×
23.05.2023
223.018.6c03

Результат интеллектуальной деятельности: Способ активации порошка алюминия

Вид РИД

Изобретение

Аннотация: Изобретение относится к порошковой металлургии и предназначено для получения порошка активированного алюминия, используемого в качестве энергетической добавки в различных композициях. Способ активации порошка алюминия, включающий пропитку исходного порошка алюминия гелем, полученным путем плавления оксида ванадия (V) с последующим добавлением расплава в дистиллированную воду при перемешивании, фильтрацию и сушку, в котором после добавления расплава в дистиллированную воду осуществляют выдержку при температуре не более 100°С в течение 1,5-2,0 часов, пропитывают исходный порошок алюминия гелем при соотношении гель (г): порошок алюминия (г) = 0,34-4,2:1 и дополнительно осуществляют термообработку при температуре 300-310°С в течение 0,5–0,6 часа. Технический результат - обеспечение снижения температуры начала горения при нагревании на воздухе. 4 пр.

Изобретение относится к порошковой металлургии и предназначено для получения порошка активированного алюминия, используемого в качестве энергетической добавки в различных композициях.

Известен способ ударно-волновой активации порошка тугоплавкого металла, включающий ударно-волновую обработку порошка, в котором перед обработкой в порошок вводят 15-25об.% бензина (патент BY 14559; МПК B22F 1/00, C04D 41/80; 2011 год).

Недостатками известного способа являются: загрязнение активируемого порошка элементами стальной оснастки; образование прочных конгломератов размером до 5 мм.

Известен способ получения порошка активированного алюминия, включающий образование насыпного слоя порошкового материала, активирование его путем подачи восходящим газовым потоком из насыпного слоя в зону действия центробежных сил, создаваемых ротором центробежного классификатора, рециркуляцию части порошкового материала путем возвращения крупной фракции из зоны действия центробежных сил в насыпной слой и выведение мелкой фракции материала газовым потоком из центра зоны действия центробежных сил, при этом в качестве порошкового материала используют тонкодисперсный порошок алюминия, а процесс осуществляют циклически, для чего активацию порошкового алюминия осуществляют в высокоскоростной струе сжатого газа в течение 2-3 упомянутых рециркуляций при рабочем давлении газа 4-8 кг/см2, величине центробежного ускорения (10-12)·103 м/с2, затем величину рабочего давления газа уменьшают до 2-3 кг/см2, величину центробежного ускорения уменьшают до (6-8)·103 м/с2 и выводят мелкую фракцию порошкового алюминия в течение 1-2 рециркуляций, после чего описанный процесс повторяют (патент RU 2371284; МПК D22F 1/00, B22F 9/04, B02C 23/12, B02C 25/00, G05D 16/00; 2009 год).

Недостатками известного способа являются: сложность и высокая энергоемкость оборудования; сложность процесса, включающего до трех рециркуляций с отбором мелкой фракции металла на каждом цикле активации; использование большого объема инертного газа (аргона) при рабочем давлении до 8 кг/см2; содержание активного металла не более 95%; содержание балластной сорбированной влаги до 5.5%.

Известен способ активации металлических порошков, в частности порошка алюминия, полученных электрическим взрывом проволоки в среде водорода, гелия, аргона, в котором порошки дополнительно выдерживают в органическом растворителе, например, гексане или толуоле (патент RU2086355, МПК B22F 1/00, 1997 год).

Недостатками известного способа являются: использование пожароопасных, токсичных органических соединений (гексана, толуола) в качестве растворителей для пропитки порошков; длительность выдержки порошков металлов в органическом растворителе до 24 ч.; остаточное количества растворителя в порошке на уровне 0.8%. Кроме того, известный способ эффективен только для порошка, полученного электровзрывом проволок в атмосфере водорода.

Известен способ активации порошка алюминия, включающий пропитку исходного порошка активатором на основе оксидного соединения ванадия, при этом в качестве активатора используют гель, содержащий 4,0-8,2 г/л ванадия и полученный путем плавления оксида ванадия (V) или оксида ванадия (V) и карбоната лития или натрия или оксида ванадия (V) и борной кислоты или их смеси с последующим добавлением расплава к дистиллированной воде при интенсивном перемешивании и выдержке, при соотношении гель (мл): порошок алюминия (г)=1÷2:1, а затем полученную массу фильтруют на вакуумном фильтре и просушивают при температуре 50 - 60°C в течение 0,5 - 1 ч. (патент RU 2509790; МПК C09K 8/60, B22F 1/00, C01F 7/42; 2014 год) (прототип).

