×
10.06.2013
216.012.47ca

Результат интеллектуальной деятельности: СИСТЕМА КОНТРОЛЯ ПОВЕРХНОСТИ КАТАНИЯ ЖЕЛЕЗНОДОРОЖНОЙ КОЛЕСНОЙ ПАРЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области измерительной техники и предназначено для автоматического контроля технического состояния рельсового подвижного состава в процессе его эксплуатации. Система контроля поверхности катания колеса железнодорожной колесной пары содержит две группы датчиков динамических нагрузок, датчики зоны контроля, блок датчиков температуры щебеночного балласта, блок сопряжения, блок сравнения. В систему также введены блоки прямого преобразования Фурье, блок вычисления усредненных амплитудно-частотных характеристик, блоки первой корректировки коэффициентов усиления, блоки второй корректировки коэффициентов усиления, блок коррекции коэффициентов усиления датчиков динамических нагрузок, по месту приложения к датчикам внешней силы, и блок обратного преобразования Фурье. В результате повышается достоверность определения дефектных колесных пар. 1 ил.
Основные результаты: Система контроля поверхности катания колеса железнодорожной колесной пары, содержащая две группы датчиков динамических нагрузок, датчики зоны контроля, расположенные вдоль рельса, в начале и в конце измерительного участка, блок датчиков температуры щебеночного балласта, установленных по обе стороны пути, на глубине уровня подошвы шпалы, причем датчики динамических нагрузок выполнены в виде волоконно-оптических датчиков давления и установлены на измерительном участке пути, длиной не меньше длины окружности колеса и по разные стороны пути, напротив друг друга, между шпалой и рельсом, при этом выходные концы каждой группы датчиков динамических нагрузок подключены к соответствующим входам преобразователя оптического сигнала в электрический, а входные концы подключены к источнику оптического излучения, блок сопряжения, входы которого подключены к выходам датчиков зоны контроля, а выход - к входу блока счетчика колесных пар, к входу блока определения скорости движения поезда и входу управления блоком питания, блок сравнения, один вход которого подключен к выходу блока датчиков температуры, а другой вход - к выходу блока эталонных значений температур, выходы блока сравнения, блока определения скорости движения поезда, блока счетчика колесных пар и блока идентификации вагона соединены, соответственно, с первым, вторым, третьим и четвертым входами блока принятия решений, первый выход которого соединен с персональным компьютером автоматизированного рабочего места работника диспетчерского центра, второй выход соединен с входом блока индикации, а третий выход соединен с входом блока хранения информации, отличающаяся тем, что в нее введены блоки прямого преобразования Фурье, блок вычисления усредненных амплитудно-частотных характеристик, блоки первой корректировки коэффициентов усиления, блоки второй корректировки коэффициентов усиления, блок коррекции коэффициентов усиления датчиков динамических нагрузок, по месту приложения к датчикам внешней силы, и блок обратного преобразования Фурье, при этом выходы блока обратного преобразования Фурье подключены, соответственно, к пятому и шестому входам блока принятия решений, а выходы преобразователя оптического сигнала в электрический, соответствующие упомянутым группам датчиков динамических нагрузок, соединены, соответственно, с входами блоков прямого преобразования Фурье, первые выходы которых подключены, соответственно, к первым входам блоков первой корректировки коэффициентов усиления, а вторые выходы - к соответствующим входам блока вычисления усредненных амплитудно-частотных характеристик, выходы которого соединены, соответственно, с вторыми входами блоков первой корректировки коэффициентов усиления, выходы которых подключены к первым входам соответствующих блоков второй корректировки коэффициентов усиления, вторые входы которых соединены с выходом блока коррекции коэффициентов усиления датчиков динамических нагрузок, по месту приложения к датчикам внешней силы, вход которого соединен с выходом блока определения скорости движения поезда, при этом выходы блоков второй корректировки коэффициентов усиления соединены, соответственно, с первым и вторым входами блока обратного преобразования Фурье.

Изобретение относится к области измерительной техники и предназначено для автоматического контроля технического состояния рельсового подвижного состава в процессе его эксплуатации.

Известна система мониторинга износа поверхности катания колеса железнодорожной колесной пары, содержащая датчики динамических нагрузок, в виде акселерометров, закрепленных на рельсе, датчики начала и конца зоны контроля, в виде магнитоэлектрических датчиков, и блок обработки сигналов, входами соединенный с выходами датчиков, а выходом - с блоком принятия решения, выполненным в виде компьютера (RU 2337031, B61K 9/12, 27.10.08).

