×
20.09.2013
216.012.6d49

СПОСОБ ИЗГОТОВЛЕНИЯ ТЕРМОСТАБИЛЬНЫХ РЕДКОЗЕМЕЛЬНЫХ МАГНИТОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к порошковой металлургии, в частности к получению термостабильных редкоземельных магнитов. Магниты могут использоваться в системах автоматики, промышленном оборудовании, автомобилях. Осуществляют выплавку сплава и получение из него порошка. После чего порошок подвергают предварительному прессованию и спеканию при температуре на 30-100 К ниже температуры спекания с последующим помолом полученной заготовки совместно с 0.5-2.0 мас.% гидрида редкоземельного металла. После чего проводят прессование в магнитном поле, спекание прессовок и термическую обработку. Полученные магниты обладают высокими магнитными свойствами и обеспечиваеют повышение точности и стабильности работы навигационного оборудования и систем авиационной автоматики. 5 табл., 1 пр.
Основные результаты: Способ изготовления термостабильных редкоземельных магнитов, включающий операции выплавки сплава, получения порошка, с последующим его прессованием в магнитном поле, спекания прессовок и термическую обработку, отличающийся тем, что перед операцией прессования порошка в магнитном поле дополнительно проводят предварительное прессование и предспекание при температуре на 30-100 К ниже температуры спекания с последующим помолом заготовки после предспекания совместно с гидридом редкоземельного металла или редкоземельных металлов, добавляемого в количестве 0,5-2,0 мас.% от общей массы сплава.
Реферат Свернуть Развернуть

Изобретение относится к области электротехники, в частности к изготовлению термостабильных редкоземельных постоянных магнитов для использования в системах автоматики, промышленном оборудовании, автомобилях, ветряных генераторах, и т.д.

Известен способ изготовления редкоземельных магнитов, включающий операции выплавки сплава с последующим его измельчением, прессования полученного порошка в магнитном поле, спекания и термическую обработку, включающую в себя выдержку при температуре 1175К, 7.2 кс (килосекунд), с последующим медленным охлаждением со скоростью (1-2) К/мин до температуры 775К, выдержку при этой температуре в течение 1 часа с последующей закалкой (Глебов В.А., Лукин А.А. Нанокристаллические редкоземельные магнитотвердые материалы. М. ФГУП ВНИИНМ. 2007. С.179). Недостатком данного способа является невысокий уровень достигаемых свойств магнитов, в частности, магнитной индукции.

Известен также способ изготовления редкоземельных магнитов, включающий операции выплавки сплава с последующим его измельчением путем гидридного диспергирования, прессования полученного порошка в магнитном поле, спекания и термическую обработку (Патент РФ 1457277, B22F 1/00, 3/02, 3/12, H01F 1/08. 04.06.86). Недостатком данного способа также являются невысокие свойства получаемых магнитов.

Наиболее близким по технической сущности является способ изготовления термостабильных редкоземельных магнитов, включающий операции выплавки сплава с последующим его измельчением, прессования полученного порошка в магнитном поле 10 кЭ, спекание в вакуумной печи (Патент РФ 2368969). Недостатком способа является тот факт, что при заданном обратимом температурном коэффициенте магнитной индукции достигаются относительно невысокие магнитные свойства магнита.

Технической задачей изобретения является увеличение магнитных свойств магнитов, а именно индукции Br и коэрцитивной силы по намагниченности jHc при сохранении обратимого температурного коэффициенте магнитной индукции (ТКИ), что определяет повышенную термовременную стабильность магнитов.

Технический результат достигается за счет того, что в отличие от известного способа изготовления термостабильных редкоземельных магнитов, включающем операции выплавки сплава, получения порошка, с последующим его прессованием в магнитном поле, спекания прессовок и термической обработки, согласно изобретению, перед операцией прессования порошка в магнитном поле, дополнительно вводят последовательные операции предварительного прессования, предспекания при температуре на 30-100К ниже температуры спекания и последующего помола заготовки после предспекания совместно с гидридом редкоземельного металла или редкоземельных металлов, который добавляется в количестве 0.5-2 масс.% от общей массы сплава.

Установлено, что магниты, полученные по предложенному способу, содержат менее 1 об.% балластных магнитомягких фаз типа RM2, RM3, RM4B (где R - редкоземельный металл) в отличие от магнитов, полученных по методу-прототипу, в которых содержание магнитомягких фаз достигает 2-4 об.%. Снижение содержания балластных магнитотвердых фаз позволяет реализовать более высокие магнитные свойства, такие как магнитная индукция Вr и коэрцитивная сила по намагниченности jHc при сохранении температурного коэффициента магнитной индукции, обусловливающего повышенную температурную стабильность магнитов.

