×
16.06.2023
223.018.7c05

Результат интеллектуальной деятельности: Способ диагностики технического состояния газотурбинного двигателя

Вид РИД

Изобретение

Аннотация: Изобретение относится к неразрушающему контролю технического состояния газотурбинных двигателей. Способ диагностики технического состояния газотурбинного двигателя, заключающийся в том, что выбирают параметры, подлежащие диагностическому контролю, текущее значение которых регистрируют на диагностируемом газотурбинном двигателе. Для диагностики газотурбинного двигателя по его любому узлу для последнего выбирают по меньшей мере два параметра, характеризующие его работоспособность и экспериментально определяют их предельно допустимые значения отклонений для данного типа двигателя. После чего в ходе работы двигателя в текущий момент времени вычисляют среднее значение для каждого выбранного параметра за предшествующий короткий и длинный временной периоды, при отношении короткого временного периода к длинному в интервале 0,002-0,1, и определяют их разность. Далее вычисляют отношение полученных разностей к соответствующим предельно допустимым значениям отклонений параметров, а затем суммируют их, и если полученная сумма отношений превышает единицу, то делают вывод о неисправности диагностируемого двигателя. Для диагностики газотурбинного двигателя по узлу компрессора низкого давления в качестве параметров, характеризующих его работоспособность, выбирают разницу между значением температуры слива масла из опоры турбины и значением температуры масла на входе в двигатель за фильтром, а также значение перепада давления масла на фильтре в магистрали общей откачки масла из двигателя и значение вибрации промежуточного корпуса газогенератора. Газотурбинный двигатель подвергают диагностике не менее 1 раза в минуту. Технический результат - расширение технологических возможностей способа по определению дефектов, влияющих на работоспособность узлов газотурбинного двигателя процессе его эксплуатации, выявление неисправностей на ранних стадиях и возможность отслеживания технического состояния двигателя в динамике. 2 з.п. ф-лы, 1 табл., 1 ил.

Изобретение относится к неразрушающему контролю технического состояния газотурбинных двигателей, а именно, к способам технической диагностики дефектов, влияющих на работоспособность узлов газотурбинного двигателя при его испытаниях и эксплуатации, и может найти применение в двигателестроении для выявления наличия дефектов.

Наиболее близким к предложенному, является способ диагностики технического состояния газотурбинного двигателя, включающий выбор параметров, подлежащих диагностическому контролю, определение рабочих значений контролируемых параметров на двигателе в заведомо исправном состоянии, измерение с помощью датчиков параметров с выбранной частотой в пределах эталонных промежутков времени на диагностируемом газотурбинном двигателе, определение начала значимого отклонения измеренных параметров от их рабочих значений при появлении какого-либо дефекта.

/RU №2445598 МПК7 G01M 15/14. Опубл.: 20.03.2012/.

Недостатком известного способа является то, что сравнения измеренных и рабочих значений контролируемых параметров на двигателе, характеризующих среду и условия работы его узлов, дают лишь обобщенную оценку изменений, происходящих в узлах двигателя, в частности, дефектов влияющих на работоспособность подшипниковых опор в процессе эксплуатации, и недостаточно точно указывают конкретную проблему, которая стала причиной ухудшения технического состояния двигателя, что приводит к несвоевременной запоздалой или, наоборот, преждевременной остановке двигателя.

Ожидаемым техническим результатом, на достижение которого направлено предлагаемое решение, является расширение технологических возможностей способа по определению дефектов, влияющих на работоспособность узлов газотурбинного двигателя процессе его эксплуатации, выявление неисправностей на ранних стадиях и возможность отслеживания технического состояния двигателя в динамике.

Технический результат достигается тем, что в известном способе диагностики технического состояния газотурбинного двигателя, заключающемся в том, что выбирают параметры, подлежащие диагностическому контролю, текущее значение которых регистрируют на диагностируемом газотурбинном двигателе, согласно предложению для диагностики газотурбинного двигателя по его любому узлу для последнего выбирают по меньшей мере два параметра, характеризующие его работоспособность и экспериментально определяют их предельно допустимые значения отклонений для данного типа двигателя, после чего в ходе работы двигателя в текущий момент времени вычисляют среднее значение для каждого выбранного параметра за предшествующий короткий и длинный временной периоды, при отношении короткого временного периода к длинному в интервале 0,002-0,1, и определяют их разность, далее вычисляют отношение полученных разностей к соответствующим предельно допустимым значениям отклонений параметров, а затем суммируют их, и если полученная сумма отношений превышает единицу, то делают вывод о неисправности диагностируемого двигателя.

