×
20.06.2014
216.012.d34e

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ СТРУКТУРИРОВАННОЙ ПОВЕРХНОСТИ ПОЛУПРОВОДНИКОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области полупроводниковой технологии и может быть использовано при изготовлении наноструктур. Способ получения структурированной поверхности полупроводников, заключающийся в том, что на поверхности полупроводниковой пластины выращивают защитный слой, на который наносят маску со вскрытыми окнами заданного размера, затем проводят облучение поверхности полупроводниковой пластины потоком ионов через маску и защитный слой, что приводит к получению аморфного слоя в полупроводниковой пластине во вскрытых окнах маски. Полученный аморфный слой перед удалением окисляют, затем удаляют оксиды, а также с поверхности полупроводниковой пластины удаляют защитный слой и маску. Использование способа позволяет значительно увеличить площадь структурированной поверхности полупроводниковых пластин с упорядоченно расположенными затравочными областями нанометрового размера, расширить диапазон размеров и сохранить заданные размеры затравочных областей, защитить поверхность полупроводниковой пластины от загрязнений. 8 з.п. ф-лы, 2 ил.

Изобретение относится преимущественно к области полупроводниковой технологии, индустрии наносистем и материалов и может быть использовано при изготовлении наноструктур, например, для создания затравочных областей при изготовлении фильтров и наномембран, для структур с пространственно упорядоченным расположением нанокристаллов в кристаллической полупроводниковой матрице, которые можно использовать при изготовлении, например, фотоприемников.

Известен способ получения структурированной поверхности полупроводников (Detlev Grutzmacher, Thomas Fromherz, Christian Dais, Julian Stangl, Elisabeth Muller, Yasin Ekinci, Harun H. Solak, Hans Sigg, Rainer T. Lechner, Eugen Wintersberger, Stefan Birner, Vaclav Holy, and Gunther Bauer. "Three-Dimensional Si/Ge Quantum Dot Crystals" - Journal of NANO LETTERS, 2007, Vol.7, No.10, 3150-3156), в котором используют интерференционную ультрафиолетовую литографию с длиной волны 13,5 нм и последующее реактивное ионное травление. Способ включает в себя нанесение резиста на поверхность кремния, проведение интерференционной ультрафиолетовой литографии, вскрытие окон на участках засвеченного резиста, травление поверхности через маску-резист, в области вскрытых окон, и формирование тем самым затравочных областей нанометрового размера, упорядоченно расположенных на поверхности полупроводниковой пластины.

Основными недостатками данного способа являются малая площадь сканирования поверхности, загрязнение пластины остатками резиста и ионно-реактивного травления, низкая селективность скорости травления различных материалов, уход от размеров за счет травления поверхности под маской, затруднены воспроизводимость элементов с нанометровыми размерами и контроль клина травления.

Из известных способов получения структурированной поверхности полупроводников наиболее близким к заявленному является способ, представленный в работе (Qiangmin wei, Jie Lian, Wei Lu, and Lumin Wang. "Highly Ordered Ga Nanodroplets on a GaAs Surface Formed by a Focused Ion Beam"-Physical Review Letters, 2008, v.100, 076103). Согласно этому способу структурированную поверхность полупроводника получают при локальном облучении поверхности сфокусированным пучком ускоренных ионов Ga+. Затем галлий и аморфный слой, созданный ионным облучением, удаляют химическим (в растворе HCl:H2O) и термическим способом, отжигая структуру при температуре 1250°C. В результате получают области затравки - ямки нанометрового размера (~100 нм) глубиной нескольких десятков нанометров.

Основным недостатком данного способа является дорогостоящее оборудование, требуемое для проведения процесса, и низкая производительность, т.к. сканирование сфокусированным ионным пучком требует большие временные затраты экспонирования, что влечет за собой малые площади сканирования поверхности, загрязнение поверхности Ga, который очень реакционноспособный и подвижный. Отмеченные недостатки затрудняют широкомасштабное использование получаемых структурированных поверхностей как в исследовательских целях, так и для создания приборов на их основе.

Техническим результатом изобретения является:

- значительное увеличение площади структурированной поверхности полупроводниковых пластин с упорядоченно расположенными затравочными областями нанометрового размера,

- расширение диапазона размеров и сохранение заданного размера затравочных областей,

- защищенность поверхности полупроводниковой пластины от загрязнений.