Примеры реализации способа.

Базовые сплавы получают из исходных компонентов (РЗМ, Fe, Co, Al, Ga, Re, Cu, Al В, Sc, W, Sn, V, Si) или их лигатур путем плавления в вакуумной индукционной печи в среде инертного газа (особочистого аргона) с последующей закалкой в водоохлаждаемую изложницу. Контроль химического состава осуществляют с помощью атомно-эмиссионной спектроскопии. Тидридное диспергирование слитков и редкоземельных металлов Nd, Pr, Tb, Dy или их сплавов осуществляют в протоке сухого водорода при (375-475) К в течение 3.6-10 кс (килосекунд) с последующей пассивацией в среде газообразного азота. После охлаждения до комнатной температуры полученные порошки базового сплава подвергают тонкому помолу в вибрационной мельнице в среде изопропилового спирта в течение 2.4 кс до среднего размера частиц 3-4 мкм. После прессования и предварительного спекания в интервале температур T1=1220-1340K (7.2 кс) образцы повторно подвергают гидридному диспергированию, смешивают с порошком гидрида РЗМ (на 100 массовых долей сплава приходилось до 3 масс.% гидрида РЗМ) и подвергают совместному тонкому помолу в вибрационной мельнице в среде изопропилового спирта в течение 2.4 кс до среднего размера частиц 3-4 мкм. После повторного прессования в магнитном поле и окончательного спекания при Т2=1340К (7.2 кс) с последующей обработкой по режиму: 1175К (7.2 кс) охлаждение со скоростью (0.01-0.03) К/с+675К (10-16 кс)+775К (7.2 кс)+закалка. После механической шлифовки алмазным инструментом и намагничивания до насыщения измеряют магнитные свойства образцов при комнатной температуре на гистериографе в замкнутой магнитной цепи в полях до 3 Тл. После магнитных измерений для проведения структурных исследований образцы термически размагничивают в вакууме при 775К, для восстановления исходного состояния. Микроструктуру исследуют с помощью оптической и растровой электронной микроскопии. Используют также локальный рентгеновский анализа.

В таблицах 1-2 приведены данные по магнитным свойствам для образцов девяти составов базового сплава, полученных по предложенному способу (T1=1290K, Т2=1340К, ΔТ=T2-T1=50K, гидрид РЗМ - 1.0 масс.% NdH2) и по способу-прототипу (Т2=1340К, ΔТ=0.0К, гидрид РЗМ - 0 масс.% NdH2).

Как видно из таблиц 1 и 2, магнитные свойства образцов, полученных по предложенному способу существенно выше, чем полученных в соответствии с прототипом. При использовании химических составов при реализации способа по прототипу, которые соответствовали результирующему составу (базовый сплав+гидридная добавка) по предложенному способу, магнитные свойства изменялись незначительно.

Таблица 1
Химические составы базовых сплавов
№ образца Химический состав, ат.%
1 (Nd0.2Pr0.2Dy0.5Tb0.1)14.5(Fe0.8Co0,2)ост.Cu0.1Al0.2Re0.1F0.05B7
2 (Nd0.2Pr0.2Dy0.4Tb0.15Hd0.05)15(Fe0.8Co0,24)ост.Cu0.1Al0.2Sc0.04B7.5
3 (Dd0.4Dy0.3Tb0.2Gd0.10)15(Fe0.8Co0,27)ост.Cu0.1Al0.2Re0.1B8
4 (Nd0.15Pr0.25Dy0.4Tb0.2)14(Fe0.8Co0,2)ост.Cu0.1Al0.2W0.1B8
5 (Nd0.2Pr0.2Dy0.2Tb0.2Ho0.1)14.5(Fe0.8Co0,24)ост.Cu0.1Al0.1Sn0.1B8
6 (Dd0.4Dy0.3Tb0.15Ho0.15)15(Fe0.8Co0,27)ост.Cu0.1Al0.1Ga0.05B8
7 (Dd0.4Dy0.4Tb0.2)15(Fe0.8Co0,2)ост.Cu0.1Al0.2V0.1B8
8 (Nd0.75La0.05Tb0.2)15(Fe0.8Co0.2)ост.Cu0.1Al0.1Si0,1B8.5
9 (Nd0.8Tb0.2)15(Fe0.8Co0.2)ост.Cu0.1Al0.2B8.5

