×
09.05.2019
219.017.4dd7

Результат интеллектуальной деятельности: СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД ОТ РАДИОАКТИВНЫХ КОМПОНЕНТОВ И МАСЛА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области переработки и обезвреживания жидких радиоактивных отходов. Сущность изобретения: способ очистки сточных вод от радиоактивных компонентов, в состав которых входят растворенное и/или в виде эмульсии минеральное масло, растворенные и твердые частицы радиоактивных компонентов урана и продуктов его распада, путем концентрирования радиоактивных компонентов и минерального масла. При этом сточные воды перед переработкой подкисляют до величины рН 2,5-3,0. Далее вводят коагулянт на основе солей железа (III), затем катионоактивный флокулянт на основе модифицированного полиакриламида. После чего нейтрализуют щелочью до величины рН>7 с последующим центрифугированием смеси с получением после центрифугирования очищенной воды и концентрата, содержащего радиоактивные компоненты и минеральное масло. Осуществляют последующее отверждение и захоронение концентрата. Преимущества изобретения заключаются в сокращении расхода энергии и ускорении процесса. 5 табл.

Способ очистки сточных вод от минерального масла и радионуклидов относится к области переработки жидких отходов, в состав которых входит вода, растворенное и/или в виде эмульсии минеральное масло, растворенные и твердые частицы радиоактивных компонентов урана и продуктов его распада металлообрабатывающих предприятий и гальванических производств, а также может быть использовано в технологии производства урана и его соединений.

Известен способ переработки жидких радиоактивных отходов [А.С.Копылов, Е.И.Верховский. Спецводоочистка на атомных электростанциях. М.: Энергоатомиздат, 1988] (прототип), заключающийся в использовании метода выпарки. Метод выпаривания (термическая переработка) радиоактивных растворов заключается в нагревании воды до кипения и упаривания ее. В получаемый при этом пар переходит минимальное количество примесей, включающих радиоактивные компоненты. Основная часть загрязняющих примесей остается в упаренной воде, что способствует существенному уменьшению объема жидких радиоактивных отходов. Этот метод используется для переработки жидких радиоактивных отходов (ЖРО) низкой и средней активности. При охлаждении пара получают конденсат, содержащий масло и радиоактивные компоненты с концентрацией, допустимой для его сброса на общезаводские очистные сооружения. Кубовый остаток (упаренный водный раствор ЖРО) содержит воду, масло и радиоактивные компоненты. Его помещают либо в хранилище жидких отходов, либо подвергают отверждению и направляют на захоронение в виде твердых радиоактивных отходов. Данный способ позволяет достаточно эффективно производить переработку низкоактивных жидких отходов, обеспечивает высокую степень очистки основной массы воды как от масла, так и от радиоактивных компонентов и достаточно эффективно снижает объем радиоактивных отходов.

Недостатки известного способа-прототипа, которые в определенной степени ограничивают его применение, заключаются в следующем. Во-первых, высокие энергетические затраты на переработку сточных вод. Метод выпарки - один из наиболее энергоемких процессов. Во-вторых, при высоком содержании масла в сточных водах происходит интенсивное пенообразование в процессе выпарки, что ведет к выносу с паром значительной массы воды с радиоактивными компонентами и маслом. Это приводит к необходимости проведения либо повторной очистки воды от радионуклидов методом выпарки, либо создания дополнительных технологий очистки конденсата от радионуклидов. Наконец, процесс выпарки - это продолжительная операция, что приводит к необходимости использования накопительных емкостей больших объемов. Кроме того, для предварительного нагрева воды требуются дополнительно теплообменники, а для получения конденсата из пара - использование холодильников.

Технической задачей изобретения является устранение указанных недостатков и обеспечение существенного сокращения расхода энергии на процесс очистки ЖРО от масла и радиоактивных компонентов, сокращение времени на очистку воды, что приведет к снижению объема и количества основного и вспомогательного оборудования, а также проведение очистки сточных вод от загрязняющих компонентов за одну операцию, при их содержании в широком диапазоне концентраций, что приведет к сокращению рабочего времени на обслуживание передела.

