×
16.06.2023
223.018.7c1a

Результат интеллектуальной деятельности: Способ приготовления биметаллических палладий-родиевых катализаторов (варианты)

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам (вариантам) получения каталитических композиций, применяемых в качестве трехмаршрутных катализаторов нейтрализации автомобильных выхлопных газов. Первое изобретение относится к способу приготовления биметаллических палладий-родиевых катализаторов, включающему стадию нанесения комплексных солей на субстрат, сушку полупродукта и его последующий обжиг, при этом стадия нанесения комплексных солей представляет из себя нанесение двойных комплексных солей с формулой [ML][ML]X, где M и M = Rh или Pd, L = этилендиамин или аммиак, L = CO, X = противоионы, x, y и z – стехиометрические коэффициенты. Второе изобретение относится к способу приготовления биметаллических палладий-родиевых катализаторов, в котором стадия нанесения комплексных солей содержит следующие технологические операции: нанесение соединения типа [ML] X, где M = Rh или Pd, L = этилендиамин или аммиак, X = противоионы, x и y – стехиометрические коэффициенты, сушку в воздушной среде при комнатной температуре в течение 8-20 ч, затем в сушильном шкафу в воздушной среде при температуре 70-95 °С в течение 3-9 ч, нанесение соединения типа X[M L], где M = Rh или Pd, L = CO, X = противоионы, x и y – стехиометрические коэффициенты. Технический результат заключается в получении биметаллических палладий-родиевых катализаторов с высокой каталитической активностью при снижении затрат энергии и количества технологических растворов для утилизации. 2 н. и 4 з.п. ф-лы, 1 ил., 9 пр.

Изобретение относится к способам получения каталитических композиций, применяемых в качестве трехмаршрутных катализаторов нейтрализации автомобильных выхлопных газов. Более конкретно, изобретение относится к способам приготовления биметаллических катализаторов, содержащих наночастицы палладия и родия для очистки выхлопных газов автомобилей с бензиновыми двигателями.

Биметаллические палладий-родиевые катализаторы применяются как составная часть трехмаршрутных каталитических нейтрализаторов окисления оксида углерода, органических соединений и восстановления оксидов азота.

Наиболее широко используемые в настоящее время каталитические нейтрализаторы, на которых эффективно протекают процессы окисления оксида углерода, органических соединений и восстановления оксидов азота даже при относительно низких температурах и высоких скоростях потока, содержат Pt и/или Pd и Rh, нанесенные на носители: Al2O3, CeO2, ZrO2 и др. [Heck R. M. Catalytic air pollution control: commercial technology / R. M. Heck, R. J. Farrauto, S. T. Gulati. – Hoboken : John Wiley & Sons, 2009. – 518 с.]. Для повышения термической стабильности носителя, а также для увеличения емкости хранения кислорода (oxygen storage capacity - OSC) оксид алюминия часто легируется диоксидом циркония и/или оксидами редкоземельных элементов, например, Ce, La, Y.

Известен метод приготовления катализаторов [Exhaust treatment device: пат 1541220В1 Европейского Союза : МПК B 01 D 53/945 / Nunan J. G., патентообладатель Umicore AG and Co KG. - № 20040078285 ; заявл. 03.12.2003, опубл. 26.02.2014, Бюл. №2014/09], в котором оба активных металла (Pd/Pt и Rh), а также OSC компонент содержатся в одном слое каталитического блока. Катализаторы готовят с использованием технологии пропитки пористых носителей совместным раствором, содержащим соли платиновых металлов. Недостатком таких методов приготовления является создание каталитически активных компонентов катализатора, в которых образующиеся каталитически активные частицы родия и палладия никак не взаимодействуют между собой и находятся на поверхности оксидных носителей в виде отдельных монометаллических или оксидных фаз.

В результате такого подхода практически полностью исключается возможность образования биметаллических частиц в процессе синтеза катализатора, что приводит к снижению каталитической активности при работе катализатора в условиях высоких температур, вследствие укрупнения частиц Pd и диффузии Rh вглубь носителя.