Таблица 2
Сравнительные магнитные свойства магнитов, полученных по способу-прототипу (Т2=1340К, ΔТ=0К, гидрид РЗМ - 0 масс.% NdH2) и по предложенному способу (T1=1290K, T2=1340К, ΔТ=Т21=50К, гидрид РЗМ - 1 масс.% NdH2)
№ образца Предложение Прототип
Br, Тл jHc, кА/м ТКИ, %/К Br, Тл jHC, кА/м ТКИ, %/К
1 1.06 1680 -0.02 1.0 1360 -0.02
2 1.06 1690 -0.02 1.0 1380 -0.02
3 1.06 1710 -0.02 1.0 1400 -0.02
4 1.06 1700 -0.02 1.0 1390 -0.02
5 1.09 1705 -0.03 1.03 1410 -0.03
6 1.06 1700 -0.02 1.0 1400 -0.02
7 1.12 1680 -0.04 1.06 1385 -0.04
8 1.14 1690 -0.05 1.08 1395 -0.05
9 1.16 1750 -0.06 1.10 1430 -0.06

В таблицах 3 и 4 приведены данные по магнитным свойствам образцов с различным количеством и различного химического состава добавок. Как следует из таблицы 3 при меньшем или большем содержании относительно оптимальных значений добавок магнитные свойства существенно ниже. При частичной замене в гидриде РЗМ неодима на празеодим, диспрозий или тербий (см. таблицу 4) незначительно уменьшается Br, однако увеличивается jHc,. Это объясняется различием в значениях поля магнитной анизотропии магнитотвердой фазы типа PЗM2Fe14B.

Таблица 3
Магнитные свойства образцов №9 в зависимости от количества гидридной добавки (NdH2)
Тип магнита Кол-во NdH2, масс.% Магнитные свойства
Br, Тл jHc, кА/м ТКИ, %/К
- 0.00 1.10 1430 -0.06
- 0.25 1.11 1490 -0.06
Предложение 0.50 1.14 1680 -0.06
Предложение 1.00 1.16 1700 -0.06
Предложение 1.50 1.15 1750 -0.06
Предложение 2.00 1.14 1810 -0.06
- 2.50 1.10 1640 -0.06
- 3.00 1.08 1650 -0.06

Таблица 4
Магнитные свойства образцов №3 в зависимости от химического состава гидридной добавки (1 масс.%)
Тип добавки RH2 Магнитные свойства
Br, Тл jHC, кА/м ТКИ, %/К
NdH2 1.06 1710 -0.02
PrH2 1.05 1810 -0.02
(Nd0.5Pr0.5)H2 1.05 1760 -0.02
(Nd0.8Dy0.2)H2 1.04 1780 -0.02
(Nd0.8Tb0.2)H2 1.04 1820 -0.02
Прототип 1.00 1400 -0.02

Как следует из таблицы 5, уменьшение или увеличение температуры предварительного спекания относительно оптимального соотношения (ΔТ=30-100К) приводит к снижению магнитных свойств.

Таблица 5
Магнитные свойства образцов №3 в зависимости от температуры предварительного спекания (T1) и ΔТ (1 масс.% NdH2)
T1, K ΔT, K Магнитные свойства
Br, Тл jHc, кА/м ТКИ, %/K
1340 0 1.00 1480 -0.02
1325 15 1.01 1510 -0.02
1310 30 1.05 1760 -0.02
1290 50 1.06 1710 -0.02
1270 70 1.05 1700 -0.02
1240 100 1.04 1680 -0.02
1220 120 1.00 1490 -0.02

Предложенный способ изготовления термостабильных редкоземельных магнитов позволяет реализовать более высокие магнитные свойства, такие как индукция Br и коэрцитивная сила jHc при сохранении температурного коэффициента магнитной индукции, обусловливающего повышенную температурную стабильность.

Применение предложенного способа позволяет повысить точность и стабильность работы навигационного оборудования и систем авиационной автоматики.

Способ изготовления термостабильных редкоземельных магнитов, включающий операции выплавки сплава, получения порошка, с последующим его прессованием в магнитном поле, спекания прессовок и термическую обработку, отличающийся тем, что перед операцией прессования порошка в магнитном поле дополнительно проводят предварительное прессование и предспекание при температуре на 30-100 К ниже температуры спекания с последующим помолом заготовки после предспекания совместно с гидридом редкоземельного металла или редкоземельных металлов, добавляемого в количестве 0,5-2,0 мас.% от общей массы сплава.
Источник поступления информации: Роспатент

Showing 1-10 of 19 items.
20.05.2013
№216.012.3f9f

Способ изготовления пористых керамических изделий из β-трикальцийфосфата для медицинского применения

