(4-нитрофенил)-1,3,3-триметилинданов составляет ~70%. В ходе реакции азотная кислота полностью или частично расходуется, а серная кислота, служащая катализатором и средой, разбавляется образующейся водой.

Отработанная серная кислота после удаления основной части органических примесей, оксидов азота и концентрирования возвращается в производство. Перед концентрированном должна быть проведена глубокая, практически полная денитрация серной кислоты. Присутствие даже небольших количеств оксида азота (III) и азотной кислоты в серной кислоте при ее концентрировании приводит к загрязнению отходящих топочных газов оксидами азота, для очистки от которых система должна быть дооборудована установкой для улавливания нитрозных газов.

Стадия концентрирования серной кислоты является дорогой и сопряжена с выделением большого количества вредных газов - SO2, SO3.

Возникающий таким образом «кислотооборот» обусловливает существенные аппаратурно-технологические, экономические и экологические недостатки жидкофазного способа нитрования фенилиндана.

Задачей настоящего изобретения является разработка более эффективного способа получения динитрофенилинданов, основанного на использовании гетерогенного катализатора, который позволяет отказаться от применения серной кислоты и избежать значительной части недостатков процесса нитрования.

Решение указанной задачи достигается тем, что способ получения 5- и 6-нитро-1-(4-нитрофенил)-1,3,3-триметилинданов осуществляют согласно изобретению нитрованием 1,1,3-триметил-3-фенилиндана в присутствии модифицированного аморфного мезопористого алюмосиликата (фторированного или сульфатированного) при 80-130°C, мольном соотношении фенилиндан : HNO3 = 1:6÷14 в течение 8 ч в присутствии 2-4% мас. (в расчете на реакционную смесь) катализатора.

Сравнительный анализ заявляемого решения с прототипом показывает, что заявляемый способ отличается от прототипа тем, что в процессе синтеза динитрофенилинданов вместо серной кислоты используют гетерогенный катализатор, представляющий собой фторированный или сульфатированный мезопористый алюмосиликат. Процесс осуществляют при 80-130°C при мольном соотношении фенилиндан : HNO3 = 1:6÷14 в течение 8 ч в присутствии 2-4% мас. (в расчете на реакционную смесь) катализатора. Конверсия фенилиндана достигает 100%, выход 5(6)-нитро-1-(4-нитрофенила)-1,3,3-триметилинданов - 99%. После окончания реакции катализатор отделяют фильтрацией. Его можно использовать многократно.

Реакцию можно проводить как в растворителях (дихлорбензол, алканы), так и без них.

Реакция проходит по схеме:

В качестве катализатора нитрования 1,1,3-триметил-3-фенилиндана используют модифицированные мезопористые алюмосиликаты - фторированный или сульфатированный аморфный алюмосиликатный материал с развитой пористой структурой. Фторированный мезопористый алюмосиликат синтезируют смешением олигомерных эфиров орто-кремниевой кислоты с водно-спиртовым раствором Al(NO3) ·9H2O при 20-25°C в течение 25-30 мин с последующим нагреванием до 60°C при перемешивании. Полученный гель обрабатывают аммиачным раствором, сушат в атмосфере воздуха при 150°C в течение 8 ч, затем прокаливают в муфельной печи при 650°C в течение 5 ч. Прокаленный аморфный мезопористый алюмосиликат размалывают до порошка с фракционным составом <100 мкм. Полученный порошок обрабатывают 2М водным раствором NH4F, в расчете 10% NH4F от массы навески и прокаливают при 550°C в течение 4 ч. Пористая структура фторированного аморфного алюмосиликата характеризуется наличием мезопор, имеющих широкое распределение объема пор размеру (в интервале 2-5 нм, рис.1). Удельная поверхность фторированного мезопористого алюмосиликата по БЭТ составляет 540 м2/г, удельный объем пор 0,8 см3/г. Мольное соотношение SiO2/Al2O3 равно 20. Суммарная кислотность, измеренная методом термопрограммированной десорбции аммиака, составляет 760 мкмоль/г.

