×
20.10.2015
216.013.86b7

СПОСОБ ИЗГОТОВЛЕНИЯ МАТЕРИАЛОВ ДЛЯ ПОСТОЯННЫХ МАГНИТОВ ИЗ ЛИТЫХ СПЛАВОВ НА ОСНОВЕ СИСТЕМЫ Sm-Co-Fe-Cu-Zr

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к порошковой металлургии, в частности к получению постоянных порошкообразных магнитов на основе системы Sm-Co-Fe-Cu-Zr. Повышение плотности и прочности, увеличение коэрцитивной силы и остаточной индукции полученных магнитных материалов является техническим результатом изобретения. Постоянные магниты из литых сплавов, имеющие состав, в мас.% : Sm - 24,5-26,0, Fe - 16,0-18,0, Сu - 4,0-6,0, Zr - 2,5-3,2, Со - остальное, предварительно обрабатывают с получением образцов магнитных материалов с текстурованной поликристаллической структурой, после чего проводят высокотемпературную обработку и изотермический отпуск полученных образцов магнитных материалов в вакуумной электропечи сопротивления в атмосфере инертного газа при температуре 790-810°C в течение 12-16 часов с последующим охлаждением до комнатной температуры, после чего образцы выдерживают в колпаковой печи при температуре 800°C до их прогрева по всему объему до указанной температуры и охлаждают до температуры 420-380°C со скоростью охлаждения 50-100°C в час, при этом охлаждение образцов магнитных материалов проводят в магнитном поле со значением напряженности 80-160 кА/м. 3 з.п. ф-лы, 3 табл.
Реферат Свернуть Развернуть

Изобретение относится к порошковой металлургии, в частности к получению постоянных порошкообразных магнитов, которые использутся при производстве высокоэнергетических постоянных магнитов на основе системы Sm-Co-Fe-Cu-Zr.

Изобретение может найти применение в электротехнике, в частности в электросчетчиках, генераторах тока и напряжения, электродвигателях, записывающих и воспроизводящих устройствах, акустических и телевизионных приборов, а также в различных электробытовых приборах.

Известен способ изготовления материала для постоянных магнитов на основе системы самарий-кобальт-железо-медь-цирконий, включающий термическую обработку, заключающуюся в высокотемпературной обработке, охлаждении и изотермической выдержке (SU 1499816, опубл. 20.04.1995).

Недостатком указанного способа является необходимость введения немагнитного элемента бора, потенциально снижающего намагниченность сплава.

Прототипом предложенного изобретения является способ термической обработки сплавов системы самарий-кобальт-медь (SU 878083, опубл. 01.07.1981) для получения постоянных магнитов, включающий термическую обработку, заключающуюся в закалке, отпуске при температуре 810-840°C, последующем дополнительном отпуске при 640-660°C и охлаждении после первого отпуска проводят со скоростью 18-20°C/мин до температуры 640-660°C и далее до температуры 20°C со скоростью 4-5°C/мин.

Недостатком указанного способа является низкое значение коэрцитивной силы и остаточной магнитной индукции получаемого магнитного материала.

В изобретении достигается технический результат, заключающийся в увеличении коэрцитивной силы и остаточной магнитной индукции полученных магнитных материалов.

Указанный технический результат достигается следующим образом. В способе изготовления материалов для постоянных магнитов из литых сплавов, имеющих следующий состав, мас.%:

Sm - 24,5-26,0,

Fe - 16,0-18,0,

Сu - 4,0-6,0,

Zr - 2,5-3,2,

Со - остальное,

проводят предварительную обработку исходных литых сплавов с получением образцов магнитных материалов с текстурованной поликристаллической структурой.

Затем осуществляют высокотемпературную обработку полученных образцов магнитных материалов.

Далее проводят изотермический отпуск полученных образцов магнитных материалов в вакуумной электропечи сопротивления в атмосфере инертного газа при температуре 790-810°C в течение 12-16 часов. После чего образцы магнитных материалов охлаждают до комнатной температуры.

