×
17.06.2023
223.018.7e81

Результат интеллектуальной деятельности: Способ получения волластонита из кремнийсодержащего растительного сырья

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано в производстве лакокрасочных и композиционных материалов. Для получения волластонита приводят во взаимодействие при активном перемешивании раствор, содержащий силикат натрия, и раствор хлорида кальция, отделяют полученный при этом осадок, содержащий гидросиликат кальция и гидратированный кремнезем, промывают его и высушивают. В качестве раствора, содержащего силикат натрия, используют щелочной экстракт, полученный обработкой измельченной, очищенной от пыли, промытой и высушенной на воздухе рисовой соломы 1М раствором NaOH при 80-90°С в течение 60-80 мин с отделением непрореагировавшего твердого волокнистого остатка соломы. Хлорид кальция используют в виде 5%-ного раствора, который берут в расчетном количестве, обеспечивающем в реакционной смеси мольное соотношение Са:Si=1:(1,0-2,0). Осадок прокаливают при температуре 900-1000°С в течение 1,0-1,5 ч с получением волластонита. Твердый волокнистый остаток рисовой соломы, не прореагировавшей в результате щелочной обработки, направляют на переработку в качестве сырья для получения целлюлозных материалов. Изобретение позволяет получить синтетический дисперсный волластонит из отхода производства риса для применения в качестве пигмента, повысив его отражательную способность, белизну и устойчивость к ультрафиолетовому излучению. 2 з.п. ф-лы, 2 пр., 4 ил.

Изобретение относится к способам получения синтетического волластонита CaSiO3 из кремнийсодержащего растительного сырья, а конкретно - из рисовой соломы, которая является одним из крупнотоннажных сельскохозяйственных отходов.

Для России волластонит является нетрадиционным видом сырья и в настоящее время на территории нашей страны в промышленных масштабах практически не добывается, так как разрабатываемые месторождения не могут обеспечить поставку на рынок достаточного количества этого минерала удовлетворительного качества. Природный волластонитовый концентрат приходится закупать за рубежом: в Финляндии, США, КНР и других странах.

Производство синтетического волластонита, на текущий день получаемого из минерального и техногенного кремнезем-кальцийсодержащего сырья, не удовлетворяет всех потребностей промышленности, в то время как этот минерал является эффективным заменителем ряда материалов: асбеста, каолина, мела, талька, диоксида титана при производстве пигментов, отделочных материалов, изделий на асбестоцементной основе, звуко- и теплоизоляционных материалов и т.д. Волластонит используется в качестве различных добавок в материалы с целью увеличения их прочности, жаростойкости, химической стойкости и износостойкости, улучшения диэлектрических и электрических характеристик, сокращения длительности технологических процессов при их изготовлении, снижения температуры обработки.

Синтетический волластонит, в отличие от природного, характеризуется высокой дисперсностью, однородностью по составу и строению, низким содержанием примесей. Температура плавления и спекания синтетического волластонита на 100-200°C ниже, чем у природного, плавящегося в диапазоне 1500-1550°C.

Важными технологическими свойствами как природного, так и синтетического волластонита являются высокая химическая стойкость в различных средах, небольшой удельный вес, низкая теплопроводность, экологическая чистота и безопасность применения. В настоящее время наблюдается рост спроса на синтетические аналоги природного волластонита, при этом для каждой области применения формулируется четкий перечень требований к их свойствам, определяющий допустимое содержание примесей, необходимые структуру, дисперсность, белизну и т.п., и все более актуальной становится проблема получения синтетических силикатов кальция с заданными характеристиками.

В то же время существует насущная проблема утилизации крупнотоннажных отходов рисового производства, рассматриваемых в качестве сельскохозяйственного биоресурса: рисовой соломы. Однако поскольку из-за высокого содержания кремнезема она плохо горит в печах, медленно гниет и обладает высокой абразивностью при механической переработке, а вследствие высокой степени лигнификации клетчатки мало пригодна в качества корма для сельскохозяйственных животных, часто ее просто сжигают на полях, загрязняя окружающую среду. Для соблюдения международных экологических норм рисовую солому пытаются каким-то образом утилизировать, например, применять в качестве утеплителей в зданиях и сооружениях, использовать в составе добавок при производстве строительных материалов, а также в качестве химического сырья, но широкого применения она пока не находит.

