×
20.12.2014
216.013.120b

Результат интеллектуальной деятельности: СПОСОБ КОНВЕРСИИ АЦЕТИЛЕНОВЫХ УГЛЕВОДОРОДОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области каталитических технологий переработки углеводородного сырья и касается, в частности, способа конверсии ацетиленовых углеводородов в ценные продукты, такие как имины и кетоны. Предложен способ гидроаминирования жидких ацетиленовых углеводородов амином в присутствии катализатора в условиях СВЧ нагрева с мощностью в диапазоне 1-10 ватт реакционной массы при температуре 110-150°C в среде полярного органического растворителя. Катализатор содержит наноразмерные частицы металлического золота на носителе - двуокиси титана или мезопористом цеолитоподобном силикате МСМ-41. Суммарное содержание золота 1-5 мас.%. В качестве полярного органического растворителя используют, например, диметилформамид или ионную жидкость, преимущественно 1-н-бутил-3-метилимидазолий гексафторфосфат, или 1-н-бутил-3-метилимидазолий тетрафторборат. В качестве амина используют, например, анилин или пиперидин. В качестве ацетиленовых углеводородов используют линейные углеводороды, например, гексин, гептин, октин, и ароматические ацетиленовые углеводороды, например, фенилацетилен. Техническим результатом предлагаемого изобретения является сокращение времени реакции гидроаминирования в результате использования полярных растворителей и СВЧ нагрева реакционной массы и, как следствие, повышение производительности процесса при сохранении высокой степени конверсии ацетиленовых углеводородов. 6 з.п. ф-лы, 1 табл., 7 пр.

Изобретение относится к области каталитических технологий переработки углеводородного сырья и касается, в частности, способа конверсии ацетиленовых углеводородов в ценные продукты. Способ основан на проведении реакции гидроаминирования жидких ацетиленовых углеводородов различными аминами.

Одним из эффективных способов конверсии ацетиленовых углеводородов является реакция гидроаминирования, приводящая к получению ценных продуктов - иминов, которые при дальнейшем гидролизе приводят к образованию кетонов.

Из литературных источников известно [С.W. Kruse, R.F. Kleinschmidt // Ethylidenimines by the Reaction of Acetylene with Primary Aliphatic Amines // J. Am. Chem. Soc, 1961, v.83, p.213], что из ароматических аминов, например анилина, в ходе реакции гидроаминирования в присутствии ацетата цинка или кадмия под давлением при 120-140° образуются этилиденимины.

R-NH2+CH≡CH→CH3CH=NR

Однако в связи с тем, что ацетаты цинка и кадмия легкорастворимы в анилине, этот способ относится к гомогенному каталитическому процессу. Кроме того, в этом случае, как и в любом гомогенном каталитическом процессе, возникает проблема отделения катализатора от реакционной смеси.

Согласно литературным данным, трудности, возникающие при практическом осуществлении гидроаминирования, в первую очередь связаны с тем, что прямое нуклеофильное присоединение аминов по C-C-кратной связи осложнено целым рядом кинетических и термодинамических факторов [F. Pohlki, S. Doye. // The catalytic hydroamination of alkynes // Chem. Soc. Rev., 2003, v.32, p.104]. При этом гидроаминирование алкинов является термодинамически более предпочтительным процессом [М. Beller, J. Seayad, A. Tillack, H. Jiao // Catalytic Markovnikov and anti-Markovnikov Functionalization of Alkenes and Alkynes: Recent Developments and Trends // Angew. Chemie, 2004, v.43, p.3368].

За последние несколько лет интенсивно развивались исследования, связанные с использованием комплексов и наночастиц золота как катализаторов реакции гидроаминирования неактивированных алкенов, алкинов, алленов и 1,3-диенов [Е. Genin, P.-Y. Toullec, S. Antoniotti, C. Brancour, J.-P. Genet, V. Michelte // Catalytic Markovnikov and anti-Markovnikov Functionalization of Alkenes and Alkynes: Recent Developments and Trends // J. Am. Chem. Soc., 2006, v.128, p.3112].

