×
10.11.2014
216.013.0563

Результат интеллектуальной деятельности: СПОСОБ КОМБИНИРОВАННОЙ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ ДЕТАЛЕЙ МАШИН ИЗ ТЕПЛОСТОЙКИХ СТАЛЕЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к машиностроению, в частности к способу комбинированной химико-термической обработки деталей машин. Способ комбинированной химико-термической обработки деталей машин из теплостойких сталей включает циклическую цементацию деталей и закалку. Перед циклической цементацией проводят предварительные термообработку и механообработку, включающие нормализацию при температуре 950°С, высокий отпуск при температуре 670°С, закалку от температуры 1010°С, высокий отпуск при температуре не менее 570°С и пластическую деформацию методом осадки при температуре не менее 700°С со степенью деформации 50…80%. Циклическую цементацию проводят с чередованием циклов насыщения и диффузионной выдержки, при этом осуществляют не менее 12 циклов продолжительностью не менее 30 минут. Количество циклов зависит от необходимой толщины диффузионного слоя, а соотношение времен насыщения и выдержки составляет от 0,1 до 0,2. После упомянутой цементации проводят высокий отпуск, закалку в масло, обработку холодом при температуре -70°С и трехкратный отпуск при 510°С. Затем осуществляют ионно-плазменное азотирование в диапазоне температур 480…500°С в течение не менее 10 часов при следующих параметрах: напряжение на катоде при катодном распылении - 900 В, в режиме насыщения - 400 В, плотность тока 0,20…0,23 мА/см, состав газовой среды - азотоводородная смесь с 95% азота и 5% водорода, расход газовой смеси до 10 дм/ч, давление в камере при катодном распылении - 13,3 гПа, при насыщении - 5…8 гПа. Обеспечивается повышение износостойкости приповерхностных слоев теплостойкой стали, формирующихся в результате цементации и азотирования, и увеличение долговечности узлов трения скольжения из материала с таким составом приповерхностного слоя. 1 пр.
Основные результаты: Способ комбинированной химико-термической обработки деталей машин из теплостойких сталей, включающий циклическую цементацию деталей и закалку, отличающийся тем, что перед циклической цементацией проводят предварительные термообработку и механообработку, включающие нормализацию при температуре 950С, высокий отпуск при температуре 670С, закалку от температуры 1010С, высокий отпуск при температуре не менее 570С и пластическую деформацию методом осадки при температуре не менее 700С со степенью деформации 50…80%, а циклическую цементацию проводят с чередованием циклов насыщения и диффузионной выдержки, при этом осуществляют не менее 12 циклов продолжительностью не менее 30 минут, при этом количество циклов зависит от необходимой толщины диффузионного слоя, а соотношение времен насыщения и выдержки составляет от 0,1 до 0,2, после упомянутой цементации проводят высокий отпуск, закалку в масло, обработку холодом при температуре -70С и трехкратный отпуск при 510С, затем осуществляют ионно-плазменное азотирование в диапазоне температур 480…500С в течение не менее 10 часов при следующих параметрах: напряжение на катоде при катодном распылении - 900 В, в режиме насыщения - 400 В, плотность тока 0,20…0,23 мА/см, состав газовой среды - азотоводородная смесь с 95% азота и 5% водорода, расход газовой смеси до 10 дм/ч, давление в камере при катодном распылении - 13,3 гПа, при насыщении - 5…8 гПа.

Область техники

Изобретение относится к машиностроению, в частности к способу комбинированной химико-термической обработки (ХТО) деталей машин, используемого для повышения износостойкости деталей узлов трения скольжения, изготовленных из теплостойких сталей.

Уровень техники

Известны способы химико-термической обработки, позволяющие повысить износостойкость стальных деталей и содержащие операции комбинированной химико-термической обработки, включающей цементацию и азотирование. Так, техническое решение «Вакуумный способ карбонитрирования», содержащееся в патенте США №7112248 (МПК C23C 8/30; C23C 8/32; C23C 8/34, опубл. 2006-09-26), предполагает проведение комбинированной обработки с нагревом в вакууме до температуры выше температуры аустенизации (A3), подачу углеродосодержащего газа с выдержкой в этой атмосфере, последующей выдержке в вакууме при той же температуре, снижением температуры ниже уровня A3 и последующее азотирование при этой температуре.