Технический результат достигается путем очистки сточных вод от радиоактивных компонентов, в состав которых входят растворенное и/или в виде эмульсии минеральное масло, растворенные и твердые частицы радиоактивных компонентов урана и продуктов его распада путем концентрирования радиоактивных компонентов и минерального масла с последующим отверждением и захоронением концентратов, при этом сточные воды перед переработкой подкисляют до величины рН 2,5-3,0, далее вводят коагулянт на основе солей железа (III), затем катионоактивный флокулянт на основе модифицированного полиакриламида, после чего нейтрализуют щелочью до величины рН>7 с последующим центрифугированием смеси с получением после центрифугирования очищенной воды и концентрата, содержащего радиоактивные компоненты и минеральное масло.

Выбор указанных параметров подкисления и нейтрализации, реагентов и метода последующей переработки жидких радиоактивных сточных вод, содержащих минеральное масло, обусловлен тем, что в этих условиях обеспечивается высокая степень очистки воды как от радиоактивных компонентов, так и от минерального масла до нормативных показателей.

Сопоставление эффективности предложенного и ранее известного способа-прототипа приведено в примерах.

Пример 1. Радиоактивные сточные воды подкисляли до величины рН около 3. Далее в подкисленные сточные воды в количестве 1 л с общей исходной удельной активностью 950 Бк/кг вводили коагулянт и флокулянт. В качестве коагулянта использовалась соль хлорида железа (III) в качестве флокулянтов - катионоактивный, анионоактивный или нейтральный модифицированный полиакриламид. Коагулянт вводили в количестве из расчета 100 мг/кг по Fe3+. Количество введенного флокулянта 15 мг. После введения реагентов проводили нейтрализацию щелочью до величины рН более 7. Осадок полученной пульпы после нейтрализации отделяли от раствора различными методами: отстаиванием, фильтрацией и центрифугированием. Центрифугирование проводили в течение 15 мин при скорости вращения 10000 об/мин. Очищенную от осадка воду подвергали радиохимическому анализу. Результаты испытаний представлены в табл.1. Для сравнения в табл.1 даны результаты по очистке воды, содержащей радиоактивные компоненты без добавления реагентов или с добавлением одного из них. В табл.2 приведены данные по скорости отстаивания осадка с использованием различных флокулянтов после введения коагулянта, которые характеризуют эффективность действия флокулянта при очистке воды от взвешенных веществ.

Таблица 1
Влияние коагулянта и флокулянтов на очистку воды от радиоактивных компонентов различными методами
Способ отделения взвешенных веществ от раствораОстаточная удельная активность воды (Бк/кг) при использовании различных типов модифицированного полиакриамида
КатионоактивныйАнионоактивныйНейтральныйБез добавления коагулянта и флокулянтаБез добавления флокулянтаБез добавления коагулянта с катионоактивным флокулянтом
Центрифугирование
0,3

126

94

110

70

115
Фильтрация5,015610812575120
Отстаивание3518416517090190

Скорость отстаивания определяли в мерном цилиндре. Время отстаивания фиксировали при прекращении изменения высоты слоя осадка.

При сопоставлении полученных данных видно, что наиболее эффективным флокулянтом является модифицированный полиакриламид катионного типа, а метод центрифугирования обеспечивает наиболее полную очистку воды от радиоактивных компонентов.

Таблица 2
Скорость отстаивания осадка при добавлении в радиоактивные сточные воды коагулянта и модифицированного полиакриламида различного типа
Скорость отстаивания осадка (час) при использовании различных типов модифицированного полиакриамида
КатионоактивныйАнионоактивныйНейтральный
0,25246

Пример 2. По экспериментальным результатам данного примера определено оптимальное количество реагентов, требующееся для очистки воды от радиоактивных компонентов. В подкисленные сточные воды объемом 1 л вводился коагулянт в виде соли сульфата железа (III) и катионоактивный флокулянт в различных соотношениях, после этого проводилась нейтрализация воды до значения рН 8,5 и далее производилось центрифугирование пульпы. Полученные данные сведены в табл.3.