Затем образцы магнитных материалов выдерживают в колпаковой печи при температуре 800°C до их прогрева по всему объему до указанной температуры и охлаждают их до температуры 420-380°C со скоростью охлаждения 50-100°C в час.

Охлаждение образцов магнитных материалов проводят в магнитном поле со значением напряженности 80-160 кА/м.

Образцы магнитных материалов имеют цилиндрическую форму диаметром 15 мм и высотой 10 мм.

При изотермическом отпуске в качестве инертного газа используют аргон.

Высокотемпературную обработку образцов проводят при температуре 1170-1210°C в течение 2 часов.

Изобретение осуществляется следующим образом.

Литой сплав на основе системы Sm-Co-Fe-Cu-Zr подвергают предварительной обработке, которая заключается в следующем.

Литой сплав загружают в высокоэнергетическую центробежную мельницу с двумя герметизируемыми барабанами для предварительного измельчения.

После этого проводят тонкое измельчение литого сплава в вибромельнице до размера фракции 3-4 мкм. Для предотвращения окисления размол проводят в жидкой среде, например в спирте.

Затем измельченный литой сплав сушат и проводят компактирование измельченных частиц путем изостатического прессования в магнитном поле напряженностью 400 кА/м. Из полученного магнитного материала, имеющего текстурованную поликристаллическую структуру, изготавливают образцы цилиндрической формы диаметром 15 мм и высотой 10 мм.

Образцы магнитного материала для увеличения плотности и прочности спекают при температуре 1210°C в течение 1 часа в атмосфере аргона.

После предварительной обработки проводят высокотемпературную обработку образцов магнитных материалов при температуре 1170-1210°C в течение 2 часов.

Затем осуществляют изотермический отпуск образцов магнитных материалов в вакуумной электропечи сопротивления в атмосфере инертного газа в интервале температур 790-810°C в течение 12-16 часов.

В качестве инертного газа используют аргон.

Контроль температуры осуществляют при помощи образцовой хромель-алюмелевой термопары.

После этого образцы магнитных материалов охлаждают до комнатной температуры и далее их выдерживают в колпаковой печи при температуре 800°C до их прогрева по всему объему до указанной температуры.

После прогрева по всему объему образцы магнитных материалов охлаждают до температуры 420-380°C, со скоростью охлаждения 50-100°C в час. Охлаждение образцов проводят в магнитном поле напряженностью 80-160кА/м (1000-2000 Э).

Приложение магнитного поля к образцам магнитного материала в процессе охлаждения приводит к направленной диффузии компонентов и еще более увеличивает силу закрепления доменной стенки на границе из-за большего различия констант кристаллической анизотропии фаз ячейки структуры (фаза типа R2T17) и граничной фазы (фаза типа RT5). С увеличением разности констант кристаллической анизотропии растет глубина энергетического барьера, являющегося причиной закрепления доменной стенки и, следовательно, роста коэрцитивной силы материала.

В процессе медленного охлаждения образцов магнитных материалов с температуры 800°C до 420-380°C происходит перераспределение химических элементов между фазами, а именно фазой, составляющей объем ячейки структуры (фаза типа R2T17), и граничной фазой (фаза типа RT5).

Концентрации самария в фазах Sm2Co17 и SmCo5, определенные с помощью 3DAP анализа, согласуются со стехиометрией данных фаз. Коэрцитивность фазы SmCo5 возрастает как функция концентрации меди. Высокое содержание меди распространяется даже за пределы фазы SmCo5 в матрицу Sm2Co17. Замещение кобальта медью в фазе Sm2Co17 понижает анизотропию, К1 фазы Sm2Co17; на границе раздела SmCo5/Sm2Co17 существует узкая область с пониженным значением К1.

Значительное обогащение медью наблюдается на тройных стыках фаз границ ячеек. Хотя концентрация меди на узкой области SmCo5 составляет примерно 20 ат.%, концентрация меди на тройных стыках достигает примерно 35 ат.%. Данное локальное повышение концентрации меди в фазе SmCo5 на тройных стыках действует как сильная задерживающая сила для магнитных доменных стенок.