Технический результат достигается тем, что в способе получения структурированной поверхности полупроводников, включающем ионное облучение поверхности полупроводниковой пластины и последующее удаление полученного аморфного слоя, дополнительно перед ионным облучением на поверхности полупроводниковой пластины выращивают защитный слой, на который наносят маску со вскрытыми в ней окнами, а ионное облучение поверхности полупроводниковой пластины проводят потоком ионов через маску и защитный слой, что приводит к созданию аморфного слоя в полупроводниковой пластине во вскрытых окнах маски, полученный аморфный слой перед удалением окисляют, затем удаляют оксиды, а также с поверхности полупроводниковой пластины удаляют защитный слой и маску.

В способе защитный слой заданной толщины на поверхности полупроводниковой пластины выращивают высокотемпературным окислением поверхности полупроводниковой пластины в атмосфере сухого кислорода или пиролитическим осаждением окисла, или анодным окислением.

В способе маску на поверхности защитного слоя наносят с помощью импринт-литографии, или электронно-лучевой литографии, или наносферной литографии, или используя пленки пористого Al2O3 или Ti2O3.

В способе ионное облучение поверхности полупроводниковой пластины через маску с заданными размерами окон и защитный слой осуществляют с помощью различных источников ионов.

В способе аморфный слой получают ионным облучением поверхности полупроводниковой пластины в местах открытых для проникновения ионов.

В способе удаление маски проводят в плазме кислорода или химическом растворе.

В способе удаление защитного слоя проводят в растворе плавиковой кислоты.

В способе удаление аморфного слоя проводят заданным количеством циклов - окисления аморфного слоя в растворе NH4OH+H2O+H2O2 (1:10:1) при комнатной температуре с последующим удалением оксида в плавиковой кислоте.

В способе ионное облучение проводят с энергией от 0.5 кэВ до 500 кэВ и дозой от 1012см-2 до 1016см-2.

Сущность изобретения поясняется нижележащим описанием и прилагаемыми фигурами.

На фиг.1 приведена схема получения структурированной поверхности полупроводника: позиция 1 - полупроводниковая пластина (1) с защитным слоем (2); позиция 2 - полупроводниковая пластина (1) с защитным слоем (2) и маской со вскрытыми окнами (3); позиция 3 - облучение поверхности полупроводниковой пластины (1) ионами (4) низких или высоких энергий через маску со вскрытыми окнами (3) и защитный слой (2); позиция 4 - создание аморфного слоя (5) за счет ионного облучения полупроводниковой пластины (1) через маску (3) в местах открытых для проникновения ионов; позиция 5 - полупроводниковая пластина (1) с затравочными областями, которые формируют в области травления аморфного слоя (6).

На фиг.2 показана морфология поверхности Si (по данным атомно-силовой микроскопии): (а) - затравочные области (канавки) глубиной 50 нм, полученные после создания маски с помощью наноимпринт-литографии, облучения поверхности ионами Ge+ с энергией 80 кэВ и дозой ионов 1015см-2 через маску и защитный слой, и 8 циклов окисления/удаления оксида. Размер сканированной области - 800×800 нм.; (б) - затравочные области (ямки) глубиной 10 нм, полученные после создания маски с помощью электронно-лучевой литографии, облучения поверхности ионами Ge+ через маску и защитный слой (энергия ионов 60 кэВ, доза ионов 1015см-2), и 5 циклов окисления/удаления оксида. Размер сканированной области - 1000×1000 нм.

Сущность изобретения заключается в следующем.

При получении структурированной поверхности полупроводника перед ионным облучением поверхности полупроводниковой пластины проводят дополнительные операции, не применяемые в известном способе, а именно: на поверхности полупроводниковой пластины создают защитный слой, на который наносят маску, в которой вскрывают окна заданного размера. После ионного облучения поверхности полупроводниковой пластины в местах, где вскрыты окна в маске, получают аморфный слой, затем с поверхности полупроводниковой пластины удаляют маску и защитный слой, а перед удалением аморфного слоя его окисляют, а затем удаляют.

Создание защитного слоя на поверхности полупроводниковой пластины позволит получить атомарно чистую поверхность после ионного облучения и удаления защитного слоя. Изменение геометрических параметров структурированной поверхности в широком диапазоне в зависимости от рисунка маски, типа ионов, энергии и дозы ионов, а также от количества повторяющихся операций окисления и удаления окисла, увеличение площади структурированной поверхности полупроводниковой пластины с упорядоченным расположением повторяющихся затравочных областей, имеющих нанометровые размеры, позволит упростить способы создания структурированной поверхности полупроводников и структур с упорядоченным расположением нанокристаллов, что приведет к уменьшению дисперсии дискретного энергетического спектра наноструктур, повысит достоинства систем с дискретным спектром состояний, увеличит абсолютную интенсивность фотоотклика в фотоприемниках на основе нанокристаллов, позволит упростить существующие способы создания нанофильтров.