Для получения сульфатированного мезопористого алюмосиликата синтезированный, как указано выше, аморфный мезопористый алюмосиликат после прокалки при 650°C в течение 5 ч обрабатывают 2М водным раствором серной кислоты в расчете 10% H2SO4 от массы навески и прокаливают при 350°C в течение 4 ч. Пористая структура сульфатированного аморфного алюмосиликата характеризуется наличием мезопор, имеющих широкое распределение объема пор размеру (в интервале 2-5 нм, рис.1). Удельная поверхность мезопористого алюмосиликата по БЭТ составляет 500 м2/г, удельный объем пор 0,85 см3/г. Мольное соотношение SiO2/Al2O3 равно 20.

Суммарная кислотность, измеренная методом термопрограммированной десорбции аммиака, составляет 950 мкмоль/г.

Предлагаемый способ осуществляют следующим образом.

Нитрование 1,1,3-триметил-3-фенилиндана проводят в периодическом изотермическом реакторе при температуре 100-130°C, атмосферном давлении, в присутствии 2-4% мас. (в расчете на реакционную смесь) катализатора. Мольное отношение фенилиндан : азотная кислота составляет 1:6÷14. Для экспериментов используют 67%-ную азотную кислоту, чистота 1,1,3-триметил-3-фенилиндана составляет 99,8%. При использовании растворителя (например, дихлорбензола, алканов) начальная концентрация 1,1,3-триметил-3-фенилиндана в растворителе составляет 0,44 моль/л. По окончании синтеза реакционную массу отфильтровывают от катализатора и отмывают от избытка азотной кислоты. Непрореагировавший 1,1,3-триметил-3-фенилиндан и мононитро-1,1,3-триметил-3-фенилинданы выделяют из реакционной массы перегонкой при пониженном давлении. Остаток - 5(6)-нитро-1-(4-нитрофенил)-1,3,3-триметилинданы - перекристаллизовывают из CCl4.

Количественный анализ реакционной массы осуществляют методом газожидкостной хроматографии на приборе HRGS 5300 Mega Series "Carlo Erba" с пламенно-ионизационным детектором; условия анализа: стеклянная капиллярная колонка 25 м, фаза SE-30, программирование температуры 50-280°C (8°C/мин), температура детектора 250°C, температура испарителя 300°C, газ-носитель - гелий - 30 мл/мин.

Идентификацию продуктов осуществляют методом ЯМР и масс-спектрометрией высокого разрешения.

ЯМР спектры регистрировали на спектрометре «Bruker AVANCE - 400» с рабочими частотами 400,13 (1H) и 100,62 МГц (13C) в CDCl3.

Масс-спектры высокого разрешения получали на приборе фирмы «Fisons» Trio 1000 с капиллярной колонкой DB-5; программирование температуры от: 50 до 320°C со скоростью 4°C/мин; 70 эВ.

Предлагаемый способ иллюстрируется следующими примерами.

ПРИМЕР 1. В стеклянный обогреваемый реактор с мешалкой, обратным холодильником и термометром загружают 0.5 г 1,1,3-триметил-3-фенилиндана (2.1 ммоль), растворенного в 3.5 мл дихлорбензола, 0.85 мл (12,71 ммоль) 67%-ной азотной кислоты, 0.16 г катализатора (фторированный аморфный мезопористый алюмосиликат). Реакцию проводят при постоянном перемешивании при температуре 100°C в течение 8 ч. Реакционную массу отфильтровывают от катализатора, непрореагировавший 1,1,3-триметил-3-фенилиндан и мононитрофенилинданы выделяют перегонкой в вакууме. Динитрофенилинданы выделяют перекристаллизацией из CCl4. Получают 0.56 г продукта. Конверсия 1,1,3-триметил-3-фенилиндана составляет 100 мол.%, селективность по 5(6)-нитро-1-(4-нитрофенил)-1,3,3-триметилиндану - 80 мол.%.