Изобретение относится к получению пористых β-трикальцийфосфатных керамических изделий, предназначенных для применения в качестве костных имплантатов. Заявленный способ изготовления заключается в проведении следующих стадий: предварительная термообработка гипсовых заготовок в течение 2,0-2,5...
Тип: Изобретение
Номер охранного документа: 0002481857
Дата охранного документа: 20.05.2013
10.06.2013
№216.012.4893

Способ электрохимической переработки отходов жаропрочных никелевых сплавов, содержащих рений, вольфрам, тантал и другие ценные металлы

Изобретение относится к способу электрохимической переработки отходов жаропрочных никелевых сплавов, содержащих рений, вольфрам, тантал и другие ценные металлы, входящие в состав перерабатываемого сплава. Способ включает анодное окисление сплава в кислом электролите при наложении электрического...
Тип: Изобретение
Номер охранного документа: 0002484159
Дата охранного документа: 10.06.2013
10.08.2013
№216.012.5c79

Прицеп

Изобретение относится к области безрельсовых транспортных средств. Прицеп содержит кузов и шасси с подкатной тележкой с установленным на ней поворотным кругом. Верхнее кольцо поворотного круга снабжено зубьями, взаимосвязанными с зубчатым колесом, закрепленным на упругом стержне, размещенном в...
Тип: Изобретение
Номер охранного документа: 0002489294
Дата охранного документа: 10.08.2013
27.09.2013
№216.012.6ea2

Тягово-сцепное устройство автопоезда

(57) Изобретение относится к области безрельсовых транспортных средств. Тягово-сцепное устройство легкового автопоезда содержит шаровую головку, подвижно расположенную в полусферической головке, имеющейся на дышле прицепа. Полусферическая головка дышла прицепа состоит из двух частей, одна из...
Тип: Изобретение
Номер охранного документа: 0002493973
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.6ea3

Тягово-сцепное устройство легковесного автопоезда

(57) Изобретение относится к области безрельсовых транспортных средств. Тягово-сцепное устройство легковесного автопоезда состоит из шара с тяговым стержнем, закрепленным на автомобиле, взаимодействующим с полусферической головкой дышла прицепа. Шар и стержень изготовлены из упругого материала,...
Тип: Изобретение
Номер охранного документа: 0002493974
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.6eb9

Автотракторный двухосный прицеп

(57) Изобретение относится к области безрельсовых транспортных средств. Автотракторный двухосный прицеп содержит кузов и шасси с подкатной тележкой, между которыми расположен поворотный круг. Поворотный круг состоит из верхнего и нижнего колец, шарового погона и запорного кольца. На внутренней...
Тип: Изобретение
Номер охранного документа: 0002493996
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.6f09

Способ упрочнения пористой кальцийфосфатной керамики

Изобретение относится к композиционным материалам на основе кальцийфосфатной керамики с улучшенными прочностными характеристиками и может быть использовано для заполнения костных дефектов в травматологии и ортопедии, челюстно-лицевой хирургии и хирургической стоматологии. Для получения...
Тип: Изобретение
Номер охранного документа: 0002494076
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.706d

Способ включения и выключения электроустановки и устройство (варианты) для его реализации

Изобретение относится к области разработки человеко-машинного интерфейса и может быть использовано при создании автоматизированного рабочего места оператора объекта бронетанковой военной техники, а также автоматизированных рабочих мест других подвижных и стационарных объектов. Сущность...
Тип: Изобретение
Номер охранного документа: 0002494432
Дата охранного документа: 27.09.2013
27.11.2013
№216.012.8643

Магнитный материал и изделие, выполненное из него

Изобретение относится к области порошковой металлургии, в частности к магнитным материалам для постоянных магнитов на основе редкоземельных элементов с металлами группы железа. Заявленный магнитный материал содержит железо (Fe), кобальт (Co), бор (B), по меньшей мере один элемент, выбранный из...
Тип: Изобретение
Номер охранного документа: 0002500049
Дата охранного документа: 27.11.2013
27.11.2014
№216.013.0bfd

Способ получения нанопорошков

Изобретение относится к порошковой металлургии, в частности к получению нанопорошка. Порошкообразное сырье в виде микрогранул с размером 20-60 мкм, состоящих из частиц сырья с размером 0,1-3 мкм и связующего компонента, имеющего температуру испарения не более 300°C, в количестве 5-25 мас.%,...
Тип: Изобретение
Номер охранного документа: 0002534477
Дата охранного документа: 27.11.2014
Showing 1-10 of 25 items.
20.05.2013
№216.012.3f9f

Способ изготовления пористых керамических изделий из β-трикальцийфосфата для медицинского применения