Для диагностики газотурбинного двигателя по узлу компрессора низкого давления в качестве параметров, характеризующих его работоспособность, выбирают разницу между значением температуры слива масла из опоры турбины и значением температуры масла на входе в двигатель за фильтром, а также значение перепада давления масла на фильтре в магистрали общей откачки масла из двигателя и значение вибрации промежуточного корпуса газогенератора. Газотурбинный двигатель подвергают диагностике не менее 1 раза в мин.

Особенностью предложенного решения является то, что измерение с помощью датчиков параметров с выбранной частотой производят на коротком и длинном промежутках времени, при отношении продолжительности короткого измерительного промежутка к времени длинного равном 0,002-0,1. Конкретные значения отношения продолжительностей коротких и длинных участков выбираются экспериментально в зависимости от точности определения момента возникновения неисправности.

Диагностика двигателя с частотой не менее 1 раза в мин позволяет своевременно обнаруживать дефекты узлов двигателя.

Метод может использоваться для контроля разных узлов двигателя. Для диагностики каждого узла выбирается как минимум два параметра с одной стороны для снижения влияния на результат работы недостоверности измерений любого параметра, а с другой - для возможности обнаружения отказа на более ранней стадии.

В качестве примера продемонстрируем работу метода для контроля передней опоры компрессора низкого давления (роликовый подшипник, насос откачки масла).

Для контроля передней опоры компрессора низкого давления (роликовый подшипник, насос откачки масла) используют следующие параметры:

• ΔТМ=(Т606-Т607)°С, где Т606 температура слива масла из опоры турбины, Т607 - температура масла на входе в двигатель за фильтром;

• dРф2 - перепад давления масла на фильтре (Ф13) в магистрали общей откачки масла из двигателя, кгс/см2;

• В1 - вибрация промежуточного корпуса газогенератора (гориз.), мм/с.

Для других узлов возможны другие комбинации параметров.

Например, для диагностики опоры компрессора низкого давления, компрессора высокого давления:

• ΔТМ=(Т638 - Т607)°С, где Т638 температура слива масла из передней опоры КВД, Т607 - температура масла на входе в двигатель за фильтром;

• dРф2 - перепад давления масла на фильтре (Ф13) в магистрали общей откачки масла из двигателя, кгс/см2;

• В1 - вибрация промежуточного корпуса газогенератора (гориз.), мм/с;

• В2 - вибрация корпуса силовой турбины (гориз.), мм/с;

• Pc1 - давление суфлирования опор КНД и КВД перед центробежным суфлером газогенератора, кгс/см2;

• Р615 - давление масла в магистрали общей откачки, кгс/см2.

Для диагностики опоры турбины газогенератора:

• ΔТМ=(Т606-Т607)°С, где Т606 температура слива масла из опоры турбины, Т607 - температура масла на входе в двигатель за фильтром;

• dРф2 - перепад давления масла на фильтре (Ф13) в магистрали общей откачки масла из двигателя, кгс/см2;

• В1 - вибрация промежуточного корпуса газогенератора (гориз.), мм/с;

• В2 - вибрация корпуса силовой турбины (гориз.), мм/с;

• Рс2 - давление суфлирования опоры турбины перед центробежным суфлером ГГ, кгс/см2;

• Р615 - давление масла в магистрали общей откачки, кгс/см2.

Для диагностики передней опоры силовой турбины:

• ΔТМ=(Т1002-Т607)°С, где Т1002 - температура слива масла из передней опоры СТ, °С, Т607 - температура масла на входе в двигатель за фильтром;

• dРф2 - перепад давления масла на фильтре (Ф13) в магистрали общей откачки масла из двигателя, кгс/см2;

• В1 - вибрация промежуточного корпуса газогенератора (гориз.), мм/с;

• В2 - вибрация корпуса силовой турбины (гориз.), мм/с;

• Рс3 - давление суфлирования опор СТ, кгс/см2;

• Р615 - давление масла в магистрали общей откачки, кгс/см2.

Для диагностики задней опоры силовой турбины:

• ΔТМ=(Т1003-Т607)°С, где температура слива масла из задней опоры СТ, °С, Т607 - температура масла на входе в двигатель за фильтром;

• dРф2 - перепад давления масла на фильтре (Ф13) в магистрали общей откачки масла из двигателя, кгс/см2;

• В1 - вибрация промежуточного корпуса газогенератора (гориз.), мм/с;

• В2 - вибрация корпуса силовой турбины (гориз.), мм/с;

• Рс3 - давление суфлирования опор СТ, кгс/см2;

• Р615 - давление масла в магистрали общей откачки, кгс/см2.