ПРИМЕРЫ 2-13. Аналогично примеру 1. Условия и результаты примеров представлены в таблице 1.

ПРИМЕР 14. В стеклянный обогреваемый реактор с мешалкой, обратным холодильником и термометром загружают 0.5 г фенилиндана (2.1 ммоль), растворенного в 3.5 мл дихлорбензола, 0.85 мл (12,71 ммоль) 67%-ной азотной кислоты, 0.16 г катализатора (сульфатированный аморфный мезопористый алюмосиликат). Реакцию проводят при постоянном перемешивании при температуре 100°C в течение 8 ч. Реакционную массу отфильтровывают от катализатора, непрореагировавший фенилиндан и мононитрофенилинданы выделяют перегонкой в вакууме. Динитрофенилинданы выделяют перекристаллизацией из CCl4. Получают 0.64 г продукта. Конверсия фенилиндана составляет 100 мол.%, селективность по 5(6)-нитро-1-(4-нитрофенила)-1,3,3-триметилиндану - 89 мол.%.

ПРИМЕРЫ 15-26. Аналогично примеру 13. Условия и результаты примеров представлены в таблице 2.

Таблица 1
Нитрование 1,1,3-триметил-3-фенилиндана в присутствии фторированного аморфного мезопористого алюмосиликата (ФМАС)
Пример Условия реакции Конверсия фенилиндана, % Состав, %
t, °C Кол-во ФМАС, % Фенилиндан : HNO3 Фенилиндан Мононитрофенилинданы Динитрофенилинданы
2 80 4 1:8 100 0 36 74
3 110 4 1:8 100 0 18 82
4 130 4 1:8 100 0 8 92
5 110 2 1:8 98 0 32 68
6 110 3 1:8 100 0 23 77
7* 110 4 1:8 100 0 30 70
8** 110 4 1:8 25 75 23 2
9 110 4 1:6 100 0 29 71
10 110 4 1:8 100 0 18 82
11 110 4 1:10 100 0 10 90
12 110 4 1:12 100 0 5 95
13 110 4 1:14 100 0 1 99
7* - нефторированный мезопористый алюмосиликат
8** - катализатор цеолит HBETA SiO2/Al2O3=18
Время реакции 8 ч.

Таблица 2
Нитрование 1,1,3-триметил-3-фенилиндана в присутствии сульфатированного аморфного мезопористого алюмосиликата (MAC)
Пример Условия реакции Конверсия фенилиндана, % Состав, %
t, °C Кол-во MAC,% Фенилиндан : HNO3 Фенилиндан Мононитрофенилинданы Динитрофенилинданы
15 80 4 1:8 100 0 19 81
16 110 4 1:8 100 0 6 94
17 130 4 1:8 100 0 1 99
18 110 2 1:8 100 0 14 86
19 110 3 1:8 100 0 10 90
20* 110 4 1:8 25 75 23 2
21** 110 4 1:8 100 0 30 70
22 110 4 1:6 100 0 16 84
23 110 4 1:8 100 0 6 94
24 110 4 1:10 100 0 2 98
25 110 4 1:12 100 0 1 99
26 110 4 1:14 100 0 1 99
19* - катализатор цеолит HBETA SiO2/Al2O3=18
20** - несульфатированный мезопористый алюмосиликат
Время реакции 8 ч

Способ получения 5- и 6-нитро-1-(4-нитрофенил)-1,3,3-триметилинданов взаимодействием 1,1,3-триметил-3-фенилиндана с азотной кислотой, отличающийся тем, что нитрование 1,1,3-триметил-3-фенилиндана проводят в присутствии катализатора - модифицированного аморфного мезопористого алюмосиликата (фторированного или сульфатированного) - при 80-130°C при мольном соотношении фенилиндан:HNO = 1:6÷14 в течение 8 ч в присутствии 2-4 мас.% (в расчете на реакционную смесь) катализатора.
СПОСОБ ПОЛУЧЕНИЯ 5(6)-НИТРО-1-(4-НИТРОФЕНИЛ)-1,3,3-ТРИМЕТИЛИНДАНОВ
Источник поступления информации: Роспатент