Известная система позволяет с достаточной точностью осуществлять диагностику состояния поверхности катания колеса за счет одновременного измерения высоты гребня колеса и динамических нагрузок, действующих на рельсы при движении поезда. Недостатком известной системы является относительно невысокая надежность акселерометров в условиях высокой интенсивности движения поездов через контрольный участок пути.

Наиболее близким техническим решением является выбранная в качестве прототипа система контроля поверхности катания колеса железнодорожной колесной пары, содержащая две группы датчиков динамических нагрузок, датчики зоны контроля, расположенные вдоль рельса, в начале и в конце измерительного участка, блок датчиков температуры щебеночного балласта, установленных по обе стороны пути, на глубине уровня подошвы шпалы, причем датчики динамических нагрузок выполнены в виде волоконно-оптических датчиков давления и установлены на измерительном участке пути, длиной не меньше длины окружности колеса и по разные стороны пути, напротив друг друга, между шпалой и рельсом, при этом выходные концы, каждой группы датчиков динамических нагрузок, подключены к соответствующим входам преобразователя оптического сигнала в электрический, а входные концы подключены к источнику оптического излучения, блок сопряжения, входы которого подключены к выходам датчиков зоны контроля, а выход - к входу блока счетчика колесных пар, к входу блока определения скорости движения поезда, и входу управления блоком питания, блок сравнения, один вход которого подключен к выходу блока датчиков температуры, а другой вход - к выходам блока эталонных значений температур, выходы блока сравнения, блока определения скорости движения поезда, блока счетчика колесных пар и блока идентификации вагона, соответственно, соединены с первым, вторым, третьим и четвертым входами блока принятия решений, первый выход которого соединен с персональным компьютером автоматизированного рабочего места работника диспетчерского центра, второй выход соединен с входом блока индикации, а третий выход соединен с входом блока хранения информации (RU 92840, B61K 9/12, B61L 27/04, 10.04.10).

Система имеет высокий уровень отказоустойчивости в условиях интенсивной эксплуатации за счет использования датчиков динамических нагрузок, устойчивых к ударным нагрузкам, однако обладает не достаточным уровнем достоверности определения дефектов, из-за влияния технологических разбросов параметров датчиков.

Технический результат изобретения заключается в повышении достоверности определения дефектных колесных пар.

Технический результат достигается тем, что в систему контроля поверхности катания колеса железнодорожной колесной пары, содержащую две группы датчиков динамических нагрузок, датчики зоны контроля, расположенные вдоль рельса, в начале и в конце измерительного участка, блок датчиков температуры щебеночного балласта, установленных по обе стороны пути, на глубине уровня подошвы шпалы, причем датчики динамических нагрузок выполнены в виде волоконно-оптических датчиков давления и установлены на измерительном участке пути, длиной не меньше длины окружности колеса и по разные стороны пути, напротив друг друга, между шпалой и рельсом, при этом выходные концы каждой группы датчиков динамических нагрузок, подключены к соответствующим входам преобразователя оптического сигнала в электрический, а входные концы подключены к источнику оптического излучения, блок сопряжения, входы которого подключены к выходам датчиков зоны контроля, а выход - к входу блока счетчика колесных пар, к входу блока определения скорости движения поезда и входу управления блоком питания, блок сравнения, один вход которого подключен к выходу блока датчиков температуры, а другой вход - к выходу блока эталонных значений температур, выходы блока сравнения, блока определения скорости движения поезда, блока счетчика колесных пар и блока идентификации вагона, соединены, соответственно, с первым, вторым, третьим и четвертым входами блока принятия решений, первый выход которого соединен с персональным компьютером автоматизированного рабочего места работника диспетчерского центра, второй выход соединен с входом блока индикации, а третий выход соединен с входом блока хранения информации, согласно изобретению введены блоки прямого преобразования Фурье, блок вычисления усредненных амплитудно-частотных характеристик, блоки первой корректировки коэффициентов усиления, блоки второй корректировки коэффициентов усиления, блок коррекции коэффициентов усиления датчиков динамических нагрузок, по месту приложения к датчикам внешней силы, и блок обратного преобразования Фурье, при этом выходы блока обратного преобразования Фурье подключены, соответственно, к пятому и шестому входам блока принятия решений, а выходы преобразователя оптического сигнала в электрический, соответствующие, упомянутым группам датчиков динамических нагрузок соединены, соответственно, с входами блоков прямого преобразования Фурье, первые выходы которых подключены, соответственно, к первым входам блоков первой корректировки коэффициентов усиления, а вторые выходы - к соответствующим входам блока вычисления усредненных амплитудно-частотных характеристик, выходы которого соединены, соответственно, с вторыми входами блоков первой корректировки коэффициентов усиления, выходы которых подключены к первым входам соответствующих блоков второй корректировки коэффициентов усиления, вторые входы которых соединены с выходом блока коррекции коэффициентов усиления датчиков динамических нагрузок, по месту приложения к датчикам внешней силы, вход которого соединен с выходом блока определения скорости движения поезда, при этом выходы блоков второй корректировки коэффициентов усиления соединены, соответственно, с первым и вторым входами блока обратного преобразования Фурье.