Перераспределение компонентов приводит к усилению закрепления доменной стенки на границе фаз, то есть повышает коэрцитивную силу магнитного материала.

В таблице 1-3 проиллюстрированы примеры реализации изобретения, в них представлены магнитные свойства образцов магнитных материалов, где

Вr - остаточная магнитная индукция, Тл,

ВНС - коэрцитивная сила по индукции, кА/м,

(ВН)max - максимальное магнитное произведение, кДж/м3.

В таблице 1 представлены магнитные свойства образцов магнитного материала из литого сплава, имеющего следующий состав, в мас.%:

Sm - 24,5; Fe - 16,0; Сu - 4,0; Zr - 2,5; Со -остальное.

В таблице 2 представлены магнитные свойства образцов магнитного материала из литого сплава, который имеет следующий состав (мас.%):

Sm - 25,3; Fe - 18,1; Cu - 5,31; Zr - 2,71; Co - остальное.

Таблица 3 иллюстрирует магнитные свойства литого сплава, имеющего следующий состав (мас.%): Sm - 26,0; Fe - 18,0; Сu - 6,0; Zr - 3,2; Со - остальное.

Результат использования изобретения заключается в увеличении магнитных свойств. Как видно из таблиц 1-3, в магнитных материалах, изготовленных по предложенному способу, повышается остаточная магнитная индукция, значительно увеличивается коэрцитивная сила, а также наблюдается увеличение максимального магнитного произведения.

Источник поступления информации: Роспатент

Showing 1-5 of 5 items.
20.09.2013
№216.012.6d49

Способ изготовления термостабильных редкоземельных магнитов

Изобретение относится к порошковой металлургии, в частности к получению термостабильных редкоземельных магнитов. Магниты могут использоваться в системах автоматики, промышленном оборудовании, автомобилях. Осуществляют выплавку сплава и получение из него порошка. После чего порошок подвергают...
Тип: Изобретение
Номер охранного документа: 0002493628
Дата охранного документа: 20.09.2013
27.11.2013
№216.012.8643

Магнитный материал и изделие, выполненное из него

Изобретение относится к области порошковой металлургии, в частности к магнитным материалам для постоянных магнитов на основе редкоземельных элементов с металлами группы железа. Заявленный магнитный материал содержит железо (Fe), кобальт (Co), бор (B), по меньшей мере один элемент, выбранный из...
Тип: Изобретение
Номер охранного документа: 0002500049
Дата охранного документа: 27.11.2013
13.01.2017
№217.015.8ffd

Способ частичного размагничивания наногетерогенных высококоэрцитивных магнитов типа sm-co-fe-cu-zr

Изобретение относится к электротехнике и может быть использовано для стабилизации магнитных свойств магнитов типа Sm-Co-Fe-Cu-Zr путем их частичного размагничивания. Технический результат состоит в повышении точности и стабильности работы навигационного оборудования и систем авиационной...
Тип: Изобретение
Номер охранного документа: 0002605544
Дата охранного документа: 20.12.2016
20.01.2018
№218.016.1adf

Комбинированная литейная форма для получения столбчатой структуры в изделиях из магнитотвердых материалов типа al-ni-co-ti-fe

Изобретение относится к литейному производству, в частности к получению методом направленной кристаллизации литых постоянных магнитов из магнитотвердых материалов типа Al-Ni-Co-Ti-Fe со столбчатой структурой. Комбинированная литейная форма состоит из керамической формы, обернутой огнеупорным...
Тип: Изобретение
Номер охранного документа: 0002635983
Дата охранного документа: 17.11.2017
10.05.2018
№218.016.3b0e

Способ защиты металлического ферромагнитного объекта от магнитометрического обнаружения

Изобретение относится к области противодействия средствам магнитометрического обнаружения ферромагнитных объектов и может быть использовано для защиты кораблей, машин и других технических объектов. Технический результат состоит в расширении арсенала технических средств, обеспечивающих защиту...
Тип: Изобретение
Номер охранного документа: 0002647482
Дата охранного документа: 16.03.2018
Showing 1-8 of 8 items.
20.09.2013
№216.012.6d49

