×
10.04.2015
216.013.406e

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НАНОЧАСТИЦ СЕРЕБРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области получения наноразмерных частиц серебра и может быть использовано в технологиях, связанных с применением ультрадисперсных порошков серебра. Способ включает проведение синтеза сереброборатного стекла, выработанного из шихты для синтеза сереброборатного стекла, содержащей от 2 до 38 мол.% оксида серебра в слое толщиной 4 мм, а затем осуществление экспонирования стекла при естественном солнечном свете или при рентгеновском облучении с образованием поверхностной пленки из наночастиц серебра. Заявленный способ позволяет упростить процесс получения наночастиц серебра за счет исключения применения реагента восстановителя и обеспечить высокий выход целевого продукта. 1 ил., 2 пр.
Основные результаты: Способ получения наночастиц серебра, отличающийся тем, что проводят синтез сереброборатного стекла, выработанного из шихты для синтеза сереброборатного стекла, содержащей от 2 до 38 мол.% оксида серебра в слое толщиной 4 мм, а затем осуществляют экспонирование стекла при естественном солнечном свете или при рентгеновском облучении с образованием поверхностной пленки из наночастиц серебра.

Изобретение относится к области получения наноразмерных частиц серебра и может быть использовано в технологиях, связанных с применением ультрадисперсных порошков серебра.

Изобретение относится к области получения ультрадисперсных металлов и может быть использовано в нанотехнологиях, связанных с применением ультрадисперсных порошков серебра, например, в химической отрасли.

Известен способ получения наночастиц серебра, включающий химическое восстановление из раствора соли серебра в среде органического растворителя с получением в осадке наночастиц серебра, отличающийся тем, что предварительно смешивают 4%-ный раствор нитрата серебра в этиловом спирте с 1%-ным раствором гидроксида натрия в этиловом спирте с получением осадка оксида серебра, далее получают аммиачный раствор оксида серебра в этиловом спирте путем пропускания газообразного аммиака до полного растворения осадка, а восстановление серебра осуществляют из аммиачного раствора оксида серебра в этиловом спирте под воздействием акустической кавитации в течение 5-15 мин в присутствии этиленгликоля, диэтиленгликоля или глицерина, взятых в качестве органического растворителя, см. патент РФ №2448810. Данный способ упрощает процесс получения наночастиц серебра. Недостатком способа является сложность процесса, связанная с необходимостью проведения процесса восстановления серебра из аммиачного раствора оксида серебра в этиловом спирте под воздействием акустической кавитации в присутствии этиленгликоля, диэтиленгликоля или глицерина, взятых в качестве органического растворителя.

Известен способ получения монодисперсных и стабильных наночастиц металлического серебра, включающий приготовление водного раствора соли серебра, содержащего от 0,01% до 20 вес.% растворимой соли серебра, приготовление водного раствора восстановителя, содержащего от 0,01% до 20 вес.% соединения из группы танинов, смешивание этих водных растворов для проведения реакции между ними, отделение маточного раствора от наночастиц серебра, полученных в упомянутой реакции, отличающийся тем, что реакцию осуществляют путем смешивания этих растворов и регулирования pH в диапазоне величин от 10,5 до 11,5, см. патент РФ №2430169. Для изменения pH раствора восстановителя используют гидроксид, выбираемый из группы, в которую входят гидроксиды натрия, калия, аммония и аммиак. Продукт, получаемый данным способом, имеет средний размер частиц около 10-20 нм, если pH раствора соли серебра также регулируют в диапазоне щелочной среды с pH вплоть до величины 11,5. Недостатком данного способа является использование в качестве восстановителя соединения из группы таннинов, которые являются дефицитными и малодоступными реагентами.

Известен способ получения порошка серебра, включающий осаждение хлорида серебра из раствора нитрата серебра водорастворимым хлоридом, обработку суспензии хлорида серебра, восстановление серебра из суспензии, промывку осадка порошка серебра, сушку и просев, отличающийся тем, что хлорид серебра осаждают при температуре 20-50°C при pH 1-5 с декантацией маточного раствора, обработку суспензии свежеосажденного хлорида серебра проводят раствором гидроксида щелочного металла с концентрацией в реакционной среде 12-200 г/л, восстановление серебра проводят формалином, или формиатом аммония, или формиатом натрия при температуре 40-90°C при их подаче в течение 10-60 мин при перемешивании до прекращения газовыделения, промывку осадка порошка серебра осуществляют последовательно деионизованной водой, нагретой до 40-70°C, раствором аммиака и деионизованной водой, осадок сушат при температуре 70-120°C и просеивают через сито с размером ячейки 250 мкм, см. патент РФ №2283208. Промывки осадка порошка серебра осуществляют раствором аммиака с его концентрацией 2-10%, а затем деионизированной водой до проводимости не более 20 мкСм/см. Недостатком способа является крупнодисперсность полученного порошка серебра и сложность процесса, связанная с использованием восстановителя для осаждения серебра.