Недостатком катализаторов с наночастицами золота для реакций гидроаминирования является их недостаточно высокая активность, т.е. процесс требует значительного времени для достижения конверсии алкина не ниже 90%.

Наиболее близким к предлагаемому изобретению является способ конверсии ацетиленовых углеводородов путем межмолекулярного гидроаминирования ряда алкинов с использованием анилина в присутствии катализаторов, содержащих наночастицы золота, нанесенные на оксиды титана, железа, церия и кремния, описанный в работе [A. Corma, P. Concepción, I. Domínguez, V. Fornés, М.J. Sabater // Gold supported on a biopolymer (chitosan) catalyzes the regioselective hydroamination of alkynes // Journal of Catalysis, 2007, v.251, p.39]. Как пример, для катализатора Au/TiO2 при проведения реакции гидроаминирования октана-1 анилином в растворителе (толуол) при T=100°C и мольном соотношении октин-1:анилин, равном 1:1, конверсия октина 92% была достигнута только за 22 часа проведения реакции. При этом выход соответствующих имина и кетона (имин:кетон = 64:36) составил 57%.

Существенным недостатком заявленного способа является то, что для достижения высокой конверсии ацетиленовых требуется очень большое время выдерживания реакционной смеси (не менее 20 час), а также образование тяжелых продуктов конденсации, что снижает выход целевых продуктов.

Задачей настоящего изобретения является сокращение времени проведения процесса гидроаминирования ацетиленовых углеводородов при сохранении их высокой степени конверсии, а также увеличение производительности процесса.

Для достижения поставленной задачи предложен способ конверсии ацетиленовых углеводородов путем гидроаминирования жидких ацетиленовых углеводородов амином в присутствии катализатора, содержащего наноразмерные частицы металлического золота на носителе - двуокиси титана (TiO2) или мезопористом цеолитоподобном силикате МСМ-41 при суммарном содержании золота 1-5 мас.%, в условиях СВЧ нагрева реакционной массы при температуре 110-150°C в среде полярного органического растворителя.

Процесс проводят при мольном соотношении амин:ацетиленовый углеводород 1-2:1.

В качестве полярного органического растворителя используют, например, диметилформамид или ионную жидкость.

Возможность нагрева реакционной смеси обусловлена тем, что в условиях СВЧ излучения используемые растворители являются полярными молекулами. В качестве растворителя используются диметилформамид (ДМФА) и различные ионные жидкости, например, 1-н-бутил-3-метилимидазолий гексафторфосфат - [BMIM]PF6, или 1-н-бутил-3-метилимидазолий тетрафторборат - [BMIM]BF4.

Для осуществления предлагаемого в настоящем изобретении способа конверсии ацетиленовых углеводородов в качестве амина используют, например, анилин или пиперидин, а в качестве ацетиленовых углеводородов (у/в) - линейные углеводороды, типа гексина, гептина, октина, и ароматические ацетиленовые у/в, типа фенилацетилена (ФА), и ряд других.

Процесс гидроаминирования проводят в статическом реакторе при массовом соотношении ацетиленовый углеводород/катализатор, равном 1-4:1, и мольном соотношении амин:ацетиленовый у/в, равном 1-2:1, при этом реакционная смесь содержит растворенные в растворителе ацетиленовый у/в и амин при их концентрации в растворителе до 60%.

Для подвода тепла к реакционной смеси в предлагаемом способе используется СВЧ-установка резонаторного типа с рабочей частотой 2-8,3 ГГц, предпочтительно 5,7 ГГц с регулируемой мощностью в диапазоне 1-10 ватт. Также для нагрева могут использоваться бытовые СВЧ-печи с частотой 2,45 ГГц.

СВЧ-нагрев реакционной смеси используют в органическом синтезе и катализе [В. Toukoniitty, J.P. Mikkola, D.Yu. Murzin, T. Salmi // Utilisation of electromagnetic and acoustic irradiation in enhancing heterogeneous catalytic reactions // Applied Catal. A. Gen., 2005, v.279, p.1-22]. Однако в открытой и патентной литературе отсутствуют примеры использования СВЧ-активации гетерогенных катализаторов в процессах гидроаминирования алкинов.