Showing 231-240 of 259 items.
19.01.2018
№218.016.0c61

Способ получения 1-алкил-1-азациклоалкадиинов

Изобретение относится к способу получения 1-алкил-1-азациклоалкадиинов формулы (1)
Тип: Изобретение
Номер охранного документа: 0002632674
Дата охранного документа: 09.10.2017
19.01.2018
№218.016.0c63

Способ получения 3-(о, м, n-галогенфенил)-3, 4-дигидро-2н-бензо[f][1, 5, 3]дитиазепинов

Изобретение относится к области органической химии, в частности к способу получения 3-(-галогенфенил)-3,4-дигидро-2Н-бензо[f][1,5,3]дитиазепинов общей формулы (1): Технический результат: получены новые 3-(-галогенфенил)-3,4-дигидро-2Н-бензо[f][1,5,3]дитиазепины, которые могут найти применение...
Тип: Изобретение
Номер охранного документа: 0002632661
Дата охранного документа: 09.10.2017
19.01.2018
№218.016.0c7b

Способ селективного получения диэтил 2,2'-(1,5,8,11,15,18-гексатиа-3,13-диазациклоикозан-3,13-диил)диалканоатов

Изобретение относится к способу селективного получения диэтил 2,2'-(1,5,8,11,15,18-гексатиа-3,13-диазациклоикозан-3,13-диил)диалканоатов общей формулы (1):
Тип: Изобретение
Номер охранного документа: 0002632662
Дата охранного документа: 09.10.2017
19.01.2018
№218.016.0c92

Способ получения 7,16,25-триарил-7,8,16,17,25,26-гексагидро-6н,15н,24н-трибензо[f,m,t][1,5,8,12,15,19]гексаокса[3,10,17]триазациклохеникозинов

Изобретение относится к способу получения 7,16,25-триарил-7,8,16,17,25,26-гексагидро-6H,15H,24H-трибензо[ƒ,m,t][1,5,8,12,15,19]гексаокса[3,10,17]триазациклохеникозинов общей формулы (1): при котором N,N-бис(метоксиметил)-N-арил(o-метоксифенил, о-метилфенил, о-бромфенил, о-фторфенил)амины...
Тип: Изобретение
Номер охранного документа: 0002632666
Дата охранного документа: 09.10.2017
19.01.2018
№218.016.0caa

Способ получения 10,14-бис(о,м,п-галогенфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадеканов

Изобретение относится к способу получения 10,14-бис(о,м,n-галогенфенил)-7,8,12,16,17-пентаокса-10,14-диазаспиро[5.11]гептадеканов общей формулы (1):
Тип: Изобретение
Номер охранного документа: 0002632667
Дата охранного документа: 09.10.2017
19.01.2018
№218.016.0cb2

Способ получения алкил 2-(1,11-диокса-4,8-дитиа-6-азациклотридекан-6-ил)алканоатов

Изобретение относится к способу получения алкил 2-(1,11-диокса-4,8-дитиа-6-азациклотридекан-6-ил)алканоатов общей формулы I: Технический результат: получены новые алкил 2-(1,11-диокса-4,8-дитиа-6-азациклотридекан-6-ил)алканоаты, которые могут найти применение в качестве селективных...
Тип: Изобретение
Номер охранного документа: 0002632670
Дата охранного документа: 09.10.2017
19.01.2018
№218.016.0cbc