Перед нанесением маски поверхность полупроводниковой пластины предварительно окисляют, создавая защитный слой (фиг.1, позиция 2). Окисление поверхности пластины осуществляется одним из способов:

высокотемпературным окислением в атмосфере сухого кислорода или пиролитическим осаждением, или анодным окислением. Маска на поверхности защитного слоя создается с помощью импринт-литографии, или электронно-лучевой литографии, или наносферной литографии, или используя пленки пористого Al2O3 или Ti2O3. Параметры маски (толщина, рисунок, период расположения и размер вскрытых в ней окон) и толщина защитного слоя подбираются в зависимости от требуемых параметров структурированной поверхности. Структура «полупроводниковая пластина/защитный слой/маска» (фиг.1, позиция 3) облучается ионами с энергией от 0.5 кэВ до 500 кэВ и дозой ионов от 1012см-2 до 1016см-2. При облучении можно использовать ионы средних и тяжелых масс, например Ge+, Si+, Ar+, Kr+, Xe+. Ионы достигают поверхности полупроводника через вскрытые в маске окна, что приводит к формированию аморфного слоя в полупроводнике (фиг.1, позиция 4). После облучения с поверхности полупроводниковой пластины удаляется защитный слой и маска, полученный аморфный слой окисляется, а затем удаляется.

Для создания структурированной поверхности полупроводника подбирается энергия ионов такая, которая при облучении структуры «полупроводниковая пластина/защитный слой/маска» позволяет создать аморфные слои (затравочные области) только в свободных от маски областях. Подбор энергии выполняется с помощью компьютерной программы SRIM. Для расчетов нижней границы энергии ионов (0.5 кэВ) выбирается минимальная толщина защитного слоя (-2 нм), при которой через вскрытые окна в маске, ионы, падая на поверхность защитного слоя, проникают в полупроводник. Верхняя граница энергии ионов (500 кэВ) определяется максимальной толщиной маски (~150 нм) и защитного слоя (~500 нм). Энергию ионов подбирают такой, чтобы в областях закрытых маской ионы не достигали поверхности полупроводника.

Геометрические параметры структурированной поверхности зависят от энергии и дозы ионов. Нижняя граница энергии ионов определяется только толщиной защитного слоя. Верхняя граница определяется толщиной маски и защитного слоя. При энергии ионов ниже 0.5 кэВ ионы не достигают поверхности полупроводника через защитный слой. При энергии ионов выше 500 кэВ пробег ионов достаточен для разупорядочения поверхности полупроводника, в том числе в областях закрытых маской. Ионное облучение при дозах ниже 1012см-2 не приводит к созданию разупорядоченного (аморфного) слоя полупроводника, поверхность полупроводника остается гладкой без каких-либо особенностей. При дозах ионов выше 1016см-2 в полупроводнике создается большое количество дефектов. Это влечет за собой уход размеров затравочных областей от заданного размера в маске, перекрытие затравочных областей. После облучения структуры маску удаляют в плазме кислорода или химическом растворе H2SO4+H2O2 (1:1). Удаление защитного слоя, например оксидного слоя, осуществляется в растворе плавиковой кислоты (HF). Аморфизованные слои удаляют путем последовательного проведения заданного количества циклов окисления поверхности и удаления оксида в химических растворах. После первого цикла в местах, подвергавшихся облучению, появляются затравочные области глубиной до нескольких нанометров. Последующее окисление и удаления оксида приводит к увеличению скорости травления так, что после проведения, например, 5 повторяющихся операций глубина затравочной области увеличивается до 50 нм (фиг.1, позиция 5). При этом размеры затравочных областей и период их расположения совпадают с рисунком маски.

Выше описанный способ структурирования поверхности подходит для любого типа полупроводниковых пластин, например, таких как Si, Ge, GaAs.