Известно, что нанесение полиметаллических систем при приготовлении катализаторов имеет ряд преимуществ по сравнению с монометаллическими системами за счет возможного синергетического эффекта. Увеличение термической стабильности Pd-Rh катализаторов может быть достигнуто, если палладий и родий будут распределены на поверхности носителя в виде ультрадисперсных биметаллических частиц [Araya P. Synergism in the reaction of CO with O2 on bimetallic Rh-Pd catalysts supported on silica / P. Araya, V. Diaz // Journal of the Chemical Society, Faraday Transactions (1997) 93 (21):3887-3891. doi:10.1039/a703704j; Renzas J.R. Rh1−xPdx nanoparticle composition dependence in CO oxidation by oxygen: catalytic activity enhancement in bimetallic systems. / J.R. Renzas, W. Huang, Y. Zhang, M.E. Grass, D.T. Hoang, S. Alayoglu, D.R. Butcher, F. Tao, Z. Liu, G.A. Somorjai // Phys Chem Chem Phys (2011) 13 (7):2556-2562. doi:10.1039/c0cp01858a]. При этом уменьшение размера частиц приведет к увеличению каталитической активности, а образование твердого раствора существенно понизит вероятность укрупнения частиц Pd и диффузию Rh вглубь носителя.

Обычно полиметаллические катализаторы готовят как описано в способе [Способ приготовления нанесенных полиметаллических катализаторов (варианты): пат. 2294240 Рос. Федерация: МПК / Собянин В.А., Снытников П.В., Козлов Д.В., Воронцов А. В., Коренев С. В., Губанов А. И., Юсенко К. В., Шубин Ю. В., Венедиктов А. Б., патентообладатель Институт Катализа Имени Г.К. Борескова СО РАН, Институт неорганической химии имени А.В. Николаева СО РАН. - № 2005105230A: заявл. 24.02.2005, опубл. 27.02.2007, Бюл. №6]. Способ включает стадию нанесения комплексных солей на субстрат, сушку полупродукта и его последующий обжиг для получения готового продукта. Стадия нанесения комплексных солей подразумевает следующие технологические операции: нанесение прекурсора, несущего катионную часть, из соединений, содержащих в своем составе несколько лигандов, выбранных из: аммиака, галогенид-ионов, гидрокисл-иона, молекул воды или оксидов азота; сушку полупродукта; нанесение прекурсора, несущего анионную часть, из соединений, содержащих в своем составе несколько лигандов, выбранных из: галогенид-ионов; гидрокисл- или цианид-иона; молекул воды, оксидов азота и катионов, например, аммония; очередную сушку полупродукта; восстановление нанесенных компонентов в жидкой среде с использованием гидрозина, формальдегида, гипофосфита натрия или борогидрида натрия.

Одним из недостатков этого метода является использование такого типа комплексных солей, что осуществление восстановления катионов драгоценных металлов до нульвалентного состояния возможно только на отдельной технологической стадии, осуществляемой после стадии сушки.

Техническая проблема заключается в том, что сложная организация технологического процесса подразумевает большой расход энергии и значительное количество технологических растворов для утилизации, в том числе содержащих опасные химические соединения – сильные восстановители.

Авторы изобретения установили, что можно значительно упростить технологию получения полиметаллических катализаторов, изменив состав комплексных солей Pd и Rh.

Технический результат предлагаемого изобретения – получение биметаллических палладий-родиевых катализаторов с высокой каталитической активностью при снижении затрат энергии и количества технологических растворов для утилизации.

Технический результат достигается тем, что исходный носитель обрабатывают раствором специально приготовленного многокомпонентного прекурсора: двойных комплексных солей (ДКС) с общей формулой [M1L1]x[M2L2]yXz, где M1, M2 = Rh или Pd; L1 и L2 = углерод или азотсодержащие лиганды, например, C2O42–, этилендиамин, аммиак; X=противоионы (например, NO2, NO3, CO32– и др.); x, y и z – стехиометрические коэффициенты. Термическое разложение соединений, содержащих в своем составе лиганды, обладающие высокими восстановительными свойствами, позволяет получать наноразмерные биметаллические сплавы RhxPd1-x непосредственно на этапе термической обработки, что делает возможным исключение стадии восстановления в жидкой среде.

Суть способа приготовления биметаллического палладий-родиевого катализатора состоит в последовательности стадий нанесения многокомпонентного прекурсора на носитель и последующей термической обработки.