Способ получения (1,11-диокса-4,8-дитиа-6-азациклотридекан-6-ил)-хинолинов

Изобретение относится к способу получения (1,11-диокса-4,8-дитиа-6-азациклотридекан-6-ил)-хинолинов общей формулы (1): которые могут найти применение в качестве сорбентов и экстрагентов драгоценных металлов, а также селективных комплексообразователей. Технический результат: разработан новый...
Тип: Изобретение
Номер охранного документа: 0002632673
Дата охранного документа: 09.10.2017
19.01.2018
№218.016.0cd2

Способ получения 2,7-дициклоалкил-2,3а,5а,7,8а,10а-гексаазапергидропиренов

Изобретение относится к способу получения 2,7-дициклоалкил-2,3а,5а,7,8а,10а-гексаазапергидропиренов общей формулы (1): при котором 1,3,5-трициклоалкил-1,3,5-триазины, где R указаны выше, подвергают взаимодействию с 1,4,5,8-тетраазадекалином в среде метанола в присутствии катализатора NiCl при...
Тип: Изобретение
Номер охранного документа: 0002632669
Дата охранного документа: 09.10.2017
19.01.2018
№218.016.0cd4

Способ получения 10,14-бис(3-хлорфенил)-12-галогенфенил-7,8,16,17-тетраокса-10,12,14-триазаспиро[5,11]гептадеканов

Изобретение относится к способу получения 10,14-бис(3-хлорфенил)-12-галогенфенил-7,8,16,17-тетраокса-10,12,14-триазаспиро[5.11]гептадеканов общей формулы (1): при котором галогенанилины (о-,м-,п-броманилин, м-хлоранилин, п-фторанилин) подвергают взаимодействию с...
Тип: Изобретение
Номер охранного документа: 0002632665
Дата охранного документа: 09.10.2017
19.01.2018
№218.016.0cd6

Способ совместного получения метил 2-(1, 5, 8-тритиа-3-азациклодекан-3-ил)алканоатов и диметил 2, 2'-(1, 5, 8, 11, 15, 18-гексатиа-3, 13-диазациклоикозан-3, 13-диил)диалканоатов

Изобретение относится к способу совместного получения метил 2-(1,5,8-тритиа-3-азациклодекан-3-ил)алканоатов и диметил 2,2'-(1,5,8,11,15,18-гексатиа-3,13-диазациклоикозан-3,13-диил)диалканоатов общей формулы (1):
Тип: Изобретение
Номер охранного документа: 0002632672
Дата охранного документа: 09.10.2017
Showing 231-240 of 265 items.
10.10.2019
№219.017.d461

Способ получения 2,3-диалкил-n-фенил-1,2,3,4-тетрагидрохинолин-4-аминов

Изобретение относится к способу получения 2,3-диалкил-N-фенил-1,2,3,4-тетрагидрохинолин-4-аминов взаимодействием анилина с альдегидами в присутствии катализатора, отличающемуся тем, что в качестве катализатора используют цеолит Y в Н-форме, реакцию анилина с алифатическим альдегидом...
Тип: Изобретение
Номер охранного документа: 0002702354
Дата охранного документа: 08.10.2019
10.10.2019
№219.017.d464

Способ получения 2,2,4-триалкил-2,3-дигидро-1н-1,5-бензодиазепинов

Изобретение относится области органической химии, а именно к способу получения 1,5-бензодиазепинов, указанной ниже формулы, в которой R=Me или Et, путем каталитической гетероциклизации 1,2-фенилендиамина с кетонами (ацетон, бутан-2-он), характеризующемуся тем, что в качестве катализатора...
Тип: Изобретение
Номер охранного документа: 0002702358
Дата охранного документа: 08.10.2019
22.10.2019
№219.017.d8b1

Способ селективного получения норборнадиеновых производных фуллеренов

Настоящее изобретение относится к способу получения норборнадиенового производного фуллерена формулы 1:
Тип: Изобретение
Номер охранного документа: 0002703528
Дата охранного документа: 21.10.2019
22.10.2019
№219.017.d8be