Таблица 3
Удельная активность очищенной воды (Бк/кг) в зависимости от количества введенных реагентов перед центрифугированием
Концентрация железа (III), добавленного в сточную воду, мг/лКоличество введенного катионоактивного флокулянта, мг/л
51015203040
50552828303344
75187892634
10030,3<0,31,5615
1503<0,3<0,30.84,512
2002<0,3<0,30,65,810

Удельная активность исходной воды 930 Бк/кг.

Из полученных результатов следует, что при низкой концентрации флокулянта и коагулянта (50 мг/л Fe3+ и флокулянта 5 мг/л) наблюдается неполная очистка воды от радиоактивных компонентов. При дозе флокулянта свыше 20 мг/л степень очистки воды от радионуклидов начинает снижаться. При увеличении концентрации коагулянта свыше 100-150 мг/л степень очистки фактически не изменяется. Увеличение концентрации железа приводит лишь к дополнительному расходу реагента. Таким образом, оптимальный расход реагентов составляет: соль железа в перерасчете на Fe3+ 100-150 мг/л, расход флокулянта - 10-20 мг/л.

Пример 3. Сточная вода перед очисткой имела следующие параметры: рН 8,3, активность 980 Бк/кг и содержание минерального масла 180 мг/л. В сточную воду, исходную и подкисленную до различных значений рН, вводили коагулянт и флокулянт. После подкисления воду нейтрализовали щелочью до различных значений рН. Далее проводили центрифугирование в одинаковых условиях. После очистки определяли удельную активность воды и концентрацию минерального масла. Полученные результаты приведены в табл. 4. Как следует из полученных результатов, предварительное подкисление сточной воды способствует повышению степени очистки воды как от радиоактивных компонентов, так и от минерального масла, если после подкисления воду нейтрализовать до величины рН более 7,0. Подкисление воды ниже величины рН 2,5-3,0 не приводит к изменению степени очистки сточных вод от радиоактивных компонентов и минерального масла, но ведет к необоснованному увеличению расхода реагентов. Если в сточную воду без предварительного подкисления вводится коагулянт, происходит его гидролиз и выпадение гидроксида железа (III), что ухудшает процесс формирования осадка и очистки воды.

Таблица 4
Удельная активность воды после очистки с предварительным ее подкислением и последующей нейтрализацией после введения коагулянта и флокулянта
Удельная активность воды (Бк/кг) и содержание минерального масла (мг/л) после очистки без предварительного подкисленияВеличина рН после подкисления сточной водыУдельная активность воды (Бк/кг) и минерального масла (мг/л) после очистки, предварительно нейтрализованная до различных значений рН
6,07,07,58,09,010,0
26,6/432,05,5/260,3/180,3/19<0,3/17<0,3/18<0,3/20
2,54,8/220,3/210,3/19<0,3/17<0,3/19<0,3/19
3,08,4/260,4/180,5/180,3/190,3/17<0,3/20
4,518/2815/2521/2524/2619/2421/26
5,026/3217/3422/3418/3421/3322/34

В числителе - активность воды, в знаменателе - концентрация масла.

Пример 4. После подкисления сточной воды, содержащей 180 мг/л минерального масла и удельной активностью 980 Бк/кг, после ее подкисления при оптимальных условиях вводились в качестве коагулянта хлорид, нитрат и сульфат железа (III). После добавления флокулянта вода подвергалась нейтрализации щелочью до величины рН 9,0 и центрифугировалась. В результате очистки практически получены одинаковые результаты. Удельная активность очищенной воды составила менее 0,3 Бк/кг, концентрация минерального масла - в переделах 18-20 мг/л.

Пример 5. В данном примере проведено сопоставление результатов промышленных испытаний очистки сточной воды.