Недостатком известного способа является высокая температура начала горения при нагревании на воздухе (1000оС).

Таким образом, перед авторами стояла задача разработать способ активации порошка алюминия, обеспечивающий снижение температуры начала горения при нагревании на воздухе.

Поставленная задача решена в способе активации порошка алюминия, включающем пропитку исходного порошка алюминия гелем, полученным путем плавления оксида ванадия (V) с последующим добавлением расплава в дистиллированную воду при перемешивании, фильтрацию и сушку, в котором после добавления расплава в дистиллированную воду осуществляют выдержку при температуре не более 100оС в течение 1,5-2,0 часов, пропитывают исходный порошок алюминия гелем при соотношении гель(г): порошок алюминия(г) = 0,34÷4,2:1, и дополнительно осуществляют термообработку при температуре 300-310оС в течение 0,5 – 0,6 часа.

В настоящее время из патентной и научно-технической литературы не известен способ активации порошка алюминия в предлагаемых условиях, а именно включающий упаривание гелеобразного раствора, полученного добавлением оксида ванадия (V) в дистиллированную воду, путем его выдержки при температуре не более 100оС, и дополнительную термообработку полученного после пропитки продукта, а также характеризующийся определенным соотношением исходного порошка алюминия и используемого для его пропитки геля в широком интервале значений.

Исследования, проведенные авторами, позволили установить, что использование геля высокой концентрации (содержание V2O5 составляет 5,5-6,0 мас.% в отличие от способа-прототипа, в котором содержание в геле V2O5 составляет ⁓ 0,2 мас.%) ведет к снижению температуры начала горения на 200-250оС, что значительно улучшает рабочие характеристики материала. Снижение температуры начала горения обусловлено разрушением барьерного оксидного слоя на поверхности частиц алюминия и взаимодействия активатора с Al по термитному типу, сопровождающемуся выделением тепла и инициирующего процесс горения металла. При этом становится возможным при пропитке использование соотношения порошок алюминия и геля, содержащего V2O5, в широком интервале значений. Однако при уменьшении соотношения менее, чем 0,34:1, наблюдается повышение температуры эффективного горения порошка алюминия. При увеличении соотношения более, чем 4,2:1, наблюдается отсутствие влияния на температуру эффективного горения, т.е. теряется эффект дальнейшей активации. Кроме того, проведение дополнительной термообработки при температуре 300-310оС в течение 0,5 – 0,6 часа также способствует снижению температуры начала горения за счет улучшения контакта активатора с поверхностным слоем частиц алюминия.

Предлагаемый способ может быть осуществлен следующим образом. Берут пентоксид ванадия V2O5 квалификации "ос.ч.", нагревают в платиновом тигле до температуры 650-750°C и выдерживают до образования гомогенного расплава, который добавляют к дистиллированной воде при интенсивном перемешивании при интенсивном перемешивании, после чего выдерживают при температуре не более 100оС в течение 1,5-2,0 часов. Полученным продуктом с содержанием оксида ванадия V2O5 5,5-6,0 мас.% пропитывают порошок алюминия, например, марки АСД-4 (S=0,8075 м2/г) со сферической формой частиц в соотношении гель (г):алюминий (г) = 0,34÷4,2:1 и перемешивают в течение 5-10 мин, а затем полученную массу вакуумируют на вакуумном фильтре и просушивают при температуре 50-60°С в течение 0,5-1 ч. После чего осуществляют термообработку при температуре 300-310оС в течение 0,5 – 0,6 часа. Температуру начала горения при нагревании на воздухе определяют методом дифференциального термического анализа (ДТА).

Предлагаемый способ иллюстрируется следующими примерами.