Изобретение иллюстрируется следующими примерами.

Пример 1. Приготовление Au/МСМ-41 катализатора.

Катализатор готовят следующим образом.

Для нанесения наночастиц золота использовали мезопористый силикат типа МСМ-41 с удельной поверхностью по БЭТ 1000-1300 м2/г, объемом мезопор 1,3-2,0 см3/г с диаметром пор ≤50 nm. Наночастицы золота наносят на МСМ-41 (12 г) из раствора прекурсора HAuCl4×4H2O (0,13 г) в метаноле (20 мл) методом пропитки носителя по влагоемкости при 20°C. После нанесения носитель, содержащий HAuCl4×4H2O, сушат на воздухе при постоянном перемешивании, затем при пониженном давлении (10-3 тор) при 100°C в течение 4 часов. Восстановление прекурсора до наночастиц золота осуществляется путем обработки системы HAuCl4/MCM-41 натрийборгидридом (NaBH4)в среде метанола при 20°C. К носителю, содержащему HAuCl4×4H2O, добавляют 30 мл метанола и затем медленно, по каплям добавляют раствор NaBH4 (0,14 г в 30 мл метанола). Восстановление проводят при 20°C. Полученную смесь перемешивают на магнитной мешалке при 20°C в течение 0,5 ч, а затем сушат при пониженном давлении с использованием водоструйного насоса при 90°C в течение 6 часов. Далее золотосодержащий катализатор Au/МСМ-41 вакуумируют на масляном насосе (10-3 торр, 150°C, 8 ч). Содержание золота в катализаторе составило 5% мас.

Пример 2. Катализатор готовят по примеру 1, за исключением того, что берутся другие количества прекурсора HAuCl4×4H2O. Содержание золота в катализаторе составило 1 мас.%.

Пример 3. Приготовление Au/TiO; катализатора.

Наночастицы металлического золота наносили на носитель методом осаждения. Навеску 2,08 г оксида титана (аэрооксид Р-25) с удельной поверхностью 45 м2/г диспергируют в 11 мл декарбонизированной дистиллированной воды с pH=6,8. В полученную суспензию при интенсивном перемешивании добавляют 1 мл 0,204 М раствора золотохлористоводородной кислоты (HAuCl4) и перемешивают суспензию в течение 1 часа. Далее суспензию упаривают и сушат образец на роторном испарителе при 60°C при постепенном снижении давления до 60 мбар.

Высушенный образец прокаливают в муфельной печи при температуре 200°C 4 час. Затем прокаленный образец восстанавливают в токе водорода при 300°C в течение 2 час. Содержание золота в катализаторе составило 2 мас.%. Примеры 4-7. Реакцию гидроаминирования ацетиленовых у/в проводили при температуре в диапазоне 110-150°C в статическом реакторе (стеклянная пробирка диаметром 1 см и объемом 10 мл). Загрузка катализатора составляла 0,2 г, а общий объем реакционной смеси (вместе с растворителем и катализатором) составлял 2 мл. Перемешивание реакционной массы осуществлялось за счет конвективного движения жидкости в условиях ее нагрева. Термопара, контролирующая температуру реакции, размещалась непосредственно в реакционной массе. Условия проведения процесса, а также мольные и массовые соотношения реагентов, представлены в табл. 1. Результаты испытаний катализаторов, полученных по примерам 1-3, представлены в таблице 1.

Сравнение превращения ацетиленовых углеводородов в ходе реакции гидроаминирования по предлагаемому в настоящем изобретении способу конверсии ацетиленовых у/в с использованием СВЧ-нагрева и полярных растворителей, с одной стороны, и известного из литературы процесса гидроаминирования с использованием термического нагрева в среде неполярных растворителей (толуола), с другой стороны, показывает, что предлагаемый способ позволяет достичь высокой конверсии ацетиленовых при значительном сокращении времени реакции.