Известен способ получения дисперсии наноразмерных порошков металлов, включающий проведение окислительно-восстановительной реакции формиата соответствующего металла в среде углеводородов с добавлением серосодержащих поверхностно-активных веществ (ПАВ) под действием энергии ультразвуковых колебаний, отличающийся тем, что в качестве серосодержащих ПАВ используют алкилиолы, диалкилсульфиды, диалкилдисульфиды, диалкилтиокарбаматы или алкилтиофенолы, при этом ПАВ добавляют в количестве, определяемом из расчета образования на наночастицах, по меньшей мере, мономолекулярного слоя, см. патент РФ №20204. В реакционную смесь погружают металлический излучатель ультразвуковых колебаний и облучают смесь до полного разложения формиата металла с получением наночастиц металла, покрытых стабилизатором. Известным способом получают устойчивые дисперсии наночастиц золота, платины, кадмия, железа, кобальта, а также серебра в различных углеводородах. Недостатком способа является ограниченность способа, который применим только для соединения металлов в виде формиата. В результате осуществления способа получают устойчивую дисперсию наночастиц серебра в среде углеводородов, которая находит узкое применение.

Известен способ получения препарата мицеллярного раствора стабильных металлсодержащих наноструктурных частиц, включающий приготовление обратномицеллярной дисперсии на основе раствора поверхностно-активного вещества в неполярном растворителе, введение раствора соли металла и восстановление ионов металла, отличающийся тем, что перед восстановлением дисперсию перемешивают или проводят ее ультразвуковую обработку, после чего ее деаэрируют, а восстановление ведут сольватированными электронами и радикалами, генерируемыми при воздействии на дисперсию ионизирующего излучения, см. патент РФ №2322327. В обратномицеллярную дисперсию вводят соли по меньшей мере одного металла, выбираемого из группы, состоящей из золота, меди, железа, платины, палладия, цинка, кобальта, марганца, титана, никеля, а также серебра. В качестве соли металла используют нитрат, сульфат, перхлорат, ацетат или формиат металла в виде водного, водно-спиртового или водно-аммиачного растворов. Используют соли серебра AgNO3, AgClO4, AgAOT, CH3COOAg. Процесс восстановления сольватированными электронами и радикалами проводят в интервале поглощенных доз от 1 до 60 кГр ионизирующим Y-излучением 60CO, для получения мицеллярного раствора стабильных металлсодержащих наноструктурных частиц используют систему, содержащую реактор с мицеллярным раствором солей ионов металлов, размещенный в помещении с биологической противорадиационной защитой и источником ионизирующего Y-излучения. Достоинством известного способа является исключение использования восстановителя, поскольку восстановление ионов металла ведут сольватированными электронами и радикалами, генерируемыми при воздействии на дисперсию ионизирующим излучением.

Недостатком данного способа является сложность осуществления процесса из-за необходимости применения радиоактивного излучения.

Все известные способы получения наночастиц серебра имеют общий недостаток, заключающийся в сложности и длительности процесса их реализации и низком выходе частиц серебра.

Задачей изобретения является упрощение процесса получения наночастиц серебра и повышение выхода частиц серебра.

Согласно изобретению cпособ получения наночастиц серебра характеризуется тем, что проводят синтез сереброборатного стекла, выработанного из шихты для синтеза сереброборатного стекла, содержащей от 2 до 38 мол.% оксида серебра в слое толщиной 4 мм, а затем осуществляют экспонирование стекла при естественном солнечном свете или при рентгеновском облучении с образованием поверхностной пленки из наночастиц серебра.

Технический результат, достигаемый при использовании изобретения, заключается в том, что под действием солнечного света происходит восстановление ионов серебра до атомарного состояния и образование поверхностной пленки из наноразмерного атомарного серебра. Электрон взаимодействует с ионом серебра с получением металлического серебра:

Ag++e-→Ag

Это позволяет обеспечить высокий выход частиц серебра при незначительной продолжительности процесса.

Сущность изобретения поясняется иллюстративными материалами, где на фиг.1а изображен внешний вид сереброборатных стекол: с содержанием Ag2O до 5 мол. % (а), на фиг.1б - то же с содержанием Ag2O 5-38 мол. % (б), на фиг.1в - во всей области синтезированных составов после пребывания на воздухе при солнечном освещении.