Известен ряд способов, в которых используется рисовая солома, переработанная в большей либо меньшей степени. Известен способ быстрого возведения малоэтажного здания, описанный в патенте RU2387772, опубл. 2010.04.27, согласно которому стеновые плиты здания изготавливают из бетона с наполнителем из рисовой шелухи и рисовой соломы с применением магнезиального связующего, а также используют эти плиты для утепления потолка. Известный способ не обеспечивает переработку рисовой шелухи и рисовой соломы с получением таких целевых продуктов как волластонит, при этом не позволяет освоить значительные объемы рисовой соломы, которые могли бы решить проблему ее использования.

Другим примером применения рисовой соломы является способ получения волокнистых полуфабрикатов для целлюлозно-бумажной промышленности (RU2312945, опубл. 2007.12.20), в котором рисовую солому сначала подвергают обескремниванию путем обработки щелочным раствором при нагревании в присутствии катализатора антрахинона, отделяют обескремненное сырье от щелочного раствора и на втором этапе осуществляют его щелочную варку. Двухэтапная щелочная обработка, достаточно жесткие условия щелочной варки (в растворе NaOH в течение не менее 60 мин при 160°C) ограничивают возможности известного способа получением одного полуфабриката, извлечение других целевых продуктов им не предусмотрено.

Известен способ переработки рисовой шелухи и рисовой соломы с получением в качестве целевых продуктов алюмосиликатов калия или натрия, используемых для приготовления носителей катализаторов, ионообменных материалов, сорбентов, пигментов, пищевых добавок (RU2557607, опубл. 2015.07.27), включающий следующие этапы: получение раствора силиката натрия или калия путем обработки сырья раствором гидроксида натрия или калия при нагревании, смешивание раствора, полученного после отделения остатка не растворившегося сырья, с насыщенным водным раствором сернокислого алюминия Al2(SO4)3⋅18H2O, отстаивание, промывание и прокаливание образовавшегося на этом этапе осадка с получением алюмосиликата, при этом предпочтительным сырьем является проще поддающаяся переработке рисовая шелуха. Получение волластонита известный способ также не обеспечивает.

Известен способ комплексной переработки отходов рисового производства с получением ряда ценных целевых продуктов, в том числе высокочистого аморфного диоксида кремния (RU2533459, опубл. 2014.11.20). Известный способ является сложным, многооперационным и многоступенчатым, при этом требует использования большого количества различных органических и неорганических реактивов, поскольку он нацелен на одновременное получение целого ряда целевых продуктов, однако волластонит в их число не входит.

Малазийскими учеными (Shamsudin R., Ismail H., Abdul Hamid M.A. The Suitability of Rice Straw Ash as a Precursor for Synthesizing β-Wollastonite // Materials Science Forum.2016. Vol. 846. pp. 216-222) предложен способ утилизации рисовой соломы с получением синтетического β-волластонита. Компоненты реакционной смеси (кристобалит, полученный из рисовой соломы, и предварительно прокаленный при 1100°C известняк) подвергают автоклавной обработке в течение 8 ч при температуре 135°C. Затем продукт реакции обжигают в течение 3 ч при температуре 950°C. Полученный β-волластонит имеет средний размер частиц 38,2 мк и плотность 3,1 г/см3. Недостатками известного способа являются необходимость предварительной энергозатратной подготовки исходного сырья (соломы и известняка), а также длительный последующий обжиг продукта автоклавной обработки, при этом разработчиками отмечено, что для получения однородного по составу материала при использовании рисовой соломы необходимо более длительное время реакции по сравнению с рисовой шелухой.