На чертеже представлена структурная схема предлагаемой системы контроля поверхности катания колеса железнодорожной колесной пары.

Система контроля поверхности катания колеса железнодорожной колесной пары содержит две группы датчиков 1 динамических нагрузок, датчики 2 зоны контроля (рельсовые контакты), расположенные вдоль рельса, в начале и в конце измерительного участка 3, блок 4 датчиков температуры щебеночного балласта, установленных по обе стороны пути, на глубине уровня подошвы шпалы, причем датчики 1 динамических нагрузок выполнены в виде волоконно-оптических датчиков давления и установлены на измерительном участке 3 пути длиной не меньше длины окружности колеса и по разные стороны пути, напротив друг друга, между шпалой и рельсом, при этом выходные концы каждой группы датчиков 1 динамических нагрузок подключены к соответствующим входам преобразователя 5 оптического сигнала в электрический, а входные концы - подключены к источнику 6 оптического излучения, блок 7 сопряжения, входы которого подключены к выходам датчиков 2 зоны контроля, а выход - к входу блока 8 счетчика колесных пар, к входу блока 9 определения скорости движения поезда и входу управления блоком питания 10, блок 11 сравнения, один вход которого подключен к выходу блока 4 датчиков температуры, а другой вход - к выходу блока 12 эталонных значений температур, выходы блока 11 сравнения, блока 9 определения скорости движения поезда, блока 8 счетчика колесных пар и блока 13 идентификации вагона, соответственно, соединены с первым, вторым, третьим и четвертым входами блока 14 принятия решений, первый выход которого соединен с персональным компьютером 15 автоматизированного рабочего места работника диспетчерского центра, второй выход соединен с входом блока 16 индикации, а третий выход соединен с входом блока 17 хранения информации. Выходы блока 18 обратного преобразования Фурье подключены к пятому и шестому входам блока 14 принятия решений, а выходы преобразователя 5 оптического сигнала в электрический, соответствующие упомянутым группам датчиков 1 динамических нагрузок, соответственно, соединены с входами блоков 19 и 20 прямого преобразования Фурье, первые выходы которых, соответственно, подключены к первым входам блоков 21 и 22 первой корректировки коэффициентов усиления, а вторые выходы - к соответствующим входам блока 23 вычисления усредненных амплитудно-частотных характеристик, первый и второй выходы которого, соответственно, соединены с вторыми входами блоков 21 и 22 первой корректировки коэффициентов усиления, выходы которых подключены к первым входам блоков 24 и 25 второй корректировки коэффициентов усиления, вторые входы которых соединены с выходом блока 26 коррекции коэффициентов усиления, по месту приложения к датчикам 1 внешней силы, вход которого соединен с выходом блока 9 определения скорости движения поезда, при этом выходы блоков 24 и 25 второй корректировки коэффициентов усиления, соответственно, соединены с первым и вторым входами блока 18 обратного преобразования Фурье.

Система контроля поверхности катания колеса железнодорожной колесной пары функционирует следующим образом.

Статическую составляющую усилий действующих в паре колесо рельс определяют, как среднее значение максимального и минимального значений измеренных усилий. Динамическая составляющая равна максимальной величине абсолютного значения динамического приращения вертикальной силы. Зная динамическую и статическую составляющие, в блоке 14 рассчитывают динамический коэффициент, как отношение статической и динамической составляющих усилий к статической нагрузке на колесо.