Таблица 5
Сравнительные характеристики переработки радиоактивных сточных вод
Техническая характеристикаМетод переработки ЖРО
СепарированиеВыпарка
Число единиц оборудования35
Расход энергии на переработку 50 м3 радиоактивных сточных вод (годовой расход)8,8×102 кВт3,1×106 кВт (2700 Гкал)
Время на подготовку установки к работе15 мин2 часа
Производительность установки200 л/ч90 л/ч
Удельная активность очищенной воды (допустимая норма 30 Бк/кг)0,3 Бк/кгоколо 30 Бк/кг
Содержание минерального масла в очищенной воде (мг/л)1822
Повторная переработка очищенной водыНе требуетсяПериодически требуется
Расход реагента на 1 м3 ЖРО100 г хлорного железаНе требуется
10 г флокулянта
800 г серной кислоты
1600 г гидроксида натрия

По предлагаемому способу переработано около 50 м3 радиоактивных сточных вод. Причем 10 м3 из них не поддавались переработке методом выпарки из-за высокого содержания масла, что приводило к интенсивному ценообразованию и, как следствие, загрязнению конденсата радиоактивными компонентами и минеральным маслом.

Таким образом, использование предлагаемого способа позволяет:

а) существенно повысить степень очистки сточных вод от радиоактивных загрязнений за одну стадию;

б) существенно снизить расходы энергии;

в) сократить число единиц оборудования;

г) обеспечить сокращение рабочего времени на обслуживание процесса очистки сточных вод от радиоактивных загрязнений.

Способочисткисточныхводотрадиоактивныхкомпонентов,всоставкоторыхвходятрастворенноеи/иливвидеэмульсииминеральноемасло,растворенныеитвердыечастицырадиоактивныхкомпонентовуранаипродуктовегораспада,путемконцентрированиярадиоактивныхкомпонентовиминеральногомасласпоследующимотверждениемизахоронениемконцентратов,отличающийсятем,чтосточныеводыпередпереработкойподкисляютдовеличинырН2,5-3,0,далеевводяткоагулянтнаосновесолейжелеза(III),затемкатионоактивныйфлокулянтнаосновемодифицированногополиакриламида,послечегонейтрализуютщелочьюдовеличинырН>7споследующимцентрифугированиемсмесисполучениемпослецентрифугированияочищеннойводыиконцентрата,содержащегорадиоактивныекомпонентыиминеральноемасло.
Источник поступления информации: Роспатент

Показаны записи 1-10 из 26.
09.06.2018
№218.016.5b7e

Стенд для определения массоцентровочных характеристик изделий больших масс

Изобретение относится к области метрологии, приборам контроля действительного положения координат центра масс и массы изделий. Cтенд для определения массоцентровочных характеристик изделий больших масс состоит из устройства массоцентровочных характеристик (МЦХ), корзины балансировочной,...
Тип: Изобретение
Номер охранного документа: 0002655726
Дата охранного документа: 29.05.2018
29.12.2018
№218.016.ac8d

Способ получения карбоната кальция

Изобретение относится к области выделения и очистки карбоната кальция. Описан способ получения карбоната кальция из кальцийсодержащего концентрата, включающий растворение концентрата в соляной кислоте, переработку концентрата в четыре этапа, при этом на первых трех этапах проводят осаждение...
Тип: Изобретение
Номер охранного документа: 0002676292
Дата охранного документа: 27.12.2018
04.04.2019
№219.016.fb60

Комплекс для определения инерционных характеристик с измерительной системой

Изобретение относится к измерительной технике и может быть использовано в машиностроении для определения массы и инерционных характеристик изделий. Устройство состоит из стола аэростатического с установленным опорно-поворотным устройством с измерительным прибором, системы регистрации, при этом...
Тип: Изобретение
Номер охранного документа: 0002683800
Дата охранного документа: 02.04.2019
10.04.2019
№219.017.0553