Пример 1

Пластина кремния диаметром 76 мм предварительно термически окисляется, толщина полученного защитного слоя составляет 50 нм. На поверхности защитного слоя - оксида кремния (SiO2) после стандартных операций наноимпринт-литографии, создается маска в виде канавок (ширина канавки составляла 80 нм и глубина - 120 нм, период - 180 нм). Структура «полупроводниковая пластина/оксидный слой/маска» облучается ионами Ge+ с энергией 80 кэВ и дозой ионов 1015 см-2. Облучение проводится при комнатной температуре. Затем удаляется маска в химическом растворе H2SO4+H2O2 (1:1) и защитный слой SiO2 в плавиковой кислоте. Далее проводится несколько циклов окисления поверхности кремния в растворе NH4OH+H2O+H2O2 (1:10:1) и удаления оксида в плавиковой кислоте. В процессе каждого цикла удаляется примерно 1 нм кристаллического кремния. После первого цикла в местах, подвергающихся облучению, появляются затравочные области - канавки глубиной до 2 нм. Последующие окисления и снятия оксида приводят к увеличению скорости травления так, что после снятия 8 нм кристаллического кремния канавка травления в области облучения увеличивается до 50 нм (фиг.2,а). При этом ширина канавки соответствует заданной ширине канавки в маске (80 нм).

Такие же результаты достигаются, когда в технологическом маршруте меняется способ удаления маски (удаление маски проводилось в плазме кислорода).

Если облучение поверхности проводится при температуре выше 100°C, то максимальная глубина канавки достигала 10 нм.

Увеличивая энергию ионов от 0.5 кэВ до 100 кэВ, при фиксированных параметрах маски, защитного слоя, дозы ионов и температуры подложки при облучении, приводит к немонотонному изменению глубины канавки. Так, например, в диапазоне энергий от 0.5 кэВ до 25 кэВ глубина рельефа не превышает 5 нм. С увеличением энергии от 30 кэВ до 100 кэВ глубина рельефа возрастает от 7 нм до 100 нм.

При дозе 1012см-2 наблюдается изменение рельефа поверхности полупроводниковой пластины в пределах 2 нм и сохраняется период повторения канавок, соответствующий маске. В диапазоне доз от 1013 см-2 до 1016см-2 глубина канавки увеличивается от 5 нм до 60 нм, рисунок маски сохраняется.

Изменение толщины защитного слоя от 50 нм до 20 нм приводит к увеличению глубины канавки.

Пример 2

Пластина кремния предварительно термически окисляется, толщина защитного слоя составляет 40 нм. На поверхности защитного слоя оксида кремния (SiO2) наносится маска толщиной 90 нм. После стандартной операции электронно-лучевой литографии получается маска в виде решетки с «ямками» диаметром 50 нм и глубиной 90 нм, повторяющимися с периодом 100 нм. Структуры «полупроводниковая пластина/оксидный слой/маска» облучаются ионами Ge с энергией 60 кэВ и дозой ионов 1015см-2. Облучение проводится при комнатной температуре. Затем удаляется маска в химическом растворе H2SO4+H2O2 (1:1) и защитный слой SiO2 в плавиковой кислоте. Далее проводится несколько циклов окисления поверхности пластины кремния в растворе NH4OH+Н2О+H2O2 (1:10:1) и удаления оксида в плавиковой кислоте. После повторения 5 циклов окисления и удаления оксида в местах, подвергавшихся облучению, появляются затравочные области в виде ямок диаметром 50 нм и глубиной 10 нм (фиг.2,б).

Таким образом, полученные результаты дают возможность создавать структурированную поверхность полупроводниковых пластин Si, Ge, GaAs на большой площади, параметры которой можно менять в широком интервале, регулируя энергию, дозу облучения, параметры маски и защитного слоя, и открывают новые перспективы для формирования упорядоченных массивов наноструктур.

Контроль морфологии поверхности на всем протяжении технологического процесса проводился с помощью атомно-силовой микроскопии (АСМ).