Основным параметром, для определения наличия дефекта на поверхности катания колеса является динамический коэффициент, который отражает влияние на величину измеряемых усилий, как со стороны подвижного состава, так и со стороны пути. Динамический коэффициент равный единице означает, что вагон, находящийся в зоне измерительного участка 3, неподвижен, т.е. силы взаимодействия между вагоном и путем равны статической нагрузке. При проходе подвижного состава по измерительному участку 3, динамический коэффициент становится больше единицы. Он имеет привязку к конкретному месту, так как верхнее строение пути в силу неоднородности структуры неоднозначно реагирует на прохождение поезда.

При вступлении первой колесной пары поезда в начало измерительного участка 3 срабатывает блок датчиков 2 зоны контроля, и включает блок 10 питания. При этом включается источник 6 оптического излучения (лазерного излучения) и, установленные в зоне контроля волоконно-оптические датчики 1, осуществляют преобразование вертикальных сил, действующих на рельсы от каждого колеса, движущегося по измерительному участку пути, в изменение интенсивности светового потока так, как под действием усилий со стороны рельса датчики 1 групп, связанных с правым и левым рельсами рельсового пути, деформируются. Преобразователь 5 осуществляет преобразование величины светового потока, с выхода каждого датчика 1, в электрический сигнал.

Для коррекции измерения усилий датчиками 1 от изменения температуры окружающей среды используются температурные датчики 4, которые измеряют температуру с каждой стороны полотна пути. Показания датчиков 4 в блоке сравнения 11 сравнивают с эталонными значениями, поступающими от блока эталонных значений 12, и вырабатывают поправки к измеренным амплитудам электрических сигналов датчиков 1, которые используются блоком 14 принятия решений.

В процессе обработки электрических сигналов от преобразователя 5 для каждого колеса система осуществляет сложную обработку отдельных сигналов, выраженных первичными функциями изменения их амплитуды от времени, и в конечном итоге вычисляет искомые динамические коэффициенты.

В предлагаемой системе при определении динамических коэффициентов используется ряд преобразований и калибровок, позволяющий, по сравнению с прототипом, уменьшить в среднем в 2 раза погрешность, вызванную разбросами результирующих коэффициентов усиления различных датчиков 1.

Эти разбросы, в основном, обусловлены двумя факторами. Физические разбросы чувствительности из-за разбросов параметров конструкций и изменения чувствительности датчиков 1, связанные с местом приложения сосредоточенного ударного воздействия, по длине датчика 1, относительно геометрического центра датчика 1.

Физические разбросы носят случайный характер, обусловленный, например, различиями коэффициентов механической передачи усилий от рельса на чувствительный элемент датчика (оптоволокно), в конкретном месте расположения каждого датчика.

Зависимость изменения чувствительности датчиков 1 от места приложения ударного воздействия, по длине датчика 1, относительно его геометрического центра, статистически определяется для каждого датчика 1 заранее и далее учитывается в расчетах.

Обработка электрических сигналов осуществляется отдельно для групп датчиков 1, принадлежащих разным сторонам пути измерительного участка. Это позволяет определить дефекты отдельных колес колесных пар и учесть погрешности, связанные с наложением ударных воздействий от дефектов обоих колес одной колесной пары и также, учесть влияние несимметричного распределения на колеса колесной пары веса вагона.

Расчеты используют информацию о спектральных характеристиках, основанную на откорректированных результатах прямого преобразования Фурье (преимущественно используется алгоритм БПФ - быстрого преобразования Фурье) временного графика изменения напряжения на выходах преобразователя 5, для каждого электрического сигнала, формируемого проходом каждого колеса над каждым датчиком 1 соответствующей стороны измерительного участка.

Прямое преобразование Фурье выполняют блоки 19 и 20 прямого преобразования Фурье. В блоке 23 вычисления усредненных амплитудно-частотных характеристик (АЧХ) вычисляют усредненные АЧХ для групп датчиков 1 каждой стороны пути измерительного участка 3. В блоках 21 и 22 первой корректировки коэффициентов усиления производят приведение, по всем частотам спектра преобразования Фурье, коэффициентов усиления датчиков 1 к усредненным коэффициентам усиления для своих групп и, соответственно, получают АЧХ первично откалиброванных сигналов.