Для каждого из параметров непрерывно, все время работы изделия вычисляется два усредненных значения за «короткий» (например 6 минут для двигателя АЛ31СТ) и «длинный» (например 24 ч) периоды времени.

При этом вычисленное среднее за «длинный» период отражает текущее состояние двигателя с учетом его износа и внешних факторов (температура, давление) и является базой для обнаружения отклонения «быстрого» среднего при произошедшем отказе.

Вычисляется рассогласование между двумя усредненными значениями.

Появление разности между «быстрым» и «коротким» означает изменение состояния узла характерное для отказа. Вычисляется отношение рассогласования к пороговому значению.

Отношение текущего рассогласования к пороговому значению, которое было ранее выбрано как соответствующее отказу, позволяет определить, достигнут ли уровень отказного рассогласования по текущему параметру.

Отношения рассогласований для каждого из параметров суммируются. При превышении суммой значения 1 формируется предупредительное сообщение о неисправности узла.

Суммирование отношений рассогласований всех текущих параметров позволяет по сумме сигналов сформировать сигнал отказа раньше, чем по одному из параметров. Значение 1 в сумме параметров означает превышение или одним из параметров назначенного допустимого уровня или то, что несколько параметров одновременно существенно изменились, что также является признаком отказа.

На графиках (фиг. 1) изображено изменение во времени параметров контроля (пунктир) ΔТМ, dРф2, В1 при возникновении дефекта, а также параметров контроля усредненных за короткий период (штрих два пунктир) ΔТМбф, dРф2бф, В1бф, и за длинный период (штрих пунктир) ΔТМмф, dРф2мф, В1мф.

На оси параметров для демонстрации эффективности способа нанесены предельные значения для формирования сигнала аварийного останова (АО) при использовании обычного контроля по допуску:

ΔТМ_АО=70- предельный перепад температуры масла для формирования АО

dРф2_АО=0,6 - предельный перепад давления масла на фильтре для формирования АО

В1_АО=70 - предельный уровень вибрации для формирования АО

На оси времени:

t0 - момент фактического возникновения дефекта

tАО - момент формирования АО при использовании предлагаемого метода контроля

t1T - момент формирования АО при использовании предлагаемого метода контроля с использованием только одного параметра ΔТМ

t2T - момент формирования АО при использовании обычного допускового контроля ΔТМ

t1P - момент формирования АО при использовании предлагаемого метода контроля с использованием только одного параметра dРф2

t2P - момент формирования АО при использовании обычного допускового контроля dРф2

t1B - момент формирования АО при использовании предлагаемого метода контроля с использованием только одного параметра В1

t2B - момент формирования АО при использовании обычного допускового контроля В1.

До возникновения дефекта в узле, для изделия, работающего на установившемся режиме, параметры контроля изменяются во времени незначительно, под воздействием износа, внутри суточных циклов изменения температуры и т.д. и к моменту возникновения дефекта значения параметров средние за короткий и длинный циклы фактически равны текущему значению параметра.

При возникновении дефекта в узле (например, снижение подачи масла) начинается плавное увеличение значений всех 3-х параметров, продолжающееся все время развития дефекта, средние значения за выбранные периоды также начинают расти, при этом скорость роста значения за «короткий» период и скорость роста значения за «длинный» отличаются обратно пропорционально длительностям периодов. В начальной стадии проявления дефекта образуется разница между значениями «короткого» среднего и «длинного» среднего.

Для принятия решения об остановке двигателя по отклонению одного из параметров выбрано предельное значение рассогласования для каждого из параметров, для МахТ=8°С, для МахР=0,08 кгс/см2, MaxV 6мм/с.

Предположим, что к моменту возникновения дефекта фактические значения:

ΔТМ=50°С,

dРф2=0,3кгс/см2,

В1=30 мм/с,

средние значения параметров за 24 часа:

ΔТМбм=50°С,

dРф2мф=0,3 кгс/см2,

В1мф=30 мм/с,

средние значения параметров за 6 минут:

ΔТМбф=50°С,

dРф2бф=0,3 кгс/см2,

В1бф=30 мм/с,

при отказе:

ΔТМ растет со скоростью 1°С/мин,

dРф2бф растет со скоростью 0,01 кгс/см2,

В1 растет со скоростью 1(мм/с)/мин.

Установленных порогов обычного допускового контроля параметры достигнут через:

t2T=(70-50)/1=20 мин

t2P=(0,6-0,3)/0,01=30 мин

t2B=(70-30)/1=40 мин.

В таблице 1 приведены значения фильтров, полученные в переходном процессе.