СПОСОБ ПОЛУЧЕНИЯ СТРУКТУРИРОВАННОЙ ПОВЕРХНОСТИ ПОЛУПРОВОДНИКОВ
СПОСОБ ПОЛУЧЕНИЯ СТРУКТУРИРОВАННОЙ ПОВЕРХНОСТИ ПОЛУПРОВОДНИКОВ
Источник поступления информации: Роспатент

Showing 11-20 of 60 items.
10.07.2014
№216.012.dcd0

Сдвиговый регистр

Изобретение относится к вычислительной технике. Технический результат заключается в обеспечении реверсивности сдвига информации внутри сдвигового регистра. Сдвиговый регистр содержит ячейки, каждая из которых состоит из трех n-МОП транзисторов, двух емкостей, двух шин тактового питания, шины...
Тип: Изобретение
Номер охранного документа: 0002522306
Дата охранного документа: 10.07.2014
27.08.2014
№216.012.efb9

Сдвиговый регистр

Изобретение относится к оптоэлектронике и микроэлектронике и может быть использовано для построения сдвиговых регистров в фотоприемных субмодулях для мозаичных фотоприемников, в частности, в фотоприемниках на микроболометрах. Техническим результатом является обеспечение возможности...
Тип: Изобретение
Номер охранного документа: 0002527188
Дата охранного документа: 27.08.2014
10.09.2014
№216.012.f2f1

Плазменный коммутатор

Плазменный коммутатор относится к электронной технике и может быть, в частности, использован при создании импульсных генераторов, источников питания импульсных устройств, импульсных лазеров. Плазменный коммутатор содержит герметизируемую камеру, заполненную рабочим газом, с катодом и сетчатым...
Тип: Изобретение
Номер охранного документа: 0002528015
Дата охранного документа: 10.09.2014
27.09.2014
№216.012.f9bb

Устройство считывания для многоэлементных фотоприемников инфракрасного излучения

Изобретение относится к области интегральной микроэлектроники и предназначено для обработки оптической информации. Техническим результатом является повышение точности определения дальности до объектов в одном кадре одновременно с получением тепловизионного изображения. Устройство содержит...
Тип: Изобретение
Номер охранного документа: 0002529768
Дата охранного документа: 27.09.2014
10.10.2014
№216.012.fba9

Сдвиговый регистр (варианты)

Группа изобретений относится к оптоэлектронике и микроэлектронике и может быть использована для построения сдвиговых регистров в фотоприемных субмодулях для мозаичных фотоприемников, в частности, в фотоприемниках на микроболометрах. Техническим результатом является обеспечение двунаправленной...
Тип: Изобретение
Номер охранного документа: 0002530271
Дата охранного документа: 10.10.2014
20.10.2014
№216.012.fec9

Способ измерения для контроля водорода в твердотельном материале

Изобретение относится к области исследования материалов с помощью оптических средств, а также к технологии изготовления полупроводниковых приборов - для контроля водорода в материале при создании приборов и структур. В отношении образца с тестируемым материалом регистрируют спектр...
Тип: Изобретение
Номер охранного документа: 0002531081
Дата охранного документа: 20.10.2014
10.01.2015
№216.013.19d4

Способ получения приборных графеновых структур

Использование: для разработки наноразмерных приборов на основе гетероструктур с использованием слоев графена и мультиграфена. Сущность изобретения заключается в том, что выращивают на подложке-доноре слой графена, который затем покрывают вспомогательной для переноса графенового слоя пленкой....
Тип: Изобретение
Номер охранного документа: 0002538040
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1b0c

Способ изготовления структуры кремний-на-сапфире

Изобретение относится к полупроводниковой технологии и может быть использовано для изготовления приборных структур. В подложку из кремния проводят имплантацию ионов с формированием слоя, предназначенного для переноса. Осуществляют активирующую обработку поверхности, по которой проводят...
Тип: Изобретение
Номер охранного документа: 0002538352
Дата охранного документа: 10.01.2015
27.01.2015
№216.013.2168

Способ изготовления ступенчатого высотного калибровочного стандарта для профилометрии и сканирующей зондовой микроскопии

Предложенный способ относится к изготовлению инструмента измерительной техники для исследований профилей топографических особенностей гладкой поверхности - ступенчатого высотного калибровочного стандарта для профилометрии и сканирующей зондовой микроскопии. Согласно заявленному способу,...
Тип: Изобретение
Номер охранного документа: 0002540000
Дата охранного документа: 27.01.2015
27.02.2015
№216.013.2ca6

Двухкаскадный динамический сдвиговый регистр

Изобретение относится к оптоэлектронике и микроэлектронике и может быть использовано для построения сдвиговых регистров в фотоприемных субмодулях для мозаичных фотоприемников. Техническим результатом является расширение функциональных возможностей за счет обеспечения реверсивности сдвига...
Тип: Изобретение
Номер охранного документа: 0002542898
Дата охранного документа: 27.02.2015
Showing 11-20 of 47 items.
10.07.2014
№216.012.dcd0