Способ старения жаропрочных сплавов

Изобретение относится к машиностроению и может быть использовано при механической обработке резанием деталей после старения из сплава марки ЭИ787 (ХН35ВТЮ). Для ограничения роста твердости и улучшения обрабатываемости резанием проводят высокотемпературный нагрев сплава с последующим охлаждением...
Тип: Изобретение
Номер охранного документа: 0002366725
Дата охранного документа: 10.09.2009
17.04.2019
№219.017.15b1

Детонирующее устройство механического взрывателя

Изобретение относится к детонирующим устройствам ударного механического взрывателя, срабатывающим от заданного механического усилия. Корпус устройства содержит последовательно ступенчатый цилиндрический боек, деформируемый элемент, капсюль-детонатор, осевой канал, передаточный заряд и...
Тип: Изобретение
Номер охранного документа: 0002392578
Дата охранного документа: 20.06.2010
17.04.2019
№219.017.15fb

Устройство для контроля положения ходовых колес

Изобретение относится к подъемно-транспортному машиностроению, в частности к средствам контроля положения ходовых колес рельсовых подъемно-транспортных машин. Устройство для контроля положения ходовых колес содержит корпус с базовыми опорами и размещенным на нем уровнем горизонтального...
Тип: Изобретение
Номер охранного документа: 0002375295
Дата охранного документа: 10.12.2009
17.04.2019
№219.017.1601

Устройство для поверки манометров

Изобретение относится к области измерения давления, а именно к поверке и калибровке средств измерения давления, в частности манометров. Техническим результатом изобретения является упрощение конструкции устройства при автоматизации процесса поверки. Устройство для поверки манометров содержит...
Тип: Изобретение
Номер охранного документа: 0002373506
Дата охранного документа: 20.11.2009
19.04.2019
№219.017.2c7c

Гидропривод пресса с двуруким управлением

Изобретение относится к машиностроению, а именно к конструкциям гидравлических приводов прессов с выдержкой рабочего органа под давлением. Гидропривод пресса с двуруким управлением содержит гидроцилиндр, трехпозиционный четырехходовой гидрораспределитель и гидрозамок, установленный в магистрали...
Тип: Изобретение
Номер охранного документа: 02240919
Дата охранного документа: 27.11.2004
19.04.2019
№219.017.3001

Способ изготовления листов молибденового сплава цм2а под штамповку

Изобретение относится к области машиностроения и может использоваться при изготовлении деталей электровакуумного производства (ЭВП) из листов молибденового сплава, в частности марки ЦМ2А, штамповкой. Способ включает контроль их механических свойств при изготовлении, вырубку образцов, вакуумный...
Тип: Изобретение
Номер охранного документа: 0002304632
Дата охранного документа: 20.08.2007
19.04.2019
№219.017.3015

Устройство управления пневмоприводом тали

Изобретение относится к грузоподъемной технике, в частности к конструкции талей, работающих во взрывоопасных и пожароопасных условиях. Устройство содержит панель управления, соединенную с пневмодвигателями механизмов подъема и передвижения и содержащую пневмораспределители включения питания,...
Тип: Изобретение
Номер охранного документа: 0002309113
Дата охранного документа: 27.10.2007
Показаны записи 1-10 из 35.
27.01.2013
№216.012.200f

Способ извлечения редкоземельных элементов из фосфогипса

Изобретение относится к технологии получения соединений редкоземельных элементов (РЗЭ) при комплексной переработке апатитов, в частности к извлечению РЗЭ из фосфогипса. Способ включает приготовление пульпы из фосфогипса и сорбцию редкоземельных элементов на сорбенте. Приготовление пульпы ведут...
Тип: Изобретение
Номер охранного документа: 0002473708
Дата охранного документа: 27.01.2013
10.06.2013
№216.012.4896

Способ извлечения редкоземельных элементов из технологических и продуктивных растворов и пульп