Вторую корректировку коэффициентов усиления осуществляют блоки 24 и 25 второй корректировки коэффициентов усиления. Они принимают по своим первым входам АЧХ, полученные в результате первой корректировки от блоков 21 и 22 первой корректировки коэффициентов усиления, и дополнительно корректируют их на основе данных, поступающих на их вторые входы, от блока 26 коррекции коэффициента усиления по месту приложения к датчикам внешней силы. Блок 26 использует информацию о средней скорости движения каждого вагона по измерительному участку 3. Ввиду того, что измерительный участок 3 достаточно короткий, блок 9 определения скорости движения поезда для каждого проходящего вагона выдает в блок 26 одно значение скорости движения. Исходя из имеющейся информации о расположении и длине датчиков 1, а также о времени вступления первой оси вагона на измерительный участок 3, блок 26 рассчитывает моменты времени прохождения оси каждого колеса вагона над центром каждого датчика 1. Далее, по смещению импульсов от датчиков 1 относительно этих моментов времени, он определяет место приложения ударного воздействия по длине каждого датчика 1. В соответствии с определенными смещениями точек воздействия относительно центров датчиков 1 блок 26 подает на вторые входы блоков 24 и 25 второй корректировки коэффициентов усиления корректирующие данные для второй коррекции коэффициентов усиления и соответственно АЧХ сигналов от датчиков 1. Блок 26 также учитывает при калибровке влияние скорости движения вагона на силу и время воздействия дефектов колеса на рельс.

От блоков 24 и 25 откорректированные АЧХ сигналов от датчиков 1 передаются в блок 18 обратного преобразования Фурье, использующий обратное преобразования Фурье для восстановления сигналов от датчиков 1 в виде функций времени, АЧХ сигналов от датчиков 1 и соответствующие им функции времени от блока 18 обратного преобразования Фурье передаются в блок 14 принятия решений. Блок 14 принятия решений, на основании функции времени восстановленных сигналов от датчиков 1, вычисляет для каждого сигнала статическую и динамическую составляющую силы вертикального давления на рельс в пиковый момент удара и их соотношение для определения статистически усредненного коэффициента динамического воздействия колеса на рельс. Усредненное, по множеству сигналов от датчиков 1, значение рассчитывается для каждого дефекта каждого колеса. Анализ результатов в блоке 14 принятия решений выполняется с учетом скорости движения поезда по измерительному участку 3, передаваемой в него от блока измерения скорости 9, типа вагонов, передаваемого в него из блока 13 идентификации вагона, определяющего идентификационный номер проходящего измерительный участок 3 вагона, и поправок на температуру окружающей среды, в месте установки датчиков 1, передаваемых от блока 11. Блок 14 принятия решений определяет порядковые номера колесных пар по данным от блока 8 счетчика осей и регистрирует колеса с дефектами, превышающими нормы по допустимому динамическому коэффициенту воздействия колес вагонов на рельсы, и отображает эти данные оператору на дисплее блока 16 индикации. В процессе определения дефектных колес блок 14 принятия решений также определяет по функциям сигналов от датчиков 1 и с учетом перечисленных выше влияющих факторов, скорости и типа вагонов, виды и степени развития дефектов передает все данные в персональный компьютер 15 автоматизированного рабочего места работника диспетчерского центра для архивирования, прогнозирования отказов и для отображения данных в виде удобном для управления процессом обслуживания и ремонта. В блоке 17 хранения информации постоянно суммируется общее количество пропущенных через участок колесных осей. Это позволяет определить степень старения волоконно-оптических датчиков для проведения дополнительных периодических калибровок или их замены.

При принятии решений по дефектам точность может быть дополнительно повышена, за счет группирования дефектов, с применением кластерного анализа и на основе заранее установленных критериев, связанных с характером дефектов, их размерами и расстоянием между ними.

При объединении в кластеры дефекты группируются в однородные группы с близкими значениями параметров. Например, могут быть сформированы кластеры таких дефектов, как навары, наплывы, выбоины, выщерблины, ползуны. Площадь и отношение сторон кластера позволяют усилить детализацию. Например, разделить компактные дефекты и протяженные дефекты. Дополнительно можно образовать кластеры дефектов типа выщерблин и типа кольцевых выработок.

