×
25.08.2017
217.015.aaa9

Результат интеллектуальной деятельности: Способ определения кинематических параметров движения летательного аппарата

Вид РИД

Изобретение

Аннотация: Изобретение относится к области навигации и может быть использовано для определения угловых и пространственных координат, а также скоростей и ускорений летательного аппарата. При реализации способа определения кинематических параметров движения летательного аппарата установленные на летательном аппарате устройства сканирования направляют на области, характеризующиеся максимальными значениями производных по углу и по температуре. Далее с помощью указанных сканирующих устройств измеряют спектральные плотности мощности излучения не менее чем в трех направлениях и не менее чем в трех спектральных диапазонах длин волн. На основании полученных значений спектральной плотности мощности излучения вычисляют температуру излучения в данном направлении. Далее, сравнивая полученные значения температуры со значениями температуры на предварительно занесенной в базу данных карте реликтового излучения, определяют параметры движения летательного аппарата. Технический результат изобретения заключается в расширении области применения способа, а также в увеличении точности измерений. 4 ил.

Область техники

Изобретение относится к области навигации и может быть использовано для определения угловых и пространственных координат, а также скоростей и ускорений летательного аппарата, например спутника.

Уровень техники

Известен способ определения высоты спутника по звездам, состоящий из каталога, содержащего последовательно соединенные звездный датчик, сигнальный процессор, который служит для обработки входного сигнала, полученного от звездного датчика, блок ранжирования звезд по яркости, блок идентификации звезд, к другому входу которого подключен блок памяти, в котором хранится каталог координат навигационных звезд (патент США №4680718 Method and apparatus of determining an attitude of a satellite (МПК B64G 1/36; G01C 21/24; G01S 3/78; G01S 3/782; G01S 3/785; G01S 5/16; G01V 8/10; G01S 3/786; (IPC1-7): G06F 7/56, опубл. 14.07.1987)).

Недостаток его состоит в том, что устройство по способу неспособно вычислять линейную скорость и ускорение спутника.

Известно устройство для определения ориентации аппарата по звездам, состоящее из блока памяти каталога навигационных звезд, звездного датчика, сигнального процессора, блока ранжирования сигнала по яркости, блока идентификации звезд, блока определения координат ориентации, блока памяти каталога перекрывающихся секторов, блока сравнения предварительных координат и блока выборки звезд и формирования рабочего каталога (полезная модель РФ №23979 УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ОРИЕНТАЦИИ КОСМИЧЕСКОГО АППАРАТА ПО ЗВЕЗДАМ (МПК G01J 1/20, G01C 21/24, опубл. 20.07.2002).

Недостаток его состоит в том, в нем также отсутствует возможность вычисления линейной скорости и ускорения летательного аппарата.

Наиболее близким техническим решением является метод обнаружения и определения пространственного местоположения перемещающихся воздушных объектов искусственного происхождения посредством измерения интенсивности изотропного реликтового излучения, включающий процесс последовательного измерения интенсивности изотропного реликтового излучения, приходящего в точку произведения метода, путем последовательного сканирования измерительными приборами небесной сферы, настроенным на частоту изотропного реликтового излучения (изобретение РФ №2563320 МЕТОД ОБНАРУЖЕНИЯ И ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННОГО МЕСТОПОЛОЖЕНИЯ ПЕРЕМЕЩАЮЩИХСЯ ВОЗДУШНЫХ ОБЪЕКТОВ ИСКУССТВЕННОГО ПРОИСХОЖДЕНИЯ ПОСРЕДСТВОМ ИЗМЕРЕНИЯ ИНТЕНСИВНОСТИ ИЗОТРОПНОГО КОСМИЧЕСКОГО РЕЛИКТОВОГО ИЗЛУЧЕНИЯ, МПК: G01C 21/02, опубл. 20.09.2015).

Недостатки его заключаются в том, что метод применим только в воздушном пространстве, для определения координат и вектора скорости воздушных объектов необходимо использовать несколько измерительных приборов, которые разнесены пространственно, метод может быть реализуем только в условиях прямой видимости воздушного объекта со стороны измерительных приборов, метод в значительной степени зависит от состояния атмосферы и не работает в условиях ливневого дождя, обильного снегопада, в области грозовых туч и при искусственной засветке атмосферы.