Так, при проведении реакции гидроаминирования октина-1 анилином на катализаторе 2%Au/TiO2 в режиме СВЧ-нагрева при использовании в качестве растворителя ионной жидкости (см. пример №4) при прочих одинаковых условиях осуществления процесса (температура, соотношение реагентов) за 10 часов реакции конверсия октина-1 достигает значения 94,3%, в то время как в способе-прототипе она составляет всего 92% за 22 часа. В этом примере получено максимальное значение производительности процесса (в расчете на активное золото) - 219 ммоль-ФА/ммоль-Au за 10 часов реакции, что указывает на синергетический эффект, относящийся к подводу тепла реакции, поскольку как катализатор Au/TiO2, так и растворитель (ИЖ) способны аккумулировать тепловую энергию СВЧ излучения.

Можно предположить, что при применении в качестве реакционных сред ионных жидкостей такие системы, благодаря их сольватирующим возможностям, обладают также способностью к стабилизации ионных интермедиатов, что позволяет повысить эффективность кислотного катализа. Похожий эффект наблюдали авторы работы [Galo V., Giannocoro Р., Nacci A., Monopoli A. // Metal Catalysed Reactions in Ionic Liquids // J. Organomet. Chem., 2002, 645, 152-157].

Из таблицы 1 видно, что при использовании предлагаемого способа с использованием СВЧ-нагрева высокая конверсия ацетиленовых и соответственно производительность процесса достигаются и при использовании других полярных растворителей. Так, в примере №5 при гидроаминировании фенилацетилена анилином на катализаторе 5% Au/МСМ-41 в растворителе ДМФА конверсия ФА за 6 часов реакции при 110°C составила 95,5% при производительности 107 ммоль-ФА/ммоль-Au.

Техническим результатом предлагаемого изобретения является сокращение времени реакции гидроаминирования в результате использования полярных растворителей и СВЧ нагрева реакционной массы и, как следствие, повышение производительность процесса при сохранении высокой степени конверсии ацетиленовых углеводородов. Кроме этого, во всех примерах по настоящему изобретению вместо термического нагрева реактора используется СВЧ излучение с очень низкой мощностью (до 10 ватт), что приводит к снижению энергетических затрат.

Важно отметить также, что во всех примерах осуществления процесса по настоящему изобретению селективность по продуктам (соответствующим иминам) близка к 100%, в то время как в прототипе в ряде случаев она не превышает 80%.

Источник поступления информации: Роспатент

Showing 41-50 of 109 items.
27.10.2015
№216.013.87cd

Способ получения 6-метилено-16α,17α-циклогексанопрегн-4-ен-3,20-диона

Изобретение относится к способу получения 6-метилено-16α,17α-циклогексанопрегн-4-ен-3,20-диона формулы (I), который является непосредственным предшественником в синтезе высокоэффективного прогестина - 6α-метил-16α,17α-циклогексано-прогестерона. Способ заключается в том, что...
Тип: Изобретение
Номер охранного документа: 0002566368
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.894c

Катализатор для гидроаминирования жидких ацетиленовых углеводородов и способ гидроаминирования жидких ацетиленовых углеводородов с использованием этого катализатора

Изобретение относится к катализатору для гидроаминирования жидких ацетиленовых углеводородов амином. Данный катализатор содержит наночастицы благородного металла на мезопористом носителе. При этом в качестве благородного металла катализатор содержит наночастицы серебра со средним размером 2-5...
Тип: Изобретение
Номер охранного документа: 0002566751
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.8950

Ионные жидкости с силоксановым фрагментом в составе катиона в качестве теплоносителей

Изобретение относится к области жидких теплоносителей, в частности к новым ионным жидкостям с силоксановым фрагментом в составе катиона. Предложены ионные жидкости общей формулы (I), где R = алкил или фенил; X = 1,2-диметилимидазолий, N-метилпирролидиний или триалкиламмоний, в качестве...
Тип: Изобретение
Номер охранного документа: 0002566755
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8c57

Способ и устройство получения высокооктановых бензинов путем совместной переработки углеводородных фракций и кислородсодержащего органического сырья