Сущность изобретения поясняется фигурами, где изображено:

- на Фиг. 1 – таблица с данными по каталитической активности и термическая стабильность образцов по Примерам 1-9.

На первой стадии исходный носитель (Al2O3, CeO2, CexZr1-xO2 и др.) обрабатывают раствором двойной комплексной соли (далее ДКС) таким образом, что на носителе осаждается координационное соединение, состоящие из комплексного катиона и комплексного аниона. В качестве катионов, например, могут быть использованы катионы [Rh(NH3)6]3+, [RhEn3]3+ и [PdEn2]2+, где En – этилендиамин, а в качестве анионов, например, могут быть использованы [PdOx2]2– и [RhOx3]3–, где Ox –
оксалат-анион C2O42–.

На второй стадии проводят термообработку нанесенной на поверхность носителя двойной комплексной соли. Термообработка заключается в сушке в воздушной среде при комнатной температуре в течение 8-20 ч., сушке в воздушной среде при температуре 100-115 °С в течение 3-9 ч., обжиге при температуре не менее 500 °С в течение 0.65-1.5 ч. в восстановительной, инертной или окислительной среде для перевода металлов-комплексообразователей в форму биметаллического сплава.

В случае низкой растворимости ДКС используют вариант нанесения, который состоит в последовательной пропитке носителя сначала раствором комплексной соли, содержащим только катионную часть ДКС (например [Rh(NH3)6](NO3)3), с последующим высушиванием в воздушной среде при комнатной температуре в течение 8-20 ч, затем в воздушной среде при температуре 70-95 °С в течение 3-9 ч. Затем высушенный образец пропитывают раствором комплексной соли, содержащим только анионную часть (например, (NH4)2[PdOx2]), с последующим высушиванием в воздушной среде при комнатной температуре в течение 8-20 ч, затем в воздушной среде при температуре 100-115 °С в течение 3-9 ч. В результате на поверхности носителя формируется необходимая ДКС, подвергающаяся восстановлению на стадии обжига при температуре не менее 500 °С в течение 0.65-1.5 ч. в восстановительной, инертной или окислительной среде.

Вид и характер противоионов не влияют на достижение технического результата. В качестве противоионов может быть использован любой анион, но наиболее предпочтительно использовать те противоионы, что не являются каталитическими ядами для будущих катализаторов, например, NH4+ и NO3 группы.

В предлагаемом подходе использование углеродсодержащих лигандов, которые являются хорошими восстановителями, позволяет восстанавливать благородные металлы-комплексообразователи до нульвалентного состояния даже в инертной и окислительной атмосферах. Побочные продукты легко удаляются в процессе синтеза в виде газообразных продуктов, не образуя соединений, загрязняющих поверхность катализатора и блокирующих активные частицы.

Предлагаемый способ приготовления биметаллического палладий-родиевого катализатора через образование ДКС на поверхности носителя позволяет максимально упростить процесс его приготовления и достичь селективного образования высокодисперсных биметаллических частиц RhxPd1-x на поверхности носителя.

Сущность изобретения может быть проиллюстрирована следующими примерами.

Пример 1.

Приготовление катализатора на основе оксида алюминия, содержащего 0.12 мас.% Pd и 0.08 мас.% Rh. К 10.0 г носителя (Al2O3) при комнатной температуре прикапывают при тщательном перемешивании 15.0 мл 2.5·10-3 М раствора [RhEn3]2[PdOx2]3. Молярное соотношение Rh:Pd на поверхности носителя составляет 2:3. Далее пропитанный носитель сушат в воздушной среде при комнатной температуре в течение 8 ч, затем в воздушной среде при температуре 100 °С в течение 3 ч. Термообработку образца проводят в воздушной среде при 500 °C в течение 40 минут.