Наиболее близким к заявляемому является (RU2133218, опубл. 1999.07.20) способ получения высокодисперсных кремнеземсодержащих порошков, которые могут быть использованы в производстве пигментов, красителей, наполнителей для строительных материалов, шихты для получения волластонита. Согласно известному способу, для получения неокрашенных порошков приводят во взаимодействие раствор, содержащий силикат натрия, в качестве которого используют жидкое стекло с силикатным модулем 2,4-4,2, предварительно разбавленное водой в соотношении 1:(0,5-1,0), и хлорид кальция CaCl2⋅Н2О, взятый с избытком 1,1-1,5 от стехиометрически необходимого, активно перемешивают реакционную смесь с осаждением гидросиликатов кальция и гидратированного кремнезема в качестве целевого продукта, отделяют, промывают и высушивают полученный осадок.

Наличие в компонентах исходного сырья (техническом жидком натриевом стекле) растворимых соединений-хромофоров с высокой вероятностью становится причиной окрашивания получаемого порошка и лишает его белизны. Согласно известному способу, в этих случаях на втором этапе обработки в полученный порошок силикатов кальция дополнительно вводят добавку-краситель, преимущественно растворимую соль металла-хромофора, для придания пигменту определенного цвета.

Наличие примесных элементов приводит к появлению дефектов кристаллической решетки, нарушающих правильность кристаллической структуры и ухудшает устойчивость полученных порошков по отношению к ультрафиолетовому излучению.

Кроме того, в описании известного способа не указаны размеры частиц получаемого высокодисперсного порошка и/или его удельная поверхность, а визуально установить различие в размерах частиц высокодисперсного порошка невозможно, в то время как размер частиц полученного материала во многом определяет его свойства, определяющие область его возможного применения. Отсутствие данных по дисперсности не позволяет судить о таких важных для пигмента свойствах как укрывистость и способность к диспергированию, и оценить целесообразность его использования для получения пигмента. Кроме того, однородность размеров частиц полученного порошка имеет важное значение для получения материала хорошего качества при его смешивании с другими компонентами.

Задачей изобретения является разработка способа получения из рисовой соломы дисперсного волластонита, обладающего необходимыми свойствами для использования его при получении пигментов для лаков, красок и других видов покрытий, при производстве композиционных материалов, устойчивых к ультрафиолетовому облучению, а именно, высокой отражательной способностью и белизной, выраженной стойкостью по отношению к ультрафиолетовому излучению, однородностью размеров составляющих его частиц.

Технический результат способа заключается в повышении отражательной способности и белизны получаемого дисперсного волластонита, увеличении его стойкости к ультрафиолетовому излучению за счет приготовления порошка силикатов кальция с узким распределением частиц по размерам, не содержащего примеси металлов-хромофоров, а также за счет формирования бездефектной кристаллической структуры, не включающей примесных атомов.

Указанный технический результат достигают способом получения волластонита, согласно которому приводят во взаимодействие при активном перемешивании раствор, содержащий силикат натрия, и раствор хлорида кальция, отделяют полученный осадок, содержащий гидросиликат кальция и гидратированный кремнезем, промывают его и высушивают, в котором, в отличие от известного, в качестве раствора, содержащего силикат натрия, используют щелочной экстракт, полученный обработкой измельченной, очищенной от пыли, промытой и высушенной на воздухе рисовой соломы 1М раствором гидроксида натрия NaOH при 80-90°C в течение 60-80 минут с отделением непрореагировавшего твердого волокнистого остатка соломы, при этом хлорид кальций используют в виде 5% раствора, который применяют в расчетном количестве, обеспечивающем в реакционной смеси мольное соотношение Са:Si=1,0:(1,0-2,0), полученный осадок прокаливают при температуре 900-1100°C в течение 1-2 часов с получением волластонита.

Предпочтительно промывание полученного осадка дистиллированной водой перед прокаливанием проводят до нейтральной реакции промывных вод для полного удаления растворимых компонентов соломы, осадок отфильтровывают и высушивают на воздухе при температуре 80-85°C.

В предпочтительном варианте осуществления способа твердый волокнистый остаток не прореагировавшей в результате щелочной обработки рисовой соломы направляют в качестве сырья на переработку для получения целлюлозных материалов.

Способ осуществляют следующим образом.