N,n'-комплекс дибромди-[(4-(бензилсульфанил)метил)-3,5-диметил-1н-пиразол]палладия (ii), проявляющий противоопухолевую активность

Изобретение относится к новому химическому соединению, а именно к N,N'-комплексу дибромди-[(4-(бензилсульфанил)метил)-3,5-диметил-1H-пиразол]палладия(II) формулы (1), Данное соединение проявляет противоопухолевую активность и может использоваться в качестве биологически активного вещества,...
Тип: Изобретение
Номер охранного документа: 0002703536
Дата охранного документа: 21.10.2019
22.10.2019
№219.017.d8c5

Способ селективного получения квадрициклановых производных фуллеренов

Настоящее изобретение относится к способу получения квадрицикланового производного фуллерена формулы 1:
Тип: Изобретение
Номер охранного документа: 0002703529
Дата охранного документа: 21.10.2019
22.10.2019
№219.017.d8c6

Способ получения 2,7-бис-арил(гетарил)замещенных 4,9-диметил-2,3а,5а,7,8а,10а-гексаазапергидропиренов

Предлагаемое изобретение относится к органической химии, конкретно к способу получения 2,7-бис-арил(гетарил)замещенных 4,9-диметил-2,3а,5а,7,8а,10а-гексаазапергидропиренов, которые могут найти применение в качестве соединений-кандидатов для разработки препаратов с анальгетическими,...
Тип: Изобретение
Номер охранного документа: 0002703540
Дата охранного документа: 21.10.2019
10.11.2019
№219.017.e025

Способ получения водорастворимых 2,5-аминометилированных производных пиррола, проявляющих фунгистатическое действие

Изобретение относится к способу получения 2,5-аминометилированных производных пиррола общей формулой (1), обладающих фунгистатическим действием по отношению к фитопатогенному грибу Rhizoctonia solani. Сущность способа заключается во взаимодействии пиррола с бисамином...
Тип: Изобретение
Номер охранного документа: 0002705400
Дата охранного документа: 07.11.2019
08.12.2019
№219.017.eb56

N,n-комплексы дихлороди-[3,5-диметил-4-(сульфанилметил)-1h-пиразол]дигидрата меди(ii), обладающие фунгицидной активностью в отношении гриба candida albicans

Изобретение относится к применению N,N-комплексов дихлороди-[3,5-диметил-4-(сульфанилметил)-1H-пиразол]дигидрата меди(II) общей формулы (1) в качестве средства с фунгистатической активностью по отношению к Candida albicans. Общая формула (1) приведена ниже Изобретение позволяет применять...
Тип: Изобретение
Номер охранного документа: 0002708086
Дата охранного документа: 04.12.2019
21.12.2019
№219.017.f03f

Водорастворимый цис-s,s-комплекс диацетат[ди-1,6-(3,5-диметилизоксазол-4-ил)-2,5-дитиагексан]палладия(ii), проявляющий ингибирующую активность в отношении фермента α-амилаза

Предлагаемое изобретение относится к применению водорастворимого -S,S-комплекса диацетат[ди-1,6-(3,5-диметилизоксазол-4-ил)-2,5-дитиагексан]палладия(II) формулы (1) в качестве ингибитора в отношении фермента α-амилаза. Данное соединение проявляет ингибирующую активность в отношении фермента...
Тип: Изобретение
Номер охранного документа: 0002709512
Дата охранного документа: 18.12.2019
24.12.2019
№219.017.f147

Способ получения олигомеров пент-1-ена в присутствии иерархического цеолита н-y

Изобретение относится к способу получения олигомеров пент-1-ена взаимодействием пент-1-ена с катализатором на основе цеолита. Способ характеризуется тем, что в качестве катализатора используют иерархический цеолит H-Yммм в количестве 10-30% мас. на исходный олефин и реакцию проводят в автоклаве...
Тип: Изобретение
Номер охранного документа: 0002709818
Дата охранного документа: 23.12.2019
+ добавить свой РИД