Изобретение относится к области переработки углеводородов в высокооктановый компонент автомобильного бензина. Смешивают углеводородные фракции и кислородсодержащее органическое сырье (огсигенат). Нагревают полученную смесь и подают на верх полочного реактора, подключенного к системе охлаждения...
Тип: Изобретение
Номер охранного документа: 0002567534
Дата охранного документа: 10.11.2015
20.01.2016
№216.013.a323

Способ переработки лигнина в жидкие углеводороды

Изобретение относится к способу переработки лигнина в жидкие продукты и касается, в частности, способа переработки гидролизного лигнина в жидкие углеводороды и может быть использовано для получения жидких углеводородов (в т.ч. кислородсодержащих) в ходе переработки отходов деревообрабатывающей...
Тип: Изобретение
Номер охранного документа: 0002573405
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a38a

Способ получения полимерного материала, содержащего неорганические нано- или микрочастицы

Изобретение относится к области химии высокомолекулярных соединений и нанотехнологиям и касается, в частности, способа получения полимерного материала, содержащего неорганические нано- или микрочастицы, который может найти применение в технике, например, в качестве: полимерных материалов с...
Тип: Изобретение
Номер охранного документа: 0002573508
Дата охранного документа: 20.01.2016
10.03.2016
№216.014.be1b

Адсорбент для улавливания, концентрирования и хранения диоксида углерода

Изобретение относится к материалам, предназначенным для осуществления адсорбционных процессов, в частности к адсорбентам для улавливания, концентрирования и хранения диоксида углерода (CO) в составе отходящих газов теплоэнергетических установок, химических и металлургических производств, в...
Тип: Изобретение
Номер охранного документа: 0002576632
Дата охранного документа: 10.03.2016
10.03.2016
№216.014.c08b

Адсорбент для улавливания, концентрирования и хранения диоксида углерода

Изобретение относится к материалам, предназначенным для осуществления адсорбционных процессов, в частности к адсорбентам для улавливания, концентрирования и хранения диоксида углерода Адсорбент изготовлен на основе мезопористой металлорганической каркасной структуры, выбранной из структур...
Тип: Изобретение
Номер охранного документа: 0002576634
Дата охранного документа: 10.03.2016
27.03.2016
№216.014.c783

Способ получения пористых координационных полимеров mil-53

Изобретение относится к способу получения пористых координационных полимеров общей формулы MIL-53(X), где Х=Al или Cr. Способ включает смешение хлорида металла общей формулы XCl×6HO, где X имеет вышеуказанные значения, и 1,4-бензолдикарбоновой кислоты в присутствии растворителя, нагревание...
Тип: Изобретение
Номер охранного документа: 0002578600
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c884

Способ получения пористого координационного полимера nh-mil-101(al) и пористый координационный полимер nh-mil-101(al), полученный этим способом

Изобретение относится к способу получения пористого координационного полимера NH-MIL-101(Al) и к пористому координационному полимеру NH-MIL-101(Al), полученному таким способом. Способ заключается в смешении соли алюминия формулы AlCl×6HO и органической кислоты 2-амино-1,4-бензолдикарбоновой...
Тип: Изобретение
Номер охранного документа: 0002578599
Дата охранного документа: 27.03.2016
Showing 41-50 of 97 items.
27.10.2015
№216.013.894c

Катализатор для гидроаминирования жидких ацетиленовых углеводородов и способ гидроаминирования жидких ацетиленовых углеводородов с использованием этого катализатора

Изобретение относится к катализатору для гидроаминирования жидких ацетиленовых углеводородов амином. Данный катализатор содержит наночастицы благородного металла на мезопористом носителе. При этом в качестве благородного металла катализатор содержит наночастицы серебра со средним размером 2-5...
Тип: Изобретение
Номер охранного документа: 0002566751
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.8950

Ионные жидкости с силоксановым фрагментом в составе катиона в качестве теплоносителей

Изобретение относится к области жидких теплоносителей, в частности к новым ионным жидкостям с силоксановым фрагментом в составе катиона. Предложены ионные жидкости общей формулы (I), где R = алкил или фенил; X = 1,2-диметилимидазолий, N-метилпирролидиний или триалкиламмоний, в качестве...
Тип: Изобретение
Номер охранного документа: 0002566755
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8c57