Стебли рисовой соломы измельчают на части длиной 5-10 см, продувают потоком воздуха для удаления сухой пыли, промывают водой и высушивают на воздухе при 80-85°C.

Подготовленное сырье помещают в подходящую емкость с плотной крышкой, заливают 1М раствором гидроксида натрия NaOH при Т:Ж=1:10, нагревают до 80-90°C и выдерживают при этой температуре в течение 60-80 мин. В этих условиях происходит экстрагирование из рисовой соломы кремнийсодержащих соединений.

Обескремненный твердый остаток рисовой соломы, содержащий до 55% волокнистого продукта, отделяют от щелочного раствора, складируют в накопителе для последующего использования в качестве сырья для производства целлюлозных материалов.

К выделенному щелочному раствору, содержащему экстрагированные из рисовой соломы кремнийсодержащие вещества, при активном перемешивании добавляют 5% раствор хлорида кальция CaCl2 в расчетном количестве, обеспечивающем мольное соотношение Са:Si=1,0:(1,0-2,0).

Образовавшийся объемный осадок, содержащий гидросиликат кальция и гидратированный кремнезем, отмывают дистиллированной водой от растворимых соединений-хромофоров до их полного удаления, о котором свидетельствует нейтральная реакция промывных вод, затем отфильтровывают и высушивают на воздухе при температуре 80-85°C.

Волластонит CaSiO3 получают прокаливанием высушенного осадка при температуре в интервале 900-1000°C в течение 1,0-1,5 часов

Для оценки стабильности получаемого материала к воздействию различных видов облучения, в том числе к ультрафиолетовому облучению, и его способности отражать свет исследовали спектры отражения (Беленький Е.Ф., Рискин И.В. Химия и технология пигментов - Л.: Химия, 1974).

На основе полученных спектров отражения определяли белизну полученного материала, которая в данном случае является одной из важнейших технических характеристик материала и отражает его декоративность.

Белизну обычно определяют путем измерения коэффициентов отражения (R) либо с помощью цветовых характеристик. Величину белизны (W) полученного силикатного порошка вычисляют по разности коэффициентов отражения ρх в двух участках видимого спектра электромагнитного излучения (Беленький Е.Ф., Рискин И.В. Химия и технология пигментов - Л.: Химия, 1974 - С. 60):

W=R430-(R670-R430)=2R430-R670,

где W - белизна; R430 и R670 - коэффициенты отражения, соответственно, для длины волны λ1=430 нм и λ2=670 нм

Примеры конкретного осуществления способа

Для определения элементного состава полученных дисперсных образцов применяли энергодисперсионный рентгенофлуоресцентный метод с использованием спектрометра EDX-800HS фирмы "Shimadzu" (Япония). Анализ проводили без учета легких элементов с использованием программного обеспечения спектрометра. Относительная погрешность определения не превышала ±2%.

Распределение частиц волластонита по размеру определяли на лазерном анализаторе частиц Analysette-22 NanoTec/MicroTec/XT ("Fritsch", Германия).

Спектры отражения полученных дисперсных образцов регистрировали с помощью спектрофотометра Hitachi U-3010 в диапазоне длин волн 190-900 нм с использованием сферы для измерения полного (зеркального и диффузного) отражения. Для регистрации спектров отражения полученный порошок волластонита прессовали в таблетки.

Пример 1

В реакционную емкость вносили навеску 400 г предварительно измельченной, очищенной от пыли, промытой и высушенной рисовой соломы, добавляли 4 л 1М раствора гидроксида натрия NaOH (из расчета Т:Ж=1:10) и выдерживали при температуре 90°C в течение 60 минут. После отделения твердого остатка обескремненной рисовой соломы от щелочного раствора, содержащего экстрагированные из соломы кремнийсодержащие вещества, к 3,5 л последнего, при активном перемешивании добавили 700 мл 5% раствора хлорида кальция, содержащего 35 г CaCl2, что обеспечило мольное соотношение Са:Si, равное 1,0:1,0. Образовавшийся объемный осадок силикатов кальция отмыли дистиллированной водой до нейтральной реакции промывных вод для удаления растворимых хромофорных соединений, отфильтровали и высушили на воздухе при температуре 80°C с получением 58 г сухого порошка. После прокаливания порошка в течение 1 часа при 900°C получено 51 г порошка, содержащего, по данным рентгенофазового анализа, аморфную фазу и волластонит CaSiO3 моноклинной модификации со следующими параметрами кристаллической ячейки: а - 15.42600; b - 7.32000; с - 7.06600; α=90.000; β=95.400; γ=90.000. Содержание основных элементов в полученном продукте, масс. %: Si - 70.4; Са - 27.5; Al - 1.1; K - 0.54.