Данный способ позволяет повысить износостойкость, однако для высоких показателей в эксплуатации желательно снизить хрупкость приповерхностных слоев стали, возникающую в результате пересыщения диффузионной зоны углеродом и азотом и возникновения в результате этого больших внутренних напряжений.

Известен также способ химико-термической обработки «Производство из обычного стального сплава компонентов шестерней и/или валов с исключительно высокой прочностью», изложенный в патенте США №7384488 (МПК C21D 1/06; C21D 1/76; C21D 7/06; C21D 9/28; C21D 9/32; C22C 38/00; C22C 38/18; C22C 38/44; C23C 8/32; C23C 8/34; C23C 8/56; C23C 8/76; C23C 8/80, опубл. 2008-06-10), который является близким техническим решением к предлагаемому. Основными признаками данного способа являются следующие технологические операции: нагрев детали в вакууме до температуры 915°C, подача углеродосодержащего газа и выдержка в этих условиях, включая диффузионный период, снижение температуры до 850°C и подача азотосодержащего газа (NH3) и выдержка в этих условиях, закалка на масло (120°C) и низкотемпературный отпуск (180°C).

Важным преимуществом данного способа является наличие отпуска на завершающей стадии обработки, что позволяет снять значительную часть внутренних напряжений.

Однако в процессе диффузионного насыщения поверхностных слоев углеродом и азотом в данном варианте использованы далеко не все возможности для повышения концентрации этих элементов, что является основным недостатком данного способа.

Повышение уровня насыщения диффузионной зоны может быть достигнуто рядом дополнительных приемов.

Одним из таких приемов является циклическая обработка, когда этапы насыщения поверхностных слоев реакционным газом (в данном случае углеродом) и этапы выдержки чередуются с периодической последовательностью.

Преимущества термоциклической обработки выявлены, например, в техническом решении, содержащемся в статье «Закономерности формирования диффузионных слоев и решение диффузионной задачи при термоциклической нитроцементации стали» (журнал "Металловедение и термическая обработка металлов", №1, 2013, С. 34-38) (прототип). Использование термоциклирования позволяет существенно повысить твердость (и особенно микротвердость) поверхностных слоев стали.

Однако и в этом решении используются не все важные резервы повышения механических свойств, а именно резервы повышения износостойкости. В частности, поскольку диффузия происходит, в основном, по границам зерен, для ускорения и повышения эффективности диффузии может быть использована пластическая деформация, позволяющая измельчить зерно и, таким образом, увеличить диффузионную проницаемость обрабатываемого материала. Кроме того, эффективность процесса химико-термической обработки существенно возрастает, если цементацию и азотирование разделяют во времени и проводят при соответствующих им специфических условиях, что отвечает понятию «комбинированная обработка». Такая комбинированная обработка возможна для теплостойких сталей, температура отпуска которых при Цементации превосходит температуру азотирования.

Наиболее близким аналогом предложенного изобретения является способ комбинированной химико-термической обработки деталей машин из теплостойких сталей, включающий циклическую цементацию деталей и закалку (US 20120111454 А1, МПК C23C 8/22, опубл. 10.05.2012, формула).

Однако, в данной патентной заявке не рассматривается в должной постановке и степени подробности задача существенного повышения износостойкости приповерхностных теплостойкой стали, формирующихся в результате цементации и азотирования, и соответствующее увеличение долговечности узлов трения скольжения из материала с таким составом приповерхностного слоя.

Раскрытие изобретения

Задача предлагаемого изобретения способа - существенное повышение износостойкости приповерхностных слоев материала, а именно - теплостойкой стали, формирующихся в результате цементации и азотирования, и соответствующее увеличение долговечности узлов трения скольжения из материала с таким составом приповерхностного слоя.