Раскрытие изобретения

Задача предлагаемого изобретения заключается в расширении области применимости способа (метода) с использованием реликтового излучения и уменьшении факторов, оказывающих возможное влияние на точность способа.

Задача решается и технический результат достигается тем, что способ определения кинематических параметров движения летательного аппарата включает в себя процедуру позиционирования реализующего способ устройства регистрации, процедуру измерения интенсивности реликтового излучения, вычисление координат движущегося объекта. При этом для определения кинематических параметров движения летательного аппарата, а именно: ориентации, положения, скорости и ускорения летательного аппарата в пространстве, вводят базу данных, хранящую в себе карту реликтового излучения и модель движения Земли, измерительные приборы устанавливают на летательном аппарате, устройства сканирования для определения температуры в заданном угловом диапазоне направляют в области пространства, где на карте реликтового излучения максимальны производные по углу и по температуре, измеряют спектральные плотности мощности излучения не менее чем в трех направлениях и не менее чем в трех спектральных диапазонах длин волн, вычисляют температуры реликтового излучения и при сопоставлении данных, получаемых с устройств вычисления температуры реликтового излучения с данными, содержащимися в базе данных, определяют кинематические параметры движения летательного аппарата: угловые координаты, скорости и ускорения, а также линейные скорости и ускорения.

При реализации способа определения кинематических параметров движения летательного аппарата используют установленные на борту ЛА измерители спектральной плотности мощности, установленные в устройстве сканирования в заданном угловом диапазоне, управляемые блоками управления, блоки вычисления температуры реликтового излучения, вычислитель и базу данных. База данных хранит в себе измеренную карту реликтового излучения. Сопоставление данных, получаемых с устройств вычисления температуры реликтового излучения с данными, содержащимися в базе, позволяют вычислять кинематические параметры движения летательного аппарата: угловые координаты, скорости и ускорения, а также линейные скорости и ускорения.

Перечень фигур

На фиг. 1 представлена структурная блок-схема устройства, реализующего способ определения кинематических параметров движения летательного аппарата.

На фиг. 2 представлен график точности в определении угловой координаты летательного аппарата, в зависимости от направления измерителя спектральной плотности мощности.

На фиг. 3 представлен график точности определения линейной скорости летательного аппарата в зависимости от направления измерителя спектральной плотности мощности.

На фиг. 4 представлена модель дипольной составляющей реликтового излучения, представленная в виде линий уровня. Отмечены три направления датчиков спектральной плотности мощности, для которых ведется расчет точности способа (b1=41°, l1=131°; b2=49°, l2=179°; b3=-11°, l1=119°).

Осуществление изобретения

Способ определения кинематических параметров движения летательного аппарата осуществляется в устройстве, состоящим из n каналов, в состав которых входят: n измерителей спектральной плотности мощности на различных длинах волн 1.1, 1.2…1.n, но не меньше трех, устройства сканирования в заданном угловом диапазоне 2.1, 2.2…2.n, блоки вычисления температуры реликтового излучения 3.1, 3.2…3.n, блоки управления сканирующими устройствами 6.1, 6.2…6.n, базы данных 4, вычислитель 5.

Предлагаемый способ реализуют следующим образом.