Анализ распределения частиц синтезированного волластонита по размерам до и после прокаливания свидетельствует, что основная масса частиц (до 80%), как показывает приведенная на фиг. 1 гистограмма распределения размеров частиц волластонита, имеет размеры от 10 до 40 мкм

Белизна волластонита, полученного по примеру 1, согласно приведенному на фиг. 2 спектру отражения, составляет 88% в диапазоне длин волн от 190 до 900 нм.

Пример 2

В реакционную емкость вносили навеску 400 г предварительно подготовленной рисовой соломы, добавляли 4 л 1М раствора гидроксида натрия NaOH (из расчета Т:Ж=1:10) и 80 минут выдерживали сырье в щелочи при температуре 80°C. Дальнейшую обработку с отделением твердого остатка соломы от щелочного раствора проводили по примеру 1: к 3,5 л выделенного щелочного раствора добавляли 350 мл 5% раствора хлорида кальция, содержащего 17,5 г CaCl2,. Образовавшийся объемный осадок также обрабатывали по примеру 1, затем получали волластонит CaSiO3 прокаливанием высушенного осадка в течение 1,5 ч. при температуре 1000°C.

Получено 38 г дисперсного волластонита.

Согласно данным рентгенофазового анализа, в результате прокаливания получены волластонит CaSiO3 моноклинной модификации (параметры кристаллической ячейки идентичны параметрам кристаллической ячейки волластонита, синтезированного по примеру 1), и кварц SiO2 (параметры кристаллической ячейки: а - 4.91344; b - 4.91344; с - 5.40524; α=90.000; β=90.000; γ=120.000). Содержание основных элементов в полученном продукте, масс. %: Si - 72.1; Са - 26.8; Al - 0.6; K - 0.54.

Анализ распределения частиц синтезированного волластонита по размерам до и после прокаливания при 1000°C в течение 1,5 ч показал, что основная масса частиц (до 80%) имеет размеры от 10 до 60 мкм. Результаты измерения приведены в виде гистограммы на фиг. 3.

Согласно полученному спектру отражения, приведенному на фиг. 4, белизна полученного дисперсного волластонита составляет 92% в диапазоне длин волн от 190 до 900 нм.

Таким образом, дисперсный волластонит, полученный из сырья растительного происхождения (рисовой соломы) предлагаемым способом, обладает белизной не менее 88%, обеспечивающей его успешное применение в производстве пигментов для лаков, красок и других видов покрытий. Пигменты активно используются для придания материалам определенного цвета и ряда дополнительных свойств, способствующих увеличению срока их эксплуатации и улучшению защитных функций. Кроме того, он с успехом может применяться в качестве наполнителя в композиционных материалах, устойчивых к ультрафиолетовому облучению.

В основу предлагаемого способа заложена достаточно простая технологическая схема с использованием доступных и попросту дешевых реактивов, при этом в качестве сырья идет крупнотоннажный отход производства риса - рисовая солома, которая используется практически без остатка. Одновременно с целевым продуктом получают сырье для целлюлозной промышленности, что в совокупности обеспечивает высокую рентабельность предлагаемого способа.