Время формирования сигнала неисправности по одному из параметров:

t1T=11 мин

t1P=11 мин

t1B=9 мин.

Даже при использовании предлагаемого метода с одним параметром графики демонстрируют преимущество в скорости формирования аварийного останова (9 мин) относительно обычного допускового контроля (20 мин).

Время формирования сигнала АО по суммарному критерию (1,03)

t1T=5 мин.

При использовании нескольких параметров одновременно, время обнаружения отказа существенно меньше, чем при использовании предлагаемого способа только с одним параметром и чем при использовании обычного допускового контроля.

Таким образом, предложенный способ является более достоверным и точным.

Применение предложенного способа по определению дефектов, влияющих на работоспособность узлов газотурбинного двигателя в процессе его эксплуатации, расширяет технологические возможности по выявлению неисправностей на ранних стадиях их возникновения и позволяет отслеживать техническое состояние двигателя в динамике.

Источник поступления информации: Роспатент

Показаны записи 61-70 из 71.
25.04.2020
№220.018.18a7

Маслосистема газотурбинного двигателя

Изобретение относится к области авиадвигателестроения и касается устройства масляной системы авиационного газотурбинного двигателя (ГТД). Маслосистема содержит маслобак, неприводной центробежный воздухоотделитель, размещенный внутри маслобака, и электромагнитный сигнализатор металлических...
Тип: Изобретение
Номер охранного документа: 0002720054
Дата охранного документа: 23.04.2020
24.06.2020
№220.018.29c6

Опора турбины турбомашины

Изобретение относится к области турбо- и авиадвигателестроения, а именно к устройствам опор турбин. Изобретение позволяет исключить возможность чрезмерной стяжки упругих элементов с возможностью контроля натяжения спиц по моменту затяжки регулировочной гайки на ключе при сборке, а также...
Тип: Изобретение
Номер охранного документа: 0002724074
Дата охранного документа: 19.06.2020
25.06.2020
№220.018.2af7

Способ работы прямоточного воздушно-реактивного двигателя и устройство для его реализации

Изобретение относится к способу работы прямоточного воздушно-реактивного двигателя на основе непрерывно-детонационных камер сгорания и устройству для его реализации. Используют две кольцевые непрерывно-детонационные камеры сгорания, для которых задают начальную температуру их стенок и рабочую...
Тип: Изобретение
Номер охранного документа: 0002724557
Дата охранного документа: 23.06.2020
25.06.2020
№220.018.2af8

Способ и устройство организации периодической работы непрерывно-детонационной камеры сгорания

Способ организации периодической работы непрерывно-детонационной камеры сгорания включает подачу окислителя и жидкого топлива в виде струй и пристеночных пленок и инициирование горения. Для камеры сгорания определяют усталостную прочность ее стенок и критическую температуру, при которой она...
Тип: Изобретение
Номер охранного документа: 0002724558
Дата охранного документа: 23.06.2020
16.07.2020
№220.018.3357

Система удаленного мониторинга газотурбинной установки

Изобретение относится к удаленному мониторингу. Система удаленного мониторинга газотурбинной установки содержит датчики, передающие информацию об эксплуатационных параметрах установки на сервер нижнего уровня, который хранит и передает информацию на сервер верхнего уровня. Сервер нижнего уровня...
Тип: Изобретение
Номер охранного документа: 0002726317
Дата охранного документа: 14.07.2020
22.04.2023
№223.018.5119

Газоперекачивающий агрегат

Изобретение относится к области устройств газоперекачивающих агрегатов, а именно, к соединению газотурбинного двигателя с силовой турбиной и выходным валом с выхлопным устройством, содержащим выхлопную улитку при их монтаже в газоперекачивающий агрегат. Газоперекачивающий агрегат, включающий...
Тип: Изобретение
Номер охранного документа: 0002794302
Дата охранного документа: 14.04.2023
20.05.2023
№223.018.676f

Реактивное сопло с центральным телом

Изобретение относится к области авиадвигателестроения. Реактивное сопло с центральным телом, соединенное с двигателем и содержащее выходное устройство с центральным телом, проточной частью и выходным сечением, отличным от осесимметричного, содержит двигательную часть, закрепленную на двигателе,...
Тип: Изобретение
Номер охранного документа: 0002794950
Дата охранного документа: 26.04.2023
03.06.2023
№223.018.766f

Способ управления расходом топлива в камеру сгорания на запуске газотурбинного двигателя