Далее измеряют каталитическую активность и термическую стабильность образцов в проточном реакторе в условиях форсированного термического старения. Реакционный поток, состоящий из 0.15 об. % CO, 14.0 об. % O2, 0.01 об.% NO, 0.01 об.% углеводородов (метан, пропилен, толуол) и азота (остальное), подают в реактор со скоростью 334 мл/мин. Каждый образец подвергают 7 циклам нагрева-охлаждения, варьируя конечную температуру цикла (320 °С для первых двух циклов, 600 °С для последующих двух циклов и 800 °С для последних трех циклов). Скорость подъема температуры во всех случаях составляет 10 °С/мин. Концентрацию СО измеряют при помощи проточного газового анализатора ULTRAMAT 6 фирмы Siemens. В качестве критерия каталитической активности и термической стабильности образцов используют температуру 50% превращения CO (Т50) в третьем, пятом и седьмом каталитическом цикле. Критерием термической стабильности используют разницу между активностью в седьмом и третьем цикле.

Полученные данные приведены в таблице 1.

Пример 2.

Приготовление катализатора на основе смешанного оксида церия и циркония, содержащего 0.12 мас.% Pd и 0.08 мас.% Rh. К 10.0 г носителя (CexZr1-xO2) при комнатной температуре прикапывают при тщательном перемешивании 10.0 мл 3.8·10-3 М раствора [PdEn2]3[RhOx3]2. Молярное соотношение Pd:Rh на поверхности носителя составляет 3:2. Далее пропитанный носитель сушат в воздушной среде при комнатной температуре в течение 20 ч, затем в воздушной среде при температуре 115 °С в течение 9 ч. Термообработку образца проводят в воздушной среде при 600 °C в течение 1.5 ч.

Каталитическую активность и термическую стабильность измеряют, как описано в примере 1, результаты приведены в таблице 1.

Пример 3.

Приготовление катализатора на основе оксида церия, содержащего 0.12 мас.% Pd и 0.08 мас.% Rh. К 10.0 г носителя (CeO2) при комнатной температуре прикапывают при тщательном перемешивании 10.0 мл 3.8·10-3 М раствора [Rh(NH3)6]2[PdOx2]3. Молярное соотношение Rh:Pd на поверхности носителя составляет 2:3. Далее пропитанный носитель сушат в воздушной среде при комнатной температуре в течение 12 ч, затем в воздушной среде при температуре 105 °С в течение 6 ч. Термообработку образца проводят в воздушной среде при 550 °C в течение 1 ч.

Каталитическую активность и термическую стабильность измеряют, как описано в примере 1, результаты приведены в таблице 1.

Пример 4.

Приготовление катализатора на основе оксида алюминия, содержащего 1.2 мас.% Pd и 0.8 мас.% Rh. К 10.0 г носителя (Al2O3) при комнатной температуре прикапывают при тщательном перемешивании 15.0 мл 0.05 М раствора [RhEn3](NO3)3. Далее пропитанный носитель сушат на воздухе при комнатной температуре в течение 12-16 ч, затем в сушильном шкафу при температуре 80-90 °С в течение 6 ч. После сушки образец охлаждают до комнатной температуры и прикапывают при тщательном перемешивании 15.0 мл 0.075 М раствора (NH4)2[PdOx2]. Молярное соотношение Rh:Pd на поверхности носителя составляет 2:3. Далее пропитанный носитель сушат в воздушной среде при комнатной температуре в течение 16 ч, затем в воздушной среде при температуре 105 °С в течение 6 ч. Термообработку образца проводят н в воздушной среде при 550 °C в течение 1 ч.

Каталитическую активность и термическую стабильность измеряют, как описано в примере 1, результаты приведены в таблице 1.

Пример 5.

Приготовление катализатора на основе смешанного оксида церия и циркония, содержащего 1.2 мас.% Pd и 0.8 мас.% Rh. К 10.0 г носителя (CexZr1-xO2) при комнатной температуре прикапывают при тщательном перемешивании 10.0 мл 0.11 М раствора [PdEn2](NO3)2. Далее пропитанный носитель сушат на воздухе при комнатной температуре в течение 12-16 ч, затем в сушильном шкафу при температуре 80-90 °С в течение 6 ч. После сушки образец охлаждают до комнатной температуры и прикапывают при тщательном перемешивании 10.0 мл 0.75 М раствора (NH4)3[RhOx3]. Молярное соотношение Rh:Pd на поверхности носителя составляет 2:3. Далее пропитанный носитель сушат в воздушной среде при комнатной температуре в течение 12 ч, затем в воздушной среде при температуре 105 °С в течение 6 ч. Термообработку образца проводят в воздушной среде при 550 °C в течение 1 ч.