Источник поступления информации: Роспатент

Показаны записи 51-60 из 125.
25.08.2017
№217.015.cbf5

Способ получения покрытия на имплантатах из титана и его сплавов

Изобретение относится к получению микропористых структур на поверхности изделий из титана или его сплава и может быть использовано в области медицинской техники при изготовлении из титана и его сплавов поверхностно-пористых эндопротезов и имплантатов для травматологии, ортопедии, различных...
Тип: Изобретение
Номер охранного документа: 0002620428
Дата охранного документа: 25.05.2017
25.08.2017
№217.015.cd8e

Способ получения многофункциональных защитных покрытий

Изобретение относится к получению многофункциональных защитных покрытий на лакокрасочной основе, обладающих водоотталкивающими, антифрикционными, противоизносными, противообрастающими свойствами, и может быть использовано в судостроении и судоремонте, в строительстве при возведении...
Тип: Изобретение
Номер охранного документа: 0002619687
Дата охранного документа: 17.05.2017
26.08.2017
№217.015.e943

Способ получения катализатора для очистки выхлопных газов

Изобретение относится к катализаторам для очистки газовых смесей от токсичных примесей, в частности от оксидов азота и углерода, и может быть использовано для удаления их из газовых технологических выбросов и выхлопных газов двигателей внутреннего сгорания. Способ получения катализатора состава...
Тип: Изобретение
Номер охранного документа: 0002627763
Дата охранного документа: 11.08.2017
29.12.2017
№217.015.f2f5

Пористый магнитный сорбент

Изобретение относится к сорбентам и может быть использовано для очистки от углеводородных загрязнений поверхности воды и почвы. Сорбент содержит пористый синтетический моносиликат кальция со структурой ксонотлита, гидрофобизированный добавкой силан-силоксановой микроэмульсии, и синтезированную...
Тип: Изобретение
Номер охранного документа: 0002637231
Дата охранного документа: 01.12.2017
29.12.2017
№217.015.f795

Способ получения магнитоактивного рентгеноконтрастного средства

Изобретение относится к фармацевтической промышленности, а именно к способу получения магнитоактивного рентгеноконтрастного средства в виде водной дисперсии наночастиц, содержащих оксид железа FeO и оксид тантала ТаО, путем последовательного осаждения из соответствующих растворов, содержащих...
Тип: Изобретение
Номер охранного документа: 0002639567
Дата охранного документа: 21.12.2017
29.12.2017
№217.015.fb65

Борфторсодержащая энергоемкая композиция для энергетических конденсированных систем и способ ее получения

Изобретение относится к борфторсодержащим композициям, которые могут быть использованы в качестве высококалорийных компонентов энергетических конденсированных систем (ЭКС), например порохов, пиротехнических и взрывчатых составов, смесевых твердых ракетных топлив и т.п. Борфторсодержащая...
Тип: Изобретение
Номер охранного документа: 0002640338
Дата охранного документа: 27.12.2017
13.02.2018
№218.016.1fe9

Способ получения каталитически активного композитного материала

Изобретение относится к способам получения оксидных катализаторов на металлическом носителе-подложке, которые могут быть использованы в реакциях окисления СО в СO, имеющих место в высокотемпературных процессах очистки технологических и выхлопных газов, в частности в энергетике и автомобильной...
Тип: Изобретение
Номер охранного документа: 0002641290
Дата охранного документа: 17.01.2018
13.02.2018
№218.016.240c

Способ получения пористого магнитного сорбента

Изобретение относится к получению сорбентов. Предложен способ получения пористого магнитного сорбента нефтепродуктов. Согласно изобретению проводят синтез моносиликата кальция структуры ксонотлита путем взаимодействия в растворе хлорида кальция и силиката натрия в присутствии силан-силоксановой...
Тип: Изобретение
Номер охранного документа: 0002642629
Дата охранного документа: 25.01.2018
17.02.2018
№218.016.2c2b

Резорбируемый рентгеноконтрастный кальций-фосфатный цемент для костной пластики

Изобретение относится к медицине, а именно получению ренгеноконтрастных цементов для закрытия небольших полостей в костных тканях. Рентгеноконтрастный инжектируемый кальций-фосфатный цемент для костной пластики содержит в качестве рентгеноконтрастного вещества оксид тантала TaO, дополнительно...
Тип: Изобретение
Номер охранного документа: 0002643337
Дата охранного документа: 31.01.2018
10.05.2018
№218.016.448b