Изобретение относится к области управления работой газотурбинных двигателей (ГТД), преимущественно авиационных, и может быть использовано для управления подачей топлива в ГТД на режиме запуска. Предлагается способ управления расходом топлива в камеру сгорания на запуске газотурбинного...
Тип: Изобретение
Номер охранного документа: 0002796562
Дата охранного документа: 25.05.2023
03.06.2023
№223.018.769a

Ротор турбины низкого давления газотурбинного двигателя

Изобретение относится к авиадвигателестроению, а именно к конструкциям роторов турбины низкого давления (ТНД) газотурбинного двигателя (ГТД). Ротор турбины низкого давления газотурбинного двигателя, содержащий промежуточный вал, носок с размещенным на нем подшипником, при этом в носке выполнены...
Тип: Изобретение
Номер охранного документа: 0002796564
Дата охранного документа: 25.05.2023
16.06.2023
№223.018.7d15

Гидродинамический демпфер подшипниковой опоры ротора турбомашины

Изобретение относится к области машиностроения. Демпфер содержит внутренний корпус, образующий с корпусом радиальный зазор. На внутренней поверхности корпуса и наружной поверхности внутреннего корпуса выполнены проточки. В полости, образованной несквозными цилиндрическими проточками,...
Тип: Изобретение
Номер охранного документа: 0002741824
Дата охранного документа: 28.01.2021
Показаны записи 61-70 из 340.
20.05.2015
№216.013.4c21

Способ доводки опытного газотурбинного двигателя

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. Доводке подвергают опытный ГТД, выполненный двухконтурным, двухвальным. Доводку ГТД производят поэтапно. На каждом этапе подвергают испытаниям на соответствие заданным параметрам от одного до...
Тип: Изобретение
Номер охранного документа: 0002551003
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4c23

Турбореактивный двигатель

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Турбореактивный двигатель выполнен двухконтурным, двухвальным. Ось вращения поворотного устройства относительно горизонтальной оси повернута на угол не менее 30° по часовой стрелке для...
Тип: Изобретение
Номер охранного документа: 0002551005
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4c25

Способ доводки опытного газотурбинного двигателя

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. Доводке подвергают опытный ГТД, выполненный двухконтурным, двухвальным. Доводку ГТД производят поэтапно. На каждом этапе подвергают испытаниям на соответствие заданным параметрам от одного до...
Тип: Изобретение
Номер охранного документа: 0002551007
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4c2b

Способ серийного производства газотурбинного двигателя и газотурбинный двигатель, выполненный этим способом

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. В способе серийного производства газотурбинного двигателя изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не...
Тип: Изобретение
Номер охранного документа: 0002551013
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4c2d

Способ доводки опытного турбореактивного двигателя

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Доводке подвергают опытный ТРД, выполненный двухконтурным, двухвальным. Доводку ТРД производят поэтапно. На каждом этапе подвергают испытаниям на соответствие заданным параметрам от одного...
Тип: Изобретение
Номер охранного документа: 0002551015
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4c31

Способ доводки опытного турбореактивного двигателя

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Доводке подвергают опытный ТРД, выполненный двухконтурным, двухвальным. На стадии доводки опытный ТРД подвергают испытанию по многоцикловой программе. При выполнении этапов испытания...
Тип: Изобретение
Номер охранного документа: 0002551019
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4cac

Способ серийного производства газотурбинного двигателя и газотурбинный двигатель, выполненный этим способом

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. В способе серийного производства ГТД изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. После сборки производят испытания двигателя на влияние...
Тип: Изобретение
Номер охранного документа: 0002551142
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d13

Способ эксплуатации турбореактивного двигателя и турбореактивный двигатель, эксплуатируемый этим способом

Изобретение относится к области авиадвигателестроения. В способе эксплуатации ТРД перед каждым запуском двигателя осуществляют проверку готовности двигателя к работе, производят запуск, прогрев и вывод двигателя на рабочие режимы, предусмотренные регламентом, останов двигателя, периодически...
Тип: Изобретение
Номер охранного документа: 0002551245
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d14

Способ доводки опытного газотурбинного двигателя

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. Доводке подвергают опытный ГТД, выполненный двухконтурным, двухвальным. Доводку ГТД производят поэтапно. На каждом этапе подвергают испытаниям на соответствие заданным параметрам от одного до...
Тип: Изобретение
Номер охранного документа: 0002551246
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d15

Турбореактивный двигатель

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Турбореактивный двигатель выполнен двухконтурным, двухвальным. Двигатель испытан по многоцикловой программе. При выполнении этапов испытания проводят чередование режимов, которые по...
Тип: Изобретение
Номер охранного документа: 0002551247
Дата охранного документа: 20.05.2015
+ добавить свой РИД