Заявленный способ иллюстрируется следующими примерами.

Пример 1. Предварительно приготавливают путем перемешивания шихту для синтеза сереброборатного стекла и проводят плавку шихты при определенном температурно-временном режиме. Вырабатывают стекло в тонком слое. Образцы стекла помещают на освещаемую открытую поверхность. В результате диффузии ионов серебра происходит их движение к поверхности стекла. Под действием естественного солнечного освещения происходит восстановление ионов серебра до атомарного состояния. Образуется поверхностная пленка из наноразмерного атомарного серебра.

Стекло приобретает темно-коричневый цвет. Получают частицы серебра с размером частиц D<15 нм.

Пример 2. Предварительно приготавливают путем перемешивания шихту для синтеза сереброборатного стекла и проводят плавку шихты при определенном температурно-временном режиме. Вырабатывают стекло в слое толщиной 4 мм. Образцы стекла подвергают рентгеновскому облучению CuKα в течение 10 мин. В результате диффузии ионов серебра происходит их движение к поверхности стекла. Под действием рентгеновского облучения происходит восстановление ионов серебра до атомарного состояния. Образуется поверхностная пленка из наноразмерного атомарного серебра.

Стекло приобретает темно-коричневый цвет. Получают частицы серебра с размером частиц D=3-10 нм.

Предлагаемый способ позволяет упростить процесс получения наночастиц серебра за счет исключения применения реагента - восстановителя, и обеспечить высокий выход целевого продукта.

Способ получения наночастиц серебра, отличающийся тем, что проводят синтез сереброборатного стекла, выработанного из шихты для синтеза сереброборатного стекла, содержащей от 2 до 38 мол.% оксида серебра в слое толщиной 4 мм, а затем осуществляют экспонирование стекла при естественном солнечном свете или при рентгеновском облучении с образованием поверхностной пленки из наночастиц серебра.
СПОСОБ ПОЛУЧЕНИЯ НАНОЧАСТИЦ СЕРЕБРА
Источник поступления информации: Роспатент

Showing 41-50 of 57 items.
23.04.2019
№219.017.36dd

Способ получения плотной нанокерамики на основе оксида алюминия в системе alo-zro(yo)

Изобретение относится к технологии получения композиционной нанокерамики с высокими показателями микротвердости и прочности на изгиб, которая может найти широкое применение в различных областях современной техники. Способ характеризуется тем, что водные растворы солей Al(NO), ZrO(NO) и Y(NO)...
Тип: Изобретение
Номер охранного документа: 0002685604
Дата охранного документа: 22.04.2019
16.05.2019
№219.017.5237

Органосиликатная композиция для защитных электроизоляционных покрытий

Изобретение относится к лакокрасочным материалам для получения теплостойких электроизоляционных покрытий металлах и может быть использовано в электротехнике, радиоэлектронной промышленности, энергетике, машиностроении. Органосиликатная композиция содержит компоненты при следующем соотношении,...
Тип: Изобретение
Номер охранного документа: 0002687443
Дата охранного документа: 13.05.2019
29.05.2019
№219.017.632b

Электрическая машина

Изобретение относится к электрическим машинам и может быть использовано, в частности, в ветроэнергетических установках и на легких транспортных средствах. В предлагаемой электрической машине магнитопровод статора выполнен в виде плоского шихтованного кольца с установленными на торцевой части...
Тип: Изобретение
Номер охранного документа: 0002688204
Дата охранного документа: 21.05.2019
04.06.2019
№219.017.72f8

Полимерная защитная композиция

Настоящее изобретение относится к полимерной защитной композиции для защиты изделий и конструкций из разных материалов, в том числе из резины. Полимерная защитная композиция, состоит из полимочевинной двухкомпонентной композиции, состоящей из форполимера на основе изоцианата и отвердителя...
Тип: Изобретение
Номер охранного документа: 0002690169
Дата охранного документа: 31.05.2019
06.07.2019
№219.017.a6f1

Красноизлучающий фотолюминофор для экранов плазменных панелей

Изобретение относится к неорганической химии и индикаторной технике и может быть использовано при изготовлении плазменных панелей, возбуждаемых постоянным и переменным полем. Красноизлучающий фотолюминофор, представляющий собой борат состава SrBi(ВО):Eu, получен кристаллизацией из расплава....
Тип: Изобретение
Номер охранного документа: 0002693781
Дата охранного документа: 04.07.2019
23.07.2019
№219.017.b73e

Способ эксплуатации в синхронном режиме частотно-регулируемых асинхронных двигателей с фазным ротором