Каталитическую активность и термическую стабильность измеряют, как описано в примере 1, результаты приведены в таблице 1.

Пример 6.

Приготовление катализатора на основе оксида церия, содержащего 1.2 мас.% Pd и 0.8 мас.% Rh. К 10.0 г носителя (CeO2) при комнатной температуре прикапывают при тщательном перемешивании 10.0 мл 0.075 М раствора [Rh(NH3)6](NO3)3. Далее пропитанный носитель сушат в воздушной среде при комнатной температуре в течение 12 ч, затем в воздушной среде при температуре 90°С в течение 6 ч. После сушки образец охлаждают до комнатной температуры и прикапывают при тщательном перемешивании 10.0 мл 0.11 М раствора (NH4)2[PdOx2]. Молярное соотношение Rh:Pd на поверхности носителя составляет 2:3. Далее пропитанный носитель сушат в воздушной среде при комнатной температуре в течение 12 ч, затем в воздушной среде при температуре 105 °С в течение 6 ч. Термообработку образца проводят в воздушной среде при 550 °C в течение 1 ч.

Каталитическую активность и термическую стабильность измеряют, как описано в примере 1, результаты приведены в таблице 1.

Пример 7.

Способ по примеру 1, отличающийся тем, что термообработку образцов проводят в токе смеси 5 об.% водорода в аргоне при 550 °C в течение 1 ч.

Каталитическую активность и термическую стабильность измеряют, как описано в примере 1, результаты приведены в таблице 1.

Пример 8.

Способ по примеру 1, отличающийся тем, что термообработку образцов проводят в токе азота при 550 °C в течение 1 ч.

Каталитическую активность и термическую стабильность измеряют, как описано в примере 1, результаты приведены в таблице 1.

Пример 9 (сравнительный).

Приготовление катализатора на основе оксида алюминия, содержащего 0.12 мас.% Pd и 0.08 мас.% Rh. К 10.0 г носителя (Al2O3) при комнатной температуре прикапывают при тщательном перемешивании 15.0 мл совместного раствора нитратов родия и палладия с концентрацией 0.05 М Rh и 0.075 М Pd. Молярное соотношение Rh:Pd на поверхности носителя составляет 2:3. Далее пропитанный носитель сушат на воздухе при комнатной температуре в течение 12-16 ч, затем в сушильном шкафу при температуре 105 °С в течение 6 ч. Термообработку образца проводят на воздухе при 550 °C в течение 1 ч.

Каталитическую активность и термическую стабильность измеряют, как описано в примере 1, результаты приведены в таблице 1.

Источник поступления информации: Роспатент

Показаны записи 21-30 из 207.
25.08.2017
№217.015.a4b6

Способ подготовки поверхности полиимида под химическую металлизацию

Изобретение относится к способам производства гибких печатных плат, соединительных кабелей, шлейфов, микросхем. Предложен способ подготовки поверхности полиимида под химическое осаждение медного покрытия, заключающийся в травлении полиимида водным раствором щелочи, содержащим 150-250 г/л NaOH...
Тип: Изобретение
Номер охранного документа: 0002607627
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a5b3

Натриевая соль 2-метилтио-6-циано-1,2,4-триазоло[5,1-с]-1,2,4-триазин-7(4н)-она, тригидрат

Изобретение относится к натриевой соли 2-метилтио-6-циано-1,2,4-триазоло[5,1-с]-1,2,4-триазин-7(4Н)-она, тригидрату, которая проявляет противовирусное действие в отношении гриппа Технический результат: получено новое соединение, обладающее противовирусной активностью. 1 ил., 2 табл., 4 пр.
Тип: Изобретение
Номер охранного документа: 0002607628
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a9ea

Способ обогащения пиритизированных высококремнистых маложелезистых бокситов

Изобретение относится к цветной и черной металлургии и может быть использовано для производства глинозема и высокоглиноземистого цемента из низкокачественных пиритизированных высококремнистых маложелезистых бокситов. Способ включает обжиг боксита, причем обожженный боксит в зоне охлаждения...
Тип: Изобретение
Номер охранного документа: 0002611871
Дата охранного документа: 01.03.2017
25.08.2017
№217.015.ab6e