Каждый из кластеров может иметь свои дополнительные и более точные критерии оценки того, что дефект превысил допустимую норму. При этом критериями оценки может быть не только назначение пороговых величин для динамических коэффициентов, рассчитанных по функциям во временной области, но и задание ограничений на амплитуды гармоник АЧХ для выбранных поддиапазонов частот, характерных для тех или иных групп дефектов, в тех или иных диапазонах скоростей движения.

Таким образом, из-за более точной обработки исходных сигналов от датчиков 1 предлагаемая система, по сравнению с прототипом, обеспечивает повышение достоверности определения различных дефектов на поверхности катания колеса подвижного состава, при высокой надежности работы в условиях интенсивного движения поездов.

Система контроля поверхности катания колеса железнодорожной колесной пары, содержащая две группы датчиков динамических нагрузок, датчики зоны контроля, расположенные вдоль рельса, в начале и в конце измерительного участка, блок датчиков температуры щебеночного балласта, установленных по обе стороны пути, на глубине уровня подошвы шпалы, причем датчики динамических нагрузок выполнены в виде волоконно-оптических датчиков давления и установлены на измерительном участке пути, длиной не меньше длины окружности колеса и по разные стороны пути, напротив друг друга, между шпалой и рельсом, при этом выходные концы каждой группы датчиков динамических нагрузок подключены к соответствующим входам преобразователя оптического сигнала в электрический, а входные концы подключены к источнику оптического излучения, блок сопряжения, входы которого подключены к выходам датчиков зоны контроля, а выход - к входу блока счетчика колесных пар, к входу блока определения скорости движения поезда и входу управления блоком питания, блок сравнения, один вход которого подключен к выходу блока датчиков температуры, а другой вход - к выходу блока эталонных значений температур, выходы блока сравнения, блока определения скорости движения поезда, блока счетчика колесных пар и блока идентификации вагона соединены, соответственно, с первым, вторым, третьим и четвертым входами блока принятия решений, первый выход которого соединен с персональным компьютером автоматизированного рабочего места работника диспетчерского центра, второй выход соединен с входом блока индикации, а третий выход соединен с входом блока хранения информации, отличающаяся тем, что в нее введены блоки прямого преобразования Фурье, блок вычисления усредненных амплитудно-частотных характеристик, блоки первой корректировки коэффициентов усиления, блоки второй корректировки коэффициентов усиления, блок коррекции коэффициентов усиления датчиков динамических нагрузок, по месту приложения к датчикам внешней силы, и блок обратного преобразования Фурье, при этом выходы блока обратного преобразования Фурье подключены, соответственно, к пятому и шестому входам блока принятия решений, а выходы преобразователя оптического сигнала в электрический, соответствующие упомянутым группам датчиков динамических нагрузок, соединены, соответственно, с входами блоков прямого преобразования Фурье, первые выходы которых подключены, соответственно, к первым входам блоков первой корректировки коэффициентов усиления, а вторые выходы - к соответствующим входам блока вычисления усредненных амплитудно-частотных характеристик, выходы которого соединены, соответственно, с вторыми входами блоков первой корректировки коэффициентов усиления, выходы которых подключены к первым входам соответствующих блоков второй корректировки коэффициентов усиления, вторые входы которых соединены с выходом блока коррекции коэффициентов усиления датчиков динамических нагрузок, по месту приложения к датчикам внешней силы, вход которого соединен с выходом блока определения скорости движения поезда, при этом выходы блоков второй корректировки коэффициентов усиления соединены, соответственно, с первым и вторым входами блока обратного преобразования Фурье.
СИСТЕМА КОНТРОЛЯ ПОВЕРХНОСТИ КАТАНИЯ ЖЕЛЕЗНОДОРОЖНОЙ КОЛЕСНОЙ ПАРЫ
Источник поступления информации: Роспатент

Showing 251-260 of 506 items.
09.06.2018
№218.016.5ec1

Способ торможения и предотвращения образования усталостных трещин

Способ относится к области мостостроения и может быть использован для предотвращения возникновения и торможения развития усталостных трещин в стенках металлических главных балок пролетных строений и продольных балок проезжей части пролетных строений мостов. Эффект торможения трещины в...
Тип: Изобретение
Номер охранного документа: 0002656645
Дата охранного документа: 06.06.2018
11.06.2018
№218.016.608b