Для решения указанной задачи и достижения технического результата способ комбинированной химико-термической обработки деталей машин из теплостойких сталей включает циклическую цементацию деталей и закалку. При этом перед циклической цементацией проводят предварительные термообработку и механообработку, включающие нормализацию при температуре 950°C, высокий отпуск при температуре 670°C, закалка от температуры 1010°C, высокий отпуск при температуре не менее 570°C и пластическую деформацию методом осадки при температуре не менее 700°C со степенью деформации 50…80%. Циклическую цементацию проводят с чередованием циклов насыщения и диффузионной выдержки, при этом осуществляют не менее 12 циклов продолжительностью не менее 30 минут. Количество циклов зависит от необходимой толщины диффузионного слоя, а соотношение времен насыщения и выдержки составляет от 0,1 до 0,2. После упомянутой цементации проводят высокий отпуск, закалку в масло, обработку холодом при температуре -70°C и трехкратный отпуск при 510°C. Затем осуществляют ионно-плазменное азотирование в диапазоне температур 480…500°C в течение не менее 10 часов при следующих параметрах: напряжение на катоде при катодном распылении - 900 В, в режиме насыщения - 400 В; плотность тока 0,20…0,23 мА/см2; состав газовой среды - азото-водородная смесь с 95% азота и 5% водорода; расход газовой смеси до 10 дм3/ч; давление в камере при катодном распылении - 13,3 гПа, при насыщении - 5…8 гПа.

Осуществление изобретения

Комбинированную химико-термическую обработку деталей машин проводят в соответствии с изложенной в разделе «Раскрытие изобретения» последовательностью и параметрами режимов технологических операций.

Важно подчеркнуть, что предварительные операции позволяют активировать материал детали и повысить его диффузионную проницаемость, что, в особенности, относится к операциям отпуска и деформации.

Необходимую толщину диффузионного слоя достигают на стадии цементации, благодаря циклической обработке и измельчению зерна в результате пластической деформации на предварительной стадии обработки. Ионно-плазменное азотирование имеет возможность регулирования своих параметров технологического процесса для оптимизации механических свойств приповерхностного слоя, отвечающего за износостойкость детали.

Пример реализации способа.

Для теплостойких сталей (например, из класса стали ВКС-10) оптимальные конкретные величины и диапазоны величин параметров технологических операций получены следующие:

на этапе предварительной подготовки к химико-термической обработке: нормализация при температуре 950°C, высокий отпуск при температуре 670°C, закалка от температуры 1010°C, высокий отпуск при температуре не менее 570°C, пластическая деформация методом осадки при температуре не менее 700°C и со степенью деформации 50…80%.

Установлено, что на стадии цементации число циклов насыщения и диффузионной выдержки должно составлять не менее 12, каждый цикл по продолжительности должен составлять не менее 30 минут, а соотношение времен насыщения и выдержки - от 0,1 до 0,2.

После цементации детали обрабатывают термически, проводя высокий отпуск, закалку на масло, обработку холодом при температуре (-70°C) и трехкратный отпуск при 510°C.

Окончательный этап комбинированной химико-термической обработки завершают стадией ионно-плазменного азотирования в диапазоне температур 480…500°C при следующих параметрах: напряжение на катоде при катодном распылении - 900 В, в режиме насыщения - 400 В; плотность тока 0,20…0,23 мА/см2; состав газовой среды - азото-водородная смесь с 95% азота и 5% водорода; расход газовой смеси до 10 дм3/ч; давление в камере при катодном распылении - 13,3 гПа, при насыщении - 5…8 гПа, время обработки ионно-плазменным азотированием - не менее 10 часов.

Проведены длительные испытания при реверсивном трении скольжения со средней относительной скоростью скольжения v=0,19 м/с и давлением в контакте р=10 МПа пар трения скольжения деталей (например, из стали ВКС-10), обработанных различными способами, в том числе и предложенным. Испытания показали техническое преимущество использования предлагаемого способа - снижение интенсивности изнашивания деталей узлов трения скольжения до 50 раз по сравнению с необработанным состоянием поверхности детали. Интенсивность изнашивания Ih в необработанном состоянии составляет в среднем 10-9, после вакуумной цементации 0,9 10-10, после азотирования 0,3 10-10, а после комбинированной обработки 0,2 10-10.