Способ и устройство получения высокооктановых бензинов путем совместной переработки углеводородных фракций и кислородсодержащего органического сырья

Изобретение относится к области переработки углеводородов в высокооктановый компонент автомобильного бензина. Смешивают углеводородные фракции и кислородсодержащее органическое сырье (огсигенат). Нагревают полученную смесь и подают на верх полочного реактора, подключенного к системе охлаждения...
Тип: Изобретение
Номер охранного документа: 0002567534
Дата охранного документа: 10.11.2015
20.01.2016
№216.013.a323

Способ переработки лигнина в жидкие углеводороды

Изобретение относится к способу переработки лигнина в жидкие продукты и касается, в частности, способа переработки гидролизного лигнина в жидкие углеводороды и может быть использовано для получения жидких углеводородов (в т.ч. кислородсодержащих) в ходе переработки отходов деревообрабатывающей...
Тип: Изобретение
Номер охранного документа: 0002573405
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a38a

Способ получения полимерного материала, содержащего неорганические нано- или микрочастицы

Изобретение относится к области химии высокомолекулярных соединений и нанотехнологиям и касается, в частности, способа получения полимерного материала, содержащего неорганические нано- или микрочастицы, который может найти применение в технике, например, в качестве: полимерных материалов с...
Тип: Изобретение
Номер охранного документа: 0002573508
Дата охранного документа: 20.01.2016
10.03.2016
№216.014.be1b

Адсорбент для улавливания, концентрирования и хранения диоксида углерода

Изобретение относится к материалам, предназначенным для осуществления адсорбционных процессов, в частности к адсорбентам для улавливания, концентрирования и хранения диоксида углерода (CO) в составе отходящих газов теплоэнергетических установок, химических и металлургических производств, в...
Тип: Изобретение
Номер охранного документа: 0002576632
Дата охранного документа: 10.03.2016
10.03.2016
№216.014.c08b

Адсорбент для улавливания, концентрирования и хранения диоксида углерода

Изобретение относится к материалам, предназначенным для осуществления адсорбционных процессов, в частности к адсорбентам для улавливания, концентрирования и хранения диоксида углерода Адсорбент изготовлен на основе мезопористой металлорганической каркасной структуры, выбранной из структур...
Тип: Изобретение
Номер охранного документа: 0002576634
Дата охранного документа: 10.03.2016
27.03.2016
№216.014.c783

Способ получения пористых координационных полимеров mil-53

Изобретение относится к способу получения пористых координационных полимеров общей формулы MIL-53(X), где Х=Al или Cr. Способ включает смешение хлорида металла общей формулы XCl×6HO, где X имеет вышеуказанные значения, и 1,4-бензолдикарбоновой кислоты в присутствии растворителя, нагревание...
Тип: Изобретение
Номер охранного документа: 0002578600
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c884

Способ получения пористого координационного полимера nh-mil-101(al) и пористый координационный полимер nh-mil-101(al), полученный этим способом

Изобретение относится к способу получения пористого координационного полимера NH-MIL-101(Al) и к пористому координационному полимеру NH-MIL-101(Al), полученному таким способом. Способ заключается в смешении соли алюминия формулы AlCl×6HO и органической кислоты 2-амино-1,4-бензолдикарбоновой...
Тип: Изобретение
Номер охранного документа: 0002578599
Дата охранного документа: 27.03.2016
10.04.2016
№216.015.3268

Бис(фтординитрометил-onn-азокси)азоксифуразан и способ его получения

Настоящее изобретение относится к области органической химии, а именно к химии производных полинитросоединений, конкретно к бис(фтординитрометил-ONN-азокси)азоксифуразану формулы (I). Способ получения соединения формулы (I) заключается в том, что бис(динитрометил-ONN-азокси)азоксифуразан...
Тип: Изобретение
Номер охранного документа: 0002581050
Дата охранного документа: 10.04.2016
+ добавить свой РИД