Способ изготовления термостабильных редкоземельных магнитов

Изобретение относится к порошковой металлургии, в частности к получению термостабильных редкоземельных магнитов. Магниты могут использоваться в системах автоматики, промышленном оборудовании, автомобилях. Осуществляют выплавку сплава и получение из него порошка. После чего порошок подвергают...
Тип: Изобретение
Номер охранного документа: 0002493628
Дата охранного документа: 20.09.2013
27.11.2013
№216.012.8643

Магнитный материал и изделие, выполненное из него

Изобретение относится к области порошковой металлургии, в частности к магнитным материалам для постоянных магнитов на основе редкоземельных элементов с металлами группы железа. Заявленный магнитный материал содержит железо (Fe), кобальт (Co), бор (B), по меньшей мере один элемент, выбранный из...
Тип: Изобретение
Номер охранного документа: 0002500049
Дата охранного документа: 27.11.2013
13.01.2017
№217.015.8ffd

Способ частичного размагничивания наногетерогенных высококоэрцитивных магнитов типа sm-co-fe-cu-zr

Изобретение относится к электротехнике и может быть использовано для стабилизации магнитных свойств магнитов типа Sm-Co-Fe-Cu-Zr путем их частичного размагничивания. Технический результат состоит в повышении точности и стабильности работы навигационного оборудования и систем авиационной...
Тип: Изобретение
Номер охранного документа: 0002605544
Дата охранного документа: 20.12.2016
20.01.2018
№218.016.1adf

Комбинированная литейная форма для получения столбчатой структуры в изделиях из магнитотвердых материалов типа al-ni-co-ti-fe

Изобретение относится к литейному производству, в частности к получению методом направленной кристаллизации литых постоянных магнитов из магнитотвердых материалов типа Al-Ni-Co-Ti-Fe со столбчатой структурой. Комбинированная литейная форма состоит из керамической формы, обернутой огнеупорным...
Тип: Изобретение
Номер охранного документа: 0002635983
Дата охранного документа: 17.11.2017
10.05.2018
№218.016.3b0e

Способ защиты металлического ферромагнитного объекта от магнитометрического обнаружения

Изобретение относится к области противодействия средствам магнитометрического обнаружения ферромагнитных объектов и может быть использовано для защиты кораблей, машин и других технических объектов. Технический результат состоит в расширении арсенала технических средств, обеспечивающих защиту...
Тип: Изобретение
Номер охранного документа: 0002647482
Дата охранного документа: 16.03.2018
10.07.2019
№219.017.ae64

Способ получения магнитотвердого композиционного материала с нанокристаллической структурой

Изобретение относится к порошковой металлургии, в частности к получению постоянных порошкообразных магнитов с нанокристаллической структурой. Может использоваться при производстве высокоэнергетических постоянных магнитов на основе природного железосодержащего порошкообразного материала....
Тип: Изобретение
Номер охранного документа: 0002368026
Дата охранного документа: 20.09.2009
20.04.2023
№223.018.4aa4

Способ получения анизотропной порошковой заготовки постоянного магнита на основе сплавов типа sm-co

Изобретение относится к порошковой металлургии, в частности к способам получения анизотропных спеченных постоянных магнитов из сплавов Sm-Co. Может использоваться в машиностроении, приборостроении, электротехнической и электронной промышленности. Сплав типа Sm-Co размалывают до среднего размера...
Тип: Изобретение
Номер охранного документа: 0002785217
Дата охранного документа: 05.12.2022
05.06.2023
№223.018.774a

Способ демпфирования колебаний подвески транспортных средств с помощью индуцируемых постоянными магнитами вихревых токов

Изобретение относится к области машиностроения, в частности к системам амортизации транспортных средств. Способ демпфирования линейных колебаний подвески транспортных средств заключается в использовании сил торможения, возникающих в процессе взаимного перемещения постоянных магнитов и сплошных...
Тип: Изобретение
Номер охранного документа: 0002762760
Дата охранного документа: 22.12.2021
+ добавить свой РИД