Способ может быть использован в составе набора технологических операций при изготовлении деталей машин, испытывающих высокие контактные нагрузки, а также участвующих в трении скольжения и подверженных интенсивному изнашиванию.

При этом сочетание ряда признаков, а именно проведение предварительной термической обработки и пластической деформации, циклически повторяемой операции цементации с варьированием стадий насыщения и выдержки, а затем ионно-плазменное азотирование позволяют получить новый синергетический эффект, состоящий в формировании диффузионной зоны повышенной толщины и твердости и многократном (до 50 раз) повышении износостойкости обрабатываемых деталей (по сравнению с их необработанным состоянием).

Способ может быть использован в составе набора технологических операций при изготовлении деталей машин, испытывающих высокие контактные нагрузки, а также участвующих в трении скольжения и подверженных интенсивному изнашиванию.

При этом сочетание ряда признаков, а именно проведение предварительной термической обработки и пластической деформации, циклически повторяемой операции цементации с варьированием стадий насыщения и выдержки, а затем ионно-плазменное азотирование позволяют получить новый синергетический эффект, состоящий в формировании диффузионной зоны повышенной толщины и твердости и многократном (до 50 раз) повышении износостойкости обрабатываемых деталей (по сравнению с их необработанным состоянием).

Способ комбинированной химико-термической обработки деталей машин из теплостойких сталей, включающий циклическую цементацию деталей и закалку, отличающийся тем, что перед циклической цементацией проводят предварительные термообработку и механообработку, включающие нормализацию при температуре 950С, высокий отпуск при температуре 670С, закалку от температуры 1010С, высокий отпуск при температуре не менее 570С и пластическую деформацию методом осадки при температуре не менее 700С со степенью деформации 50…80%, а циклическую цементацию проводят с чередованием циклов насыщения и диффузионной выдержки, при этом осуществляют не менее 12 циклов продолжительностью не менее 30 минут, при этом количество циклов зависит от необходимой толщины диффузионного слоя, а соотношение времен насыщения и выдержки составляет от 0,1 до 0,2, после упомянутой цементации проводят высокий отпуск, закалку в масло, обработку холодом при температуре -70С и трехкратный отпуск при 510С, затем осуществляют ионно-плазменное азотирование в диапазоне температур 480…500С в течение не менее 10 часов при следующих параметрах: напряжение на катоде при катодном распылении - 900 В, в режиме насыщения - 400 В, плотность тока 0,20…0,23 мА/см, состав газовой среды - азотоводородная смесь с 95% азота и 5% водорода, расход газовой смеси до 10 дм/ч, давление в камере при катодном распылении - 13,3 гПа, при насыщении - 5…8 гПа.
Источник поступления информации: Роспатент

Showing 51-57 of 57 items.
25.08.2017
№217.015.aaa9

Способ определения кинематических параметров движения летательного аппарата

Изобретение относится к области навигации и может быть использовано для определения угловых и пространственных координат, а также скоростей и ускорений летательного аппарата. При реализации способа определения кинематических параметров движения летательного аппарата установленные на летательном...
Тип: Изобретение
Номер охранного документа: 0002611559
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.ba52

Способ увеличения эффективного времени накопления сигнала в системах досмотра, формирующих изображение скрытых предметов

Способ увеличения эффективного времени накопления сигнала дополнительно используют видеоизображение от видеоканала оптического диапазона с известным соответствием между пикселями каналов собственного электромагнитного излучения досматриваемого лица и видеоизображения от видеоканала оптического...
Тип: Изобретение
Номер охранного документа: 0002615516
Дата охранного документа: 05.04.2017
25.08.2017
№217.015.ba55

Жесткое колесо волновой передачи дискретного движения

Изобретение относится к области машиностроения, а более конкретно к зубчатым передачам. Жесткое колесо волновой передачи дискретного движения состоит из двух пар зубчатых секторов. В зонах контакта секторов жесткого зубчатого колеса зубья секторов волновой муфты выполнены переменной высоты h....
Тип: Изобретение
Номер охранного документа: 0002615578
Дата охранного документа: 05.04.2017
25.08.2017
№217.015.c916