Изобретение относится к гидрометаллургии редких металлов, в частности к области извлечения редкоземельных элементов при комплексной переработке технологических и продуктивных растворов. Способ извлечения редкоземельных элементов из растворов, содержащих железо(III) и алюминий, включает сорбцию...
Тип: Изобретение
Номер охранного документа: 0002484162
Дата охранного документа: 10.06.2013
10.08.2013
№216.012.5d51

Способ извлечения концентрата природного урана из сернокислых растворов подземного выщелачивания и установка для его осуществления

Изобретения относятся к гидрометаллургии и могут быть использованы для извлечения урана из продуктивных растворов и пульп, в частности для получения концентратов природного урана при сернокислотном подземном выщелачивании с использованием нитратно-сернокислотной десорбции анионита. Способ...
Тип: Изобретение
Номер охранного документа: 0002489510
Дата охранного документа: 10.08.2013
10.07.2014
№216.012.da14

Способ утилизации сбросных растворов в производстве тетрафторида урана

Изобретение относится к гидрометаллургии урана и может быть использовано для утилизации маточников, образующихся при получении тетрафторида урана из азотнокислых растворов с использованием процессов экстракции, реэкстракции и термообработки соединений урана, получаемых из реэкстрактов с...
Тип: Изобретение
Номер охранного документа: 0002521606
Дата охранного документа: 10.07.2014
20.01.2016
№216.013.a134

Способ выщелачивания урана из руд

Изобретение относится к гидрометаллургическим способам переработки руд и может быть использовано для извлечения урана из рудных материалов подземным (ПВ) выщелачиванием. Новым в способе является дополнительная обработка предварительно приготовленного с нитритом натрия выщелачивающего раствора...
Тип: Изобретение
Номер охранного документа: 0002572910
Дата охранного документа: 20.01.2016
13.01.2017
№217.015.8752

Способ извлечения скандия и редкоземельных элементов из красных шламов

Изобретение относится к извлечению скандия и редкоземельных элементов (РЗЭ) из красных шламов. Распульповку красного шлама проводят при рН=0,5-1. Пульпу подвергают механоактивации, сорбционное выщелачивание скандия ведут с органическим сорбентом, в поры которого импрегнирован эфир фосфорной...
Тип: Изобретение
Номер охранного документа: 0002603418
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8b81

Способ получения урановых концентратов из кислых растворов

Изобретение относится к области гидрометаллургии и может быть использовано для производства урановых концентратов в технологии природного урана и оборотного ядерного топлива. Способ получения урановых концентратов из кислых растворов после десорбции урана с анионита заключается в том, что...
Тип: Изобретение
Номер охранного документа: 0002604154
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.ab6e

Способ извлечения скандия из скандийсодержащего продуктивного раствора

Изобретение относится к технологии извлечения скандия из техногенных и продуктивных скандийсодержащих растворов, образующихся после извлечения урана при его добыче методом подземного выщелачивания. Способ включает сорбцию скандия из скандийсодержащего раствора на твердом экстрагенте с...
Тип: Изобретение
Номер охранного документа: 0002612107
Дата охранного документа: 02.03.2017
25.08.2017
№217.015.b162

Способ получения концентрата скандия из скандийсодержащего раствора

Изобретение относится к химии и металлургии, конкретно к технологии извлечения скандия из продуктивных растворов, образующихся при переработке урановых руд, при их добыче методом подземного выщелачивания. В способе извлечения скандия из скандийсодержащего продуктивного раствора используют ионит...
Тип: Изобретение
Номер охранного документа: 0002613238
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.be4b

Установка для получения урановых концентратов из кислых растворов

Изобретение относится к гидрометаллургии. Установка содержит сборник уранового регенерата, каскад реакторов осаждения уранового концентрата для получения осадка уранового концентрата, коллектор с трубопроводами раздачи нейтрализующего реагента в реакторы осаждения уранового концентрата,...
Тип: Изобретение
Номер охранного документа: 0002616744
Дата охранного документа: 18.04.2017
+ добавить свой РИД