Способ определения содержания воды в нефтесодержащих эмульсиях и отложениях

Изобретение относится к способам определения содержания (концентрации) воды в нефтесодержащих эмульсиях и отложениях, в отработанных нефтепродуктах и других нефтесодержащих отходах (нефтешламах), а также в почвах и грунтах с мест розлива нефтепродуктов или территорий с высоким уровнем...
Тип: Изобретение
Номер охранного документа: 0002650079
Дата охранного документа: 06.04.2018
Показаны записи 21-27 из 27.
11.10.2018
№218.016.905c

Способ получения структурированного пористого покрытия на титане

Изобретение относится к способу модификации поверхности титана с получением структурированного пористого слоя, содержащего нано- и микропоры, и может быть использовано в медицинской технике при изготовлении обладающих биологической совместимостью эндопротезов и имплантатов для травматологии,...
Тип: Изобретение
Номер охранного документа: 0002669257
Дата охранного документа: 09.10.2018
03.03.2019
№219.016.d237

Сорбционный материал для селективного извлечения радионуклидов стронция из сложных по ионному составу растворов и способ извлечения радионуклидов стронция с его помощью

Группа изобретений относится к сорбционным материалам и способам сорбционного извлечения радионуклидов стронция из многокомпонентных растворов и может найти применение для очистки сложных по ионному составу растворов и водных сред. Сорбционный материал для селективного извлечения радионуклидов...
Тип: Изобретение
Номер охранного документа: 0002680964
Дата охранного документа: 01.03.2019
10.04.2019
№219.017.02c7

Способ получения диоксида кремния

Изобретение может быть использовано для переработки рисовой шелухи и рисовой соломы в диоксид кремния. Рисовую шелуху или рисовую солому обрабатывают 20-60% раствором гидроксида натрия при 70-95°С. Нерастворившийся осадок отделяют от полученного раствора, из которого минеральной кислотой...
Тип: Изобретение
Номер охранного документа: 0002394764
Дата охранного документа: 20.07.2010
10.04.2019
№219.017.07fb

Способ получения металлической сурьмы из сурьмяного сырья

Изобретение относится к способу получения металлической сурьмы из сурьмяного сырья. Способ включает получение раствора трифторида из сурьмяного сырья. При этом к полученному раствору трифторида сурьмы (SbF) добавляют валин (CHON) до достижения мольного соотношения трифторид сурьмы : валин,...
Тип: Изобретение
Номер охранного документа: 0002409686
Дата охранного документа: 20.01.2011
09.05.2019
№219.017.4acb

Способ выделения моногалактозилдиацилглицеринов из растительного сырья

Изобретение относится к биохимии. Проводят экстракцию общих липидов из отходов переработки зерна риса. Разделение липидов осуществляют с использованием метода двумерной тонкослойной хроматографии с использованием смеси растворителей: по первому направлению - хлороформ, ацетон, метанол,...
Тип: Изобретение
Номер охранного документа: 0002280454
Дата охранного документа: 27.07.2006
02.10.2019
№219.017.cf84

Способ получения пигмента для термостабилизирующих покрытий

Изобретение относится к светоотражающим пигментам для применения в составе покрытий класса «солнечные отражатели», которые могут быть использованы для пассивной тепловой защиты космических аппаратов. Пигмент получают путем синтеза в автоклаве при температуре 220°С, давлении 22-23 атм в течение...
Тип: Изобретение
Номер охранного документа: 0002700607
Дата охранного документа: 18.09.2019
25.03.2020
№220.018.0fa8

Способ переработки титансодержащего минерального сырья

Изобретение относится к гидрофторидной технологии переработки титансодержащего минерального сырья, преимущественно ильменитового концентрата, и может найти применение в производстве диоксида титана пигментной чистоты, а также железооксидных пигментов. Способ включает обработку исходного...
Тип: Изобретение
Номер охранного документа: 0002717418
Дата охранного документа: 23.03.2020
+ добавить свой РИД