Изобретение относится к получению пористых β-трикальцийфосфатных керамических изделий, предназначенных для применения в качестве костных имплантатов. Заявленный способ изготовления заключается в проведении следующих стадий: предварительная термообработка гипсовых заготовок в течение 2,0-2,5...
Тип: Изобретение
Номер охранного документа: 0002481857
Дата охранного документа: 20.05.2013
10.06.2013
№216.012.4893

Способ электрохимической переработки отходов жаропрочных никелевых сплавов, содержащих рений, вольфрам, тантал и другие ценные металлы

Изобретение относится к способу электрохимической переработки отходов жаропрочных никелевых сплавов, содержащих рений, вольфрам, тантал и другие ценные металлы, входящие в состав перерабатываемого сплава. Способ включает анодное окисление сплава в кислом электролите при наложении электрического...
Тип: Изобретение
Номер охранного документа: 0002484159
Дата охранного документа: 10.06.2013
27.09.2013
№216.012.6f09

Способ упрочнения пористой кальцийфосфатной керамики

Изобретение относится к композиционным материалам на основе кальцийфосфатной керамики с улучшенными прочностными характеристиками и может быть использовано для заполнения костных дефектов в травматологии и ортопедии, челюстно-лицевой хирургии и хирургической стоматологии. Для получения...
Тип: Изобретение
Номер охранного документа: 0002494076
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.706d

Способ включения и выключения электроустановки и устройство (варианты) для его реализации

Изобретение относится к области разработки человеко-машинного интерфейса и может быть использовано при создании автоматизированного рабочего места оператора объекта бронетанковой военной техники, а также автоматизированных рабочих мест других подвижных и стационарных объектов. Сущность...
Тип: Изобретение
Номер охранного документа: 0002494432
Дата охранного документа: 27.09.2013
27.11.2013
№216.012.8643

Магнитный материал и изделие, выполненное из него

Изобретение относится к области порошковой металлургии, в частности к магнитным материалам для постоянных магнитов на основе редкоземельных элементов с металлами группы железа. Заявленный магнитный материал содержит железо (Fe), кобальт (Co), бор (B), по меньшей мере один элемент, выбранный из...
Тип: Изобретение
Номер охранного документа: 0002500049
Дата охранного документа: 27.11.2013
27.11.2014
№216.013.0bfd

Способ получения нанопорошков

Изобретение относится к порошковой металлургии, в частности к получению нанопорошка. Порошкообразное сырье в виде микрогранул с размером 20-60 мкм, состоящих из частиц сырья с размером 0,1-3 мкм и связующего компонента, имеющего температуру испарения не более 300°C, в количестве 5-25 мас.%,...
Тип: Изобретение
Номер охранного документа: 0002534477
Дата охранного документа: 27.11.2014
10.04.2015
№216.013.4054

Устройство для диагностики заболеваний слизистой оболочки полости носа и околоносовых пазух

Изобретение относится к медицинской технике и может быть использовано для диагностики заболеваний слизистой оболочки полости носа и околоносовых пазух. Устройство содержит зонд, выполненный в виде пустотелой моделируемой канюли 1 с рисками-насечками на внешней поверхности. На дистальном конце...
Тип: Изобретение
Номер охранного документа: 0002547956
Дата охранного документа: 10.04.2015
20.10.2015
№216.013.86b7

Способ изготовления материалов для постоянных магнитов из литых сплавов на основе системы sm-co-fe-cu-zr

Изобретение относится к порошковой металлургии, в частности к получению постоянных порошкообразных магнитов на основе системы Sm-Co-Fe-Cu-Zr. Повышение плотности и прочности, увеличение коэрцитивной силы и остаточной индукции полученных магнитных материалов является техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002566090
Дата охранного документа: 20.10.2015
10.04.2016
№216.015.2e44

Способ диффузионной сварки

Изобретение относится к способу диффузионной сварки. Очищают детали из нержавеющей стали и мембраны из фольги палладия или палладиевого сплава электрополировкой. Собирают в пакет. В качестве промежуточного слоя применяют фольгу из никеля. Размещают в вакуумной камере. Нагревают. Прикладывают...
Тип: Изобретение
Номер охранного документа: 0002579413
Дата охранного документа: 10.04.2016
13.01.2017
№217.015.8ffd

Способ частичного размагничивания наногетерогенных высококоэрцитивных магнитов типа sm-co-fe-cu-zr

Изобретение относится к электротехнике и может быть использовано для стабилизации магнитных свойств магнитов типа Sm-Co-Fe-Cu-Zr путем их частичного размагничивания. Технический результат состоит в повышении точности и стабильности работы навигационного оборудования и систем авиационной...
Тип: Изобретение
Номер охранного документа: 0002605544
Дата охранного документа: 20.12.2016
+ добавить свой РИД