Устройство, реализующее способ определения кинематических параметров летательного аппарата на Земной поверхности, настраивают следующим образом: устройства сканирования направляют в области пространства, где на карте реликтового излучения максимальны производные по углу и по температуре. Таким образом обеспечивается минимальная ошибка в определении углового положения летательного аппарата, угловой скорости и линейной скорости. Конкретная настройка зависит от текущего положения Земли и погодных условий. Спектральная плотность мощности реликтового излучения, измеренная на разных длинах волн, с помощью 1.1, 1.2…1.n, оси которых располагаются не в одной плоскости, поступает на вход вычислителей 3.1, 3.2…3.n. Вычислители 3.1, 3.2…3.n преобразуют полученные на разных длинах волн значения к кривой изменения спектральной плотности мощности от длины волны, соответствующей излучению абсолютно черного тела с известной температурой. На основе полученной кривой на выходе 3.1, 3.2…3.n формируются значения температур реликтового излучения в заданном направлении. Вычисленные значения температур реликтового излучения поступают на вычислитель 5. На основе сравнения данных, пришедших с 3.1, 3.2…3.n, и данных, хранящихся в базе данных 4, формируются угловые координаты летательного аппарата и радиус-вектор в земной системе координат. Скорость летательного аппарата вычисляется на основе сравнения температуры реликтового излучения на карте и измеренной температурой на выходе вычислителей 3.1, 3.2…3.n. В случае покоя летательного аппарата измеренные температуры и температуры на карте будут равны. В случае движения летательного аппарата в каком-либо направлении изменение температуры в этом направлении будет пропорционально скорости движения. Ускорения определяют как изменение скоростей во времени. Вычислитель 5 имеет два выхода: на одном выходе формируется вектор кинематических параметров летательного аппарата, на другом выходе - управляющее воздействие, поступающее на вход блоков управления сканирующими устройствами 6.1, 6.2…6.n. Блоки управления сканирующими устройствами 6.1, 6.2…6.n осуществляют поворот устройств сканирования в заданном угловом диапазоне 2.1, 2.2…2.n согласно требуемой программе по минимизации сигнала рассогласования между текущей ориентацией измерителей спектральной плотности мощности и их ориентацией, при котором ошибка измерения углового положения летательного аппарата минимальна. Устройства сканирования в заданном угловом диапазоне 2.1, 2.2…2.n содержат в себе измерители спектральной плотности мощности 1.1, 1.2…1.n.

В основе способа определения кинематических параметров движения летательного аппарата лежит свойство реликтового излучения - дипольная анизотропия. Это свойство интерпретируется как следствие эффекта Доплера, возникающего при движении Солнечной системы относительно реликтового фона со скоростью примерно 370 км/с в сторону созвездия Льва [1]. Способ позволяет однозначно определить угловое положение, скорость, ускорение и радиус-вектор аппарата в пространстве на основе измерений спектральной плотности мощности по нескольким направлениям. Спектр реликтового излучения схож со спектром излучения абсолютно черного тела. В настоящее время определение температуры T+dT реликтового излучения в выбранном направлении возможно с точностью dT~10-6, а величина, при которой заметна дипольная анизотропия излучения, вносит свой вклад T'~10-3 [2], то есть существенное отличие на 3 порядка.

Температура излучения в выбранном направлении для тела, движущегося со скоростью υ, равняется:

,

где T - температура в выбранном направлении, T0 - температура реликтового излучения в ИСО, которая покоится относительно излучения, θ - угол между вектором υ и направлением наблюдения,

Возможную точность определения угла dθ можно рассчитать с учетом того, что точность измерения температуры реликтового излучения на данный момент составляет dT=0.000001 K.

Для определения dθ найдем производную Tabs по θ:

Выразим dθ:

Скорость движения Солнца в направлении созвездия Льва составляет υ=370 км/с, T0=2.72548 К, а угол θ=(0; 360)°

Полученная зависимость точности определения угла dθ от θ имеет вид, представленный на фиг. 2.

Минимальная ошибка определения углового положения вдоль одного направления dθmin=58,2ʺ достигается, если θ=90°, 270°. В интервале θ=(5,8…174,2)°∧(185,8…354,2)° ошибка не превышает 10dθmin

Для нахождения ошибки определения скорости летательного аппарата dυ найдем

Отсюда dv:

Полученная зависимость dv от θ имеет вид, представленный на фиг. 3.

Минимальная ошибка определения скорости dvmin=0.11 км/с достигается, если θ=0°, 180°, 360°. В интервале θ=(0…84,38)°∧(95,62…264,38)°∧(274,38°…360)° ошибка не превышает 10dvmin.

Для оценки точности предлагаемого способа было произведено моделирование работы реализующего способ устройства с тремя датчиками спектральной плотности мощности. В качестве модели дипольной составляющей реликтового излучения была взята модель, предложенная в [3].