Способ извлечения скандия из скандийсодержащего продуктивного раствора

Изобретение относится к технологии извлечения скандия из техногенных и продуктивных скандийсодержащих растворов, образующихся после извлечения урана при его добыче методом подземного выщелачивания. Способ включает сорбцию скандия из скандийсодержащего раствора на твердом экстрагенте с...
Тип: Изобретение
Номер охранного документа: 0002612107
Дата охранного документа: 02.03.2017
25.08.2017
№217.015.ab77

Полупроводниковый сенсорный элемент для определения ионов свинца в водных растворах и способ его изготовления

Полупроводниковый сенсорный элемент для определения ионов свинца в водном растворе содержит в качестве чувствительного материала тонкую пленку сульфида свинца, допированную йодом и нанесенную на диэлектрическую подложку. Формирование пленки осуществляется путем ее осаждения из реакционной...
Тип: Изобретение
Номер охранного документа: 0002612358
Дата охранного документа: 07.03.2017
25.08.2017
№217.015.abaa

Способ определения содержания бактерий с использованием в качестве метки модифицированных магнитных наночастиц

Изобретение относится к биотехнологии, а именно к электрохимическому иммуноанализу. Предложен способ определения содержания грамотрицательных бактерий в анализируемой среде. В водной среде при температуре 37°С конъюгируют бактерии с магнитными наночастицами FeO, Fe, NiFeO или MgFeO,...
Тип: Изобретение
Номер охранного документа: 0002612143
Дата охранного документа: 02.03.2017
25.08.2017
№217.015.ac38

Натриевая соль диэтилового эфира 4-оксо-1,4-дигидропиразоло[5,1-c]-1,2,4-триазин-3,8-дикарбоновой кислоты, моногидрат

Изобретение относится к натриевой соли диэтилового эфира 4-оксо-1,4-дигидропиразоло-[5,1-с]-1,2,4-триазин-3,8-дикарбоновой кислоты моногидрату, обладающему антигликирующей активностью Технический результат: получено новое соединение, обладающее антигликирующей активностью, которое может быть...
Тип: Изобретение
Номер охранного документа: 0002612300
Дата охранного документа: 06.03.2017
25.08.2017
№217.015.ac5b

Способ потенциометрического определения скорости генерирования пероксильных радикалов

Изобретение относится к новому способу определения скорости генерирования пероксильных радикалов. Технический результат: разработан новый способ определения скорости генерирования пероксильных радикалов, который повышает точность, достоверность и воспроизводимость результатов, а также расширяет...
Тип: Изобретение
Номер охранного документа: 0002612132
Дата охранного документа: 02.03.2017
25.08.2017
№217.015.b067

V-образно спаренный шнековый движитель для плавсредств (варианты)

Изобретение относится к судостроению и может быть использовано на плавсредствах, как на надводных судах, так и на подводных судах. V-образно спаренный шнековый движитель для плавсредств в варианте надводного судна содержит в кормовой части на транцевой плите расположенные под углом шнеки,...
Тип: Изобретение
Номер охранного документа: 0002613472
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.b12d

Способ очистки загрязненного сырья для разделительного производства

Изобретение относится к способам очистки загрязненного вредными изотопами сырья для использования его в дальнейшем для получении восстановленного урана для ядерного топлива. Способ очистки загрязненного сырья для разделительного производства от вредных изотопов заключается в снижении...
Тип: Изобретение
Номер охранного документа: 0002613157
Дата охранного документа: 15.03.2017
Показаны записи 21-30 из 44.
10.05.2018
№218.016.3963

Способ получения оксида скандия из концентрата скандия

Изобретение относится к технологии получения оксида скандия (ScO) из концентрата скандия, попутно выделяемого, в том числе, при извлечении урана, переработке руд и отходов цветных и редких металлов. В способе получения оксида скандия согласно изобретению реэкстракцию скандия проводят раствором...
Тип: Изобретение
Номер охранного документа: 0002647047
Дата охранного документа: 13.03.2018
10.05.2018
№218.016.4664

Твердый экстрагент с высокой динамической обменной емкостью для извлечения скандия и способ его получения