Бортовое навигационное коммуникационное устройство

Изобретение относится к области радиосвязи и навигации для железнодорожного транспорта. Бортовое навигационное коммуникационное устройство содержит модем GSM-R с SIM-картой, GSM и навигационную антенны, установленные на крыше головного вагона электропоезда, и размещенные в едином корпусе два...
Тип: Изобретение
Номер охранного документа: 0002657152
Дата охранного документа: 08.06.2018
14.06.2018
№218.016.61d2

Автоматическая система контроля уровня воды

Автоматическая система предназначена для фиксации критического повышения уровня воды на контролируемой местности и передачи информации на пульт централизованного наблюдения. Содержит источник питания (8), блок управления (1), электрически соединенный с датчиками уровня (3, 4), блок коммутации...
Тип: Изобретение
Номер охранного документа: 0002657360
Дата охранного документа: 13.06.2018
20.06.2018
№218.016.64b8

Устройство для имитации вертикального и горизонтального воздействия колеса на рельс

Изобретение относится к железнодорожному транспорту, в частности к устройствам для создания усилий на рельсы. Устройство для имитации вертикального и горизонтального воздействия колеса на рельс включает Н-образную раму, опирающуюся двумя концами на испытуемый рельс, а другими двумя...
Тип: Изобретение
Номер охранного документа: 0002658242
Дата охранного документа: 19.06.2018
20.06.2018
№218.016.64c0

Стенд для автоматизированных испытаний воздухораспределителей и электровоздухораспределителей пассажирских вагонов

Изобретение относится к стендам для испытания тормозного оборудования подвижного состава железнодорожного транспорта. Стенд для автоматизированных испытаний воздухораспределителей и электровоздухораспределителей пассажирских вагонов дополнительно снабжен прижимом для закрепления...
Тип: Изобретение
Номер охранного документа: 0002658247
Дата охранного документа: 19.06.2018
20.06.2018
№218.016.652c

Машина для планировки откосов с механизмом активной вырезки поверхностного слоя

Машина для планировки откосов содержит рабочий орган в виде отвала для обработки поверхности откоса земляного полотна. На отвале установлена приводная баровая цепь, одна ветвь которой расположена на передней кромке плужной части отвала, а вторая находится за отвалом вне рабочей зоны, при этом...
Тип: Изобретение
Номер охранного документа: 0002658231
Дата охранного документа: 19.06.2018
25.06.2018
№218.016.65e6

Система двухсторонней станционной парковой связи

Изобретение относится к системе связи, преимущественно к системе парковой связи на железнодорожном транспорте, и может быть использовано для управления эксплуатационной работой станций. Технический результат заключается в исключении акустических помех от громкоговорящей связи и оповещения в...
Тип: Изобретение
Номер охранного документа: 0002658652
Дата охранного документа: 22.06.2018
25.06.2018
№218.016.663f

Автоматизированная система для оперативного нормирования парка локомотивов

Изобретение относится к области железнодорожной автоматики для нормирования парка локомотивов. Система включает центральный процессор, блок памяти сменно-суточного плана, блок расчета потребности в локомотивах, формирователь модели прогноза парка локомотивов и вычислитель потребности в...
Тип: Изобретение
Номер охранного документа: 0002658748
Дата охранного документа: 22.06.2018
25.06.2018
№218.016.6641

Способ снижения коммутационных перенапряжений и использование их энергии для питания другого электрооборудования

Изобретение относится к электротехнике, в частности к цепям защиты коммутационных аппаратов от перенапряжений, накоплению и полезному использованию этой энергии для питания другого электрооборудования. Изобретение может быть использовано, например, в преобразовательной технике. Способ защиты и...
Тип: Изобретение
Номер охранного документа: 0002658653
Дата охранного документа: 22.06.2018
25.06.2018
№218.016.6642

Блок удержания состава на станционном пути

Изобретение относится к вспомогательному железнодорожному оборудованию, а именно к фиксаторам для закрепления подвижных составов на станционных путях после отцепки локомотивов. Блок удержания состава на станционном пути включает смонтированные внутри колеи модуль закрепления состава и модуль...
Тип: Изобретение
Номер охранного документа: 0002658746
Дата охранного документа: 22.06.2018
Showing 251-260 of 389 items.
29.05.2018
№218.016.52ef

Система для определения оптимального места остановки головного вагона электропоезда в зависимости от количества вагонов в его составе и специфики остановочного пункта