В галактических координатах распределение дипольной анизотропии характеризуется тремя амплитудами ΔTx, ΔTy и ΔTz:

ΔT(l,b)=ΔTxcoslcosb+ΔTysinlcosb+ΔTzsinb,

l - галактическая широта, b - галактическая долгота (галактическая система координат)

Результирующие температуры реликтового излучения, воссозданные по этой модели, представлены в виде линий уровня на Фиг. 4. По осям отложена галактическая широта, долгота, для каждой линии уровня характерна температура в мкК, обозначенная на графике.

Для расчета точности устройства, реализующего предлагаемый способ, выберем три направления на карте реликтового излучения (b1=41°, l1=131°; b2=49°, l2=179°; b3=-11°, l1=119°).

Суммарная погрешность в позиционировании ЛА будет равна сумме погрешностей по каждому из направлений. Погрешности в определении позиционирования ЛА для каждого из этих направлений:

Δ1=0,02°,

Δ2=0,026°,

Δ3=0,022°

Полученная точность Δ=2'22ʺ не является предельной для предлагаемого способа, ввиду выбора трех направлений неоптимальным образом. Также точность предлагаемого способа может быть увеличена использованием большего количества - n троек датчиков спектральной плотности мощности реликтового излучения.

Список использованной литературы

[1] Чернин А.Д. Звезды и физика, М.: Наука, 1984, с. 152-153.

[2] Насельский П.Д., Новиков Д.И., Новиков И.Д. Реликтовое излучение Вселенной. - М.: Наука, 2003. - 390 с.

[3] Kogut A., Banday A.J., Bennett C.L. et al, 1996а. ApJ. V. 470. P. 653.

[4] Kogut A., Banday A.J., Bennett C.L. et al. II 1996b. ApJ. V. 464. L29.

Способ определения кинематических параметров движения летательного аппарата, включающий в себя процедуру позиционирования реализующего способ устройства регистрации, процедуру измерения интенсивности реликтового излучения, вычисление координат движущегося объекта, отличающийся тем, что для определения кинематических параметров движения летательного аппарата, а именно: ориентации, положения, скорости и ускорения летательного аппарата в пространстве, вводят базу данных, хранящую в себе карту реликтового излучения и модель движения Земли, измерительные приборы устанавливают на летательном аппарате, устройства сканирования для определения температуры в заданном угловом диапазоне направляют в области пространства, где на карте реликтового излучения максимальны производные по углу и по температуре, измеряют спектральные плотности мощности излучения не менее чем в трех направлениях и не менее чем в трех спектральных диапазонах длин волн, вычисляют температуры реликтового излучения и при сопоставлении данных, получаемых с устройств вычисления температуры реликтового излучения с данными, содержащимися в базе данных, определяют кинематические параметры движения летательного аппарата: угловые координаты, скорости и ускорения, а также линейные скорости и ускорения.
Способ определения кинематических параметров движения летательного аппарата
Способ определения кинематических параметров движения летательного аппарата
Способ определения кинематических параметров движения летательного аппарата
Способ определения кинематических параметров движения летательного аппарата
Источник поступления информации: Роспатент

Showing 1-10 of 50 items.
10.09.2013
№216.012.6714

Способ многолучевой лазерной сварки

Изобретение относится к способу многолучевой лазерной сварки конструкционных сталей и может найти применение в различных отраслях машиностроения. Осуществляют подачу на поверхность свариваемого изделия двух лазерных лучей под углом друг к другу в стык свариваемого соединения и создание одной...
Тип: Изобретение
Номер охранного документа: 0002492035
Дата охранного документа: 10.09.2013
10.11.2013
№216.012.7f1d

Устройство измерения анизотропии пространства скоростей электромагнитного излучения

Изобретение относится к устройству для ориентации объектов в пространстве на основе измерения анизотропии пространства скоростей электромагнитного излучения в движущейся среде. Устройство представляет собой оптический интерферометр, выполненный по кольцевой схеме, и включает лазер, оптическую...
Тип: Изобретение
Номер охранного документа: 0002498214
Дата охранного документа: 10.11.2013
27.09.2014
№216.012.f789

Длинномерный силовой конструкционный элемент типа вертикальной колонны из полимерного композиционного материала