Изобретение относится к составу и способу получения твердого экстрагента для извлечения скандия из сернокислых растворов. Предлагается твердый экстрагент (ТВЭКС) для извлечения скандия из скандийсодержащих растворов, содержащий стиролдивинилбензольную матрицу с ди-(2-этилгексил)фосфорной...
Тип: Изобретение
Номер охранного документа: 0002650410
Дата охранного документа: 13.04.2018
10.05.2018
№218.016.4928

Способ переработки жидких отходов производства диоксида титана

Изобретение может быть использовано в химической, металлургической, электронной промышленности. Для переработки жидких отходов производства диоксида титана проводят экстракцию скандия из гидролизной серной кислоты (ГСК) на экстрагенте, состоящем из смеси ди(2-этилгексил)фосфорной кислоты...
Тип: Изобретение
Номер охранного документа: 0002651019
Дата охранного документа: 18.04.2018
13.12.2018
№218.016.a692

Способ получения концентрата скандия из скандийсодержащего раствора

Изобретение относится к технологии извлечения скандия из продуктивных растворов, образующихся при переработке урановых руд, при их добыче методом подземного выщелачивания. Получение концентрата скандия из скандийсодержащего раствора проводят сорбцией скандия из скандийсодержащего раствора на...
Тип: Изобретение
Номер охранного документа: 0002674717
Дата охранного документа: 12.12.2018
01.03.2019
№219.016.ca01

Способ приготовления нанесенных полиметаллических катализаторов (варианты)

Изобретение относится к способам получения катализаторов окисления на любых твердых носителях нанесением на них твердых растворов металлов. Катализаторы могут быть использованы в различных областях катализа, например, для проведения фотокаталитических, электрокаталитических, каталитических и...
Тип: Изобретение
Номер охранного документа: 0002294240
Дата охранного документа: 27.02.2007
13.04.2019
№219.017.0c72

Способ получения концентрата скандия из скандийсодержащего раствора

Изобретение относится к химии и металлургии, конкретно к технологии извлечения скандия из продуктивных растворов, образующихся при переработке урановых руд, при их добыче методом подземного выщелачивания. В способе извлечения скандия из скандийсодержащего продуктивного раствора согласно...
Тип: Изобретение
Номер охранного документа: 0002684663
Дата охранного документа: 11.04.2019
09.05.2019
№219.017.4dd7

Способ очистки сточных вод от радиоактивных компонентов и масла

Изобретение относится к области переработки и обезвреживания жидких радиоактивных отходов. Сущность изобретения: способ очистки сточных вод от радиоактивных компонентов, в состав которых входят растворенное и/или в виде эмульсии минеральное масло, растворенные и твердые частицы радиоактивных...
Тип: Изобретение
Номер охранного документа: 0002305335
Дата охранного документа: 27.08.2007
19.06.2019
№219.017.87ac

Катализатор очистки водородсодержащей газовой смеси от со и способ его приготовления

Изобретение относится к области катализаторов, в частности предназначенных для процессов очистки водородсодержащей газовой смеси от СО путем селективного каталитического окисления СО кислородом воздуха. Описан катализатор очистки водородсодержащей газовой смеси от СО, включающий металлическую...
Тип: Изобретение
Номер охранного документа: 0002336947
Дата охранного документа: 27.10.2008
02.10.2019
№219.017.cd9d

Способ синтеза слоистых гидроксинитратов гадолиния

Изобретение относится к технологии получения ориентированных кристаллов слоистых гидроксисолей на основе гадолиния, которые могут быть использованы в производстве катализаторов, адсорбентов и анионно-обменных материалов, а также для формирования функциональных покрытий при создании различных...
Тип: Изобретение
Номер охранного документа: 0002700509
Дата охранного документа: 17.09.2019
18.12.2019
№219.017.ee7a

Способ синтеза оксида титана

Изобретение может быть использовано при получении пигментного оксида титана для пищевой и косметической промышленности. Способ синтеза оксида титана с фазовой модификацией анатаз включает приготовление водного раствора хлорида титанила и гидролиз указанного раствора при добавлении аммиака с...
Тип: Изобретение
Номер охранного документа: 0002709093
Дата охранного документа: 13.12.2019
+ добавить свой РИД