Сдвиговый регистр

Изобретение относится к вычислительной технике. Технический результат заключается в обеспечении реверсивности сдвига информации внутри сдвигового регистра. Сдвиговый регистр содержит ячейки, каждая из которых состоит из трех n-МОП транзисторов, двух емкостей, двух шин тактового питания, шины...
Тип: Изобретение
Номер охранного документа: 0002522306
Дата охранного документа: 10.07.2014
27.08.2014
№216.012.efb9

Сдвиговый регистр

Изобретение относится к оптоэлектронике и микроэлектронике и может быть использовано для построения сдвиговых регистров в фотоприемных субмодулях для мозаичных фотоприемников, в частности, в фотоприемниках на микроболометрах. Техническим результатом является обеспечение возможности...
Тип: Изобретение
Номер охранного документа: 0002527188
Дата охранного документа: 27.08.2014
10.09.2014
№216.012.f2f1

Плазменный коммутатор

Плазменный коммутатор относится к электронной технике и может быть, в частности, использован при создании импульсных генераторов, источников питания импульсных устройств, импульсных лазеров. Плазменный коммутатор содержит герметизируемую камеру, заполненную рабочим газом, с катодом и сетчатым...
Тип: Изобретение
Номер охранного документа: 0002528015
Дата охранного документа: 10.09.2014
27.09.2014
№216.012.f9bb

Устройство считывания для многоэлементных фотоприемников инфракрасного излучения

Изобретение относится к области интегральной микроэлектроники и предназначено для обработки оптической информации. Техническим результатом является повышение точности определения дальности до объектов в одном кадре одновременно с получением тепловизионного изображения. Устройство содержит...
Тип: Изобретение
Номер охранного документа: 0002529768
Дата охранного документа: 27.09.2014
10.10.2014
№216.012.fba9

Сдвиговый регистр (варианты)

Группа изобретений относится к оптоэлектронике и микроэлектронике и может быть использована для построения сдвиговых регистров в фотоприемных субмодулях для мозаичных фотоприемников, в частности, в фотоприемниках на микроболометрах. Техническим результатом является обеспечение двунаправленной...
Тип: Изобретение
Номер охранного документа: 0002530271
Дата охранного документа: 10.10.2014
20.10.2014
№216.012.fec9

Способ измерения для контроля водорода в твердотельном материале

Изобретение относится к области исследования материалов с помощью оптических средств, а также к технологии изготовления полупроводниковых приборов - для контроля водорода в материале при создании приборов и структур. В отношении образца с тестируемым материалом регистрируют спектр...
Тип: Изобретение
Номер охранного документа: 0002531081
Дата охранного документа: 20.10.2014
10.01.2015
№216.013.19d4

Способ получения приборных графеновых структур

Использование: для разработки наноразмерных приборов на основе гетероструктур с использованием слоев графена и мультиграфена. Сущность изобретения заключается в том, что выращивают на подложке-доноре слой графена, который затем покрывают вспомогательной для переноса графенового слоя пленкой....
Тип: Изобретение
Номер охранного документа: 0002538040
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1b0c

Способ изготовления структуры кремний-на-сапфире

Изобретение относится к полупроводниковой технологии и может быть использовано для изготовления приборных структур. В подложку из кремния проводят имплантацию ионов с формированием слоя, предназначенного для переноса. Осуществляют активирующую обработку поверхности, по которой проводят...
Тип: Изобретение
Номер охранного документа: 0002538352
Дата охранного документа: 10.01.2015
27.01.2015
№216.013.2168

Способ изготовления ступенчатого высотного калибровочного стандарта для профилометрии и сканирующей зондовой микроскопии

Предложенный способ относится к изготовлению инструмента измерительной техники для исследований профилей топографических особенностей гладкой поверхности - ступенчатого высотного калибровочного стандарта для профилометрии и сканирующей зондовой микроскопии. Согласно заявленному способу,...
Тип: Изобретение
Номер охранного документа: 0002540000
Дата охранного документа: 27.01.2015
27.02.2015
№216.013.2ca6

Двухкаскадный динамический сдвиговый регистр

Изобретение относится к оптоэлектронике и микроэлектронике и может быть использовано для построения сдвиговых регистров в фотоприемных субмодулях для мозаичных фотоприемников. Техническим результатом является расширение функциональных возможностей за счет обеспечения реверсивности сдвига...
Тип: Изобретение
Номер охранного документа: 0002542898
Дата охранного документа: 27.02.2015
+ добавить свой РИД