Изобретение относится к элементам силовых конструкций, работающих под нагрузкой, и может быть использовано в качестве элементов опор несущих высоконагруженных вертикальных строительных сооружений, опор мостов, несущих опор линий электропередач, ветровых генераторов и прочее. Длинномерный...
Тип: Изобретение
Номер охранного документа: 0002529206
Дата охранного документа: 27.09.2014
10.10.2014
№216.012.fcd9

Установка для исследования кинетики пропитки волокнистых наполнителей полимерными связующими

Изобретение относится к области аналитики и может быть использовано для исследования и оптимизации режимов формования изделий из полимерных композиционных материалов. Установка для исследования кинетики пропитки волокнистых наполнителей полимерными связующими содержит резервуар со связующим,...
Тип: Изобретение
Номер охранного документа: 0002530575
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fdaa

Способ оценки стойкости тонких защитных покрытий материалов при высокоэнергетическом воздействии на них

Изобретение относится к способу оценки защитных свойств тонких покрытий от поверхностной деградации (разрушения, эрозии, распыления) защищаемых материалов при воздействии на них высокоэнергетических излучений, преимущественно в вакууме. Отличительная особенность способа оценки стойкости тонких...
Тип: Изобретение
Номер охранного документа: 0002530784
Дата охранного документа: 10.10.2014
10.11.2014
№216.013.0563

Способ комбинированной химико-термической обработки деталей машин из теплостойких сталей

Изобретение относится к машиностроению, в частности к способу комбинированной химико-термической обработки деталей машин. Способ комбинированной химико-термической обработки деталей машин из теплостойких сталей включает циклическую цементацию деталей и закалку. Перед циклической цементацией...
Тип: Изобретение
Номер охранного документа: 0002532777
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.0565

Способ и устройство для ускоренного азотирования деталей машин с использованием импульсов электромагнитного поля

Изобретение относится к машиностроению, в частности к способу ионоазотирования деталей машин с использованием импульсов электромагнитного поля. Обеспечивают подачу в камеру для азотирования реакционного газа, его нагрев с одновременным генерированием в камере переменного электромагнитного поля...
Тип: Изобретение
Номер охранного документа: 0002532779
Дата охранного документа: 10.11.2014
10.01.2015
№216.013.17c7

Многослойное покрытие тонкостенной оболочки из полимерного композиционного материала космического антенного рефлектора

Изобретение может использоваться в многослойных комбинированных покрытиях зеркальных космических антенн с рефлекторами из полимерного композиционного материала - углепластика. Многослойное покрытие содержит три последовательных слоя с равномерной толщиной: нижний зеркальный металлический...
Тип: Изобретение
Номер охранного документа: 0002537515
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.183e

Способ извлечения редкоземельных и благородных металлов из золошлаков

Изобретение относится к способу извлечения редкоземельных и благородных металлов из золошлаков энергетических предприятий. Способ включает подготовку золошлаков, смешение их с выщелачивающим раствором, накопление биомассы микроорганизмов, бактериальное выщелачивание редкоземельных и...
Тип: Изобретение
Номер охранного документа: 0002537634
Дата охранного документа: 10.01.2015
27.01.2015
№216.013.2090

Способ дистанционного обнаружения нефтяных загрязнений на земной поверхности

Изобретение относится к измерительной технике и может быть использовано для оперативного обнаружения утечек нефтепроводов, разливов нефти и нефтепродуктов на земной поверхности. Задачей изобретения является создание способа определения загрязнений нефтепродуктами земной поверхности....
Тип: Изобретение
Номер охранного документа: 0002539784
Дата охранного документа: 27.01.2015
Showing 1-10 of 50 items.
10.09.2013
№216.012.6714

Способ многолучевой лазерной сварки

Изобретение относится к способу многолучевой лазерной сварки конструкционных сталей и может найти применение в различных отраслях машиностроения. Осуществляют подачу на поверхность свариваемого изделия двух лазерных лучей под углом друг к другу в стык свариваемого соединения и создание одной...
Тип: Изобретение
Номер охранного документа: 0002492035
Дата охранного документа: 10.09.2013
10.11.2013
№216.012.7f1d

Устройство измерения анизотропии пространства скоростей электромагнитного излучения