Изобретение относится к железнодорожной автоматике для определения оптимального места остановки головного вагона электропоезда в зависимости от количества вагонов в его составе и специфики остановочного пункта. Система включает вычислительный блок, первый блок памяти, клавиатуру корректировки,...
Тип: Изобретение
Номер охранного документа: 0002653901
Дата охранного документа: 15.05.2018
29.05.2018
№218.016.5389

Система интервального регулирования движения поездов

18 Изобретение относится к системам автоматики и телемеханики на железнодорожном транспорте для интервального регулирования движения поездов. Система включает размещенное на посту электрической централизации каждой станции устройство микропроцессорной электрической централизации и...
Тип: Изобретение
Номер охранного документа: 0002653672
Дата охранного документа: 11.05.2018
29.05.2018
№218.016.590d

Рельсовая цепь

Изобретение относится к области железнодорожной автоматики для использования в системах интервального регулирования движения поездов. Рельсовая цепь содержит на питающем конце источник переменного тока и реле постоянного тока, а на противоположном конце - выпрямитель, реле постоянного тока...
Тип: Изобретение
Номер охранного документа: 0002655178
Дата охранного документа: 24.05.2018
09.06.2018
№218.016.5af3

Способ ограждения места проведения работ и оповещения работающих на железнодорожных путях

Изобретение относится к области железнодорожной автоматики для ограждения работ и оповещения работающих. В способе задействуют установленные на подошве рельса по обе стороны от места работ датчики обнаружения подвижного состава (ДОП), снабженные радиостанцией, установленные по обе стороны места...
Тип: Изобретение
Номер охранного документа: 0002655566
Дата охранного документа: 28.05.2018
09.06.2018
№218.016.6025

Система для контроля нахождения подвижного состава на участке пути с неограниченными рельсовыми цепями тональной частоты

Изобретение относится к техническим средствам организации и управления движением поездов для контроля нахождения подвижного состава на участке пути. Система включает установленные на каждом подвижном составе блок бортовой аппаратуры управления и блок формирования радиосообщений о текущем...
Тип: Изобретение
Номер охранного документа: 0002656922
Дата охранного документа: 07.06.2018
11.06.2018
№218.016.6077

Централизованная система контроля перегонных рельсовых цепей тональной частоты для высокоскоростного движения

Изобретение относится к области железнодорожной автоматики и телемеханики для контроля перегонных рельсовых цепей. Централизованная система контроля рельсовых цепей тональной частоты для высокоскоростного движения включает посты электрической централизации, напольные устройства сопряжения,...
Тип: Изобретение
Номер охранного документа: 0002657118
Дата охранного документа: 08.06.2018
11.06.2018
№218.016.608b

Бортовое навигационное коммуникационное устройство

Изобретение относится к области радиосвязи и навигации для железнодорожного транспорта. Бортовое навигационное коммуникационное устройство содержит модем GSM-R с SIM-картой, GSM и навигационную антенны, установленные на крыше головного вагона электропоезда, и размещенные в едином корпусе два...
Тип: Изобретение
Номер охранного документа: 0002657152
Дата охранного документа: 08.06.2018
05.07.2018
№218.016.6b72

Система контроля местоположения поезда

Изобретение относится к области железнодорожной автоматики и телемеханики для определения и контроля позиции поезда на пути. Система включает волоконно-оптический кабель с герметичной заглушкой, проложенный вдоль пути на заданном расстоянии, центр управления движением поездов, в котором...
Тип: Изобретение
Номер охранного документа: 0002659913
Дата охранного документа: 04.07.2018
26.07.2018
№218.016.754e

Система для оперативного управления поездной работой участка железной дороги

Изобретение относится к области железнодорожного транспорта для оперативного управления поездной работой. Система включает центр обработки данных и компьютер автоматизированного рабочего места работника службы движения, включающий процессор, связанный с блоком памяти, блоком ввода информации,...
Тип: Изобретение
Номер охранного документа: 0002662351
Дата охранного документа: 25.07.2018
09.08.2018
№218.016.7a36

Система для регулирования движения поездов

Изобретение относится к области железнодорожной автоматики, для регулирования движения поездов на станциях. Система содержит рельсовые цепи тональной частоты, к питающему концу каждой из которых подключен соответствующий генератор сигналов контроля рельсовой линии через последовательно...
Тип: Изобретение
Номер охранного документа: 0002663564
Дата охранного документа: 07.08.2018
+ добавить свой РИД