Способ защиты объектов от оптико-электронных систем наведения

Изобретение относится к области защиты промышленных, государственных и военных объектов от управляемого оружия с оптико-электронными системами наведения путем создания импульсной высокочастотной оптической помехи. Способ предусматривает обнаружение угрозы атаки защищаемого объекта, определение...
Тип: Изобретение
Номер охранного документа: 0002619373
Дата охранного документа: 15.05.2017
25.08.2017
№217.015.c934

Исследовательская пусковая установка

Изобретение относится к пусковым установкам. Исследовательская пусковая установка содержит ствол с метаемым объектом и управляющей полостью, образованной замкнутой эластичной оболочкой. Управляющая полость размещена в пусковой зоне ствола и заполнена рабочим газом. Управляющая полость соединена...
Тип: Изобретение
Номер охранного документа: 0002619501
Дата охранного документа: 16.05.2017
26.08.2017
№217.015.d950

Способ штамповки-вытяжки оболочечных листовых деталей пластичным металлом

Изобретение относится к обработке металлов давлением, в частности к изготовлению оболочечных деталей из листовых заготовок глубокой вытяжкой. Предварительно штампуют заготовку жесткой матрицей по пластичному металлу до образования купольной части. Затем разглаживают пластичный металл до...
Тип: Изобретение
Номер охранного документа: 0002623510
Дата охранного документа: 27.06.2017
26.08.2017
№217.015.e094

Способ ускорения тела в баллистическом эксперименте и устройство для его осуществления

Группа изобретений относится к средствам для метания тел, используемым в баллистических экспериментах. Ускорение тела в баллистическом эксперименте происходит в устройстве, включающем заполненную рабочим газом управляющую полость с размещением ее в пусковой камере ствола со стороны, обратной...
Тип: Изобретение
Номер охранного документа: 0002625404
Дата охранного документа: 13.07.2017
Showing 61-64 of 64 items.
19.04.2019
№219.017.339f

Теплостойкая подшипниковая сталь

Изобретение относится к области металлургии, а именно к созданию теплостойких сталей для подшипников, работающих при температуре до 500°С и используемых, например, для авиационных газотурбинных двигателей (ГТД) и редукторов вертолетов. Сталь содержит углерод, марганец, кремний, хром, вольфрам,...
Тип: Изобретение
Номер охранного документа: 0002447183
Дата охранного документа: 10.04.2012
26.06.2019
№219.017.92e0

Металлоплакирующая смазка

Изобретение относится к области смазочных материалов, которые могут быть использованы в подшипниках качения буксовых узлов локомотивов и других узлах трения машин и механизмов. Сущность: смазка содержит в мас.%: литиевое мыло 12-оксистеариновой кислоты 8-12, литиевое мыло олеиновой кислоты...
Тип: Изобретение
Номер охранного документа: 0002311447
Дата охранного документа: 27.11.2007
26.06.2019
№219.017.92e3

Смазка для тяжелонагруженных узлов трения

Использование: в различных тяжелонагруженных механизмах, используемых на железнодорожном транспорте. Сущность: смазка содержит в мас.%: литиевое мыло стеариновой кислоты 4-10; металлоплакирующая присадка «Валена» 2-4; нефтяное масло - остальное. Технический результат - повышение удельных...
Тип: Изобретение
Номер охранного документа: 0002338777
Дата охранного документа: 20.11.2008
27.06.2020
№220.018.2bca

Высокопрочная коррозионно-стойкая сталь

Изобретение относится к области металлургии, а именно к высокопрочным коррозионно-стойким сталям, выплавляемым в вакуумно-индукционной печи с последующим электрошлаковым переплавом для введения азота под давлением, используемым для изготовления подшипников качения. Сталь содержит компоненты в...
Тип: Изобретение
Номер охранного документа: 0002724766
Дата охранного документа: 25.06.2020
+ добавить свой РИД