Изобретение относится к устройству для ориентации объектов в пространстве на основе измерения анизотропии пространства скоростей электромагнитного излучения в движущейся среде. Устройство представляет собой оптический интерферометр, выполненный по кольцевой схеме, и включает лазер, оптическую...
Тип: Изобретение
Номер охранного документа: 0002498214
Дата охранного документа: 10.11.2013
27.09.2014
№216.012.f789

Длинномерный силовой конструкционный элемент типа вертикальной колонны из полимерного композиционного материала

Изобретение относится к элементам силовых конструкций, работающих под нагрузкой, и может быть использовано в качестве элементов опор несущих высоконагруженных вертикальных строительных сооружений, опор мостов, несущих опор линий электропередач, ветровых генераторов и прочее. Длинномерный...
Тип: Изобретение
Номер охранного документа: 0002529206
Дата охранного документа: 27.09.2014
10.10.2014
№216.012.fcd9

Установка для исследования кинетики пропитки волокнистых наполнителей полимерными связующими

Изобретение относится к области аналитики и может быть использовано для исследования и оптимизации режимов формования изделий из полимерных композиционных материалов. Установка для исследования кинетики пропитки волокнистых наполнителей полимерными связующими содержит резервуар со связующим,...
Тип: Изобретение
Номер охранного документа: 0002530575
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fdaa

Способ оценки стойкости тонких защитных покрытий материалов при высокоэнергетическом воздействии на них

Изобретение относится к способу оценки защитных свойств тонких покрытий от поверхностной деградации (разрушения, эрозии, распыления) защищаемых материалов при воздействии на них высокоэнергетических излучений, преимущественно в вакууме. Отличительная особенность способа оценки стойкости тонких...
Тип: Изобретение
Номер охранного документа: 0002530784
Дата охранного документа: 10.10.2014
10.11.2014
№216.013.0563

Способ комбинированной химико-термической обработки деталей машин из теплостойких сталей

Изобретение относится к машиностроению, в частности к способу комбинированной химико-термической обработки деталей машин. Способ комбинированной химико-термической обработки деталей машин из теплостойких сталей включает циклическую цементацию деталей и закалку. Перед циклической цементацией...
Тип: Изобретение
Номер охранного документа: 0002532777
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.0565

Способ и устройство для ускоренного азотирования деталей машин с использованием импульсов электромагнитного поля

Изобретение относится к машиностроению, в частности к способу ионоазотирования деталей машин с использованием импульсов электромагнитного поля. Обеспечивают подачу в камеру для азотирования реакционного газа, его нагрев с одновременным генерированием в камере переменного электромагнитного поля...
Тип: Изобретение
Номер охранного документа: 0002532779
Дата охранного документа: 10.11.2014
10.01.2015
№216.013.17c7

Многослойное покрытие тонкостенной оболочки из полимерного композиционного материала космического антенного рефлектора

Изобретение может использоваться в многослойных комбинированных покрытиях зеркальных космических антенн с рефлекторами из полимерного композиционного материала - углепластика. Многослойное покрытие содержит три последовательных слоя с равномерной толщиной: нижний зеркальный металлический...
Тип: Изобретение
Номер охранного документа: 0002537515
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.183e

Способ извлечения редкоземельных и благородных металлов из золошлаков

Изобретение относится к способу извлечения редкоземельных и благородных металлов из золошлаков энергетических предприятий. Способ включает подготовку золошлаков, смешение их с выщелачивающим раствором, накопление биомассы микроорганизмов, бактериальное выщелачивание редкоземельных и...
Тип: Изобретение
Номер охранного документа: 0002537634
Дата охранного документа: 10.01.2015
27.01.2015
№216.013.2090

Способ дистанционного обнаружения нефтяных загрязнений на земной поверхности

Изобретение относится к измерительной технике и может быть использовано для оперативного обнаружения утечек нефтепроводов, разливов нефти и нефтепродуктов на земной поверхности. Задачей изобретения является создание способа определения загрязнений нефтепродуктами земной поверхности....
Тип: Изобретение
Номер охранного документа: 0002539784
Дата охранного документа: 27.01.2015
+ добавить свой РИД