Изобретение относится к области электротехники и может быть использовано в частотно-регулируемых электроприводах. Технический результат заключается в повышении КПД двигателя путем исключения при смене режима температурных деформаций обмотки ротора и кратковременного появления его вибраций,...
Тип: Изобретение
Номер охранного документа: 0002694892
Дата охранного документа: 18.07.2019
31.12.2020
№219.017.f476

Кинетический накопитель энергии с супермаховиком

Изобретение относится к области электротехники и электроэнергетики, а именно - к устройствам для накопления и преобразования энергии при помощи супермаховика, оснащенного электрической машиной, работающей попеременно в режиме двигателя и генератора. Технический результат - упрощение конструкции...
Тип: Изобретение
Номер охранного документа: 0002710590
Дата охранного документа: 30.12.2019
27.01.2020
№220.017.faa2

Способ получения композиционных нанокристаллических мезопористых порошков в системе ceo(zro)-alo для трехмаршрутных катализаторов

Изобретение относится к трехмаршрутным катализаторам для очистки выхлопного газа, который очищает выхлопной газ, выбрасываемый двигателем внутреннего сгорания. Заявленная технология синтеза дает возможность получать мезопористые порошки в системе CeO(ZrO)-AlO площадью удельной поверхности при...
Тип: Изобретение
Номер охранного документа: 0002712124
Дата охранного документа: 24.01.2020
27.01.2020
№220.017.fad2

Способ получения мезопористого γ-aloдля каталитических систем

Изобретение относится к области синтеза дисперсных мезопористых материалов для носителей катализаторов. Описан способ получения мезопористого γ-AlO для каталитических систем, включающий осаждение гидроксидов. В качестве исходного реагента используют соль Al(NO)⋅9HO, из которой приготавливают...
Тип: Изобретение
Номер охранного документа: 0002711921
Дата охранного документа: 24.01.2020
25.03.2020
№220.018.0fa6

Способ изготовления пористых нанокомпозитных кремниевых гранул

Изобретение относится к композиционным материалам для сохранения окружающей среды, для медицины и для фармакологии. При изготовления пористых нанокомпозитных кремниевых гранул используют нанопорошок кремния, а его суспензию приготавливают путем смешивания этого порошка с кремнезолем, полученным...
Тип: Изобретение
Номер охранного документа: 0002717521
Дата охранного документа: 23.03.2020
Showing 31-34 of 34 items.
25.08.2017
№217.015.ca13

Твердый электролит на основе сложных оксидов висмута в системе cao-bio-feo и способ их получения

Группа изобретений относится к неорганической химии, а именно к твердым электролитам с проводимостью по ионам кислорода. Твердый электролит на основе сложных оксидов висмута в системе СаО-BiO-FeO содержит, мол.%: СаО - 4-26, BiO - 45-80, FeO- 0-40 мол.%. Способ получения твердого электролита...
Тип: Изобретение
Номер охранного документа: 0002619907
Дата охранного документа: 19.05.2017
19.01.2018
№218.016.011b

Способ получения мезопористых ксерогелей и нанопорошков в системе zro(yo)-alo для носителей катализаторов при конверсии метана в синтез-газ

Изобретение относится к области синтеза мезопористых материалов, а именно к способу получения мезопористых ксерогелей и нанопорошков в системе ZrO(YO)-AlO для носителей катализаторов при конверсии метана в синтез-газ. Способ осуществляют путем совместного осаждения исходных реагентов водным...
Тип: Изобретение
Номер охранного документа: 0002629667
Дата охранного документа: 31.08.2017
20.01.2018
№218.016.1c77

Способ получения пористых мембран на основе диоксида циркония для фильтрации жидкостей и газов

Изобретение относится к технологии получения пористых мембран на основе диоксида циркония, которые могут быть использованы в качестве фильтров для очистки и разделения жидкостей и газов, носителей катализаторов в различных химических процессах. Способ получения пористых мембран включает...
Тип: Изобретение
Номер охранного документа: 0002640546
Дата охранного документа: 09.01.2018
20.01.2018
№218.016.1e5c

Нанотубулярные материалы, кристаллизующиеся в системе ko-tio-x-ho (x=nio, mgo, alo, cro, coo, feo) и способ их синтеза

Изобретение относится к неорганической химии, а именно к нанотрубкам на основе сложных неорганических оксидов, которые могут быть использованы в качестве сорбентов, гетерогенных катализаторов и компонентов композитных материалов фрикционного и конструкционного назначения. Нанотубулярные...
Тип: Изобретение
Номер охранного документа: 0002640766
Дата охранного документа: 11.01.2018
+ добавить свой РИД