Пример 1. Берут 10 г пентоксида ванадия V2O5 квалификации "ос.ч.", нагревают в платиновом тигле до температуры 750°C и выдерживают до образования гомогенного расплава, который выливают в стакан емкостью 1000 мл с дистиллированной водой (900 мл) при интенсивном перемешивании и выдерживают в течение 0,5 часа также при интенсивном перемешивании. Затем выдерживают при температуре 70оС в течение 2,0 часов. 3,36 г полученного продукта с содержанием пентоксида ванадия 5,5 мас.% пропитывают 9,8 г порошка алюминия марки АСД-4 (S=0,8075 м2/г) со сферической формой частиц и содержанием активного металла 98,7%, что соответствует соотношению гель (г):алюминий (г) = 0,34:1, и перемешивают в течение 5 мин, затем полученную массу помещают в вакуумный фильтр, после чего сушат на воздухе при температуре 80°C в течение 1 часа и окончательно нагревают при температуре 300оС в течение 0,5 часа. Получают активированный порошок алюминия, содержащий 2,0 мас.% пентоксида ванадия. Точка эффективного горения порошка на воздухе составляет 798оС, Δ Т = 202оС (относительно прототипа).

Пример 2. Берут 10 г пентоксида ванадия V2O5 квалификации "ос.ч.", нагревают в платиновом тигле до температуры 750°C и выдерживают до образования гомогенного расплава, который выливают в стакан емкостью 1000 мл с дистиллированной водой (900 мл) при интенсивном перемешивании и выдерживают в течение 0,5 часа также при интенсивном перемешивании. Затем выдерживают при температуре 80оС в течение 1,50 часов. 8,4 г полученного продукта с содержанием пентоксида ванадия 6,0 мас.% пропитывают 9,5 г порошка алюминия марки АСД-4 (S=0,8075 м2/г) со сферической формой частиц и содержанием активного металла 98,7%, что соответствует соотношению гель (мл):алюминий (г) = 0,88:1 , и перемешивают в течение 5 мин, затем полученную массу помещают в вакуумный фильтр, после чего сушат на воздухе при температуре 80°C в течение 1 часа и окончательно нагревают при температуре 310оС в течение 0,5 часа. Получают активированный порошок алюминия, содержащий 5,0 мас.% пентоксида ванадия. Точка эффективного горения порошка на воздухе составляет 784оС, Δ Т = 216оС (относительно прототипа).

Пример 3. Берут 10 г пентоксида ванадия V2O5 квалификации "ос.ч.", нагревают в платиновом тигле до температуры 750°C и выдерживают до образования гомогенного расплава, который выливают в стакан емкостью 1000 мл с дистиллированной водой (900 мл) при интенсивном перемешивании и выдерживают в течение 0,5 часа также при интенсивном перемешивании. Затем выдерживают при температуре 70оС в течение 2,0 часов. 16,8 г полученного продукта с содержанием пентоксида ванадия 6,0 мас.% пропитывают 9,0 г порошка алюминия марки АСД-4 (S=0,8075 м2/г) со сферической формой частиц и содержанием активного металла 98,7%, что соответствует соотношению гель (г):алюминий (г)= 1,87:1 , и перемешивают в течение 5 мин, затем полученную массу помещают в вакуумный фильтр, после чего сушат на воздухе при температуре 80°C в течение 1 часа и окончательно нагревают при температуре 300оС в течение 0,6 часа. Получают активированный порошок алюминия, содержащий 10,0 мас.% пентоксида ванадия. Точка эффективного горения порошка на воздухе составляет 776оС, Δ Т = 224оС (относительно прототипа).

Пример 4. Берут 10 г пентоксида ванадия V2O5 квалификации "ос.ч.", нагревают в платиновом тигле до температуры 750°C и выдерживают до образования гомогенного расплава, который выливают в стакан емкостью 1000 мл с дистиллированной водой (900 мл) при интенсивном перемешивании и выдерживают в течение 0,5 часа также при интенсивном перемешивании. Затем выдерживают при температуре 75оС в течение 2,0 часов. 33,6 г полученного продукта с содержанием пентоксида ванадия 5,5 мас.% пропитывают 8 г порошка алюминия марки АСД-4 (S=0,8075 м2/г) со сферической формой частиц и содержанием активного металла 98,7%, что соответствует соотношению гель (г):алюминий (г)= 4,2:1 , и перемешивают в течение 5 мин, затем полученную массу помещают в вакуумный фильтр, после чего сушат на воздухе при температуре 80°C в течение 1 часа и окончательно нагревают при температуре 300оС в течение 0,5 часа. Получают активированный порошок алюминия, содержащий 20,0 мас.% пентоксида ванадия. Точка эффективного горения порошка на воздухе составляет 757оС, Δ Т = 243оС (относительно прототипа).

Таким образом, предлагаемый авторами способ активации порошка алюминия обеспечивает снижение температуры начала горения при нагревании на воздухе за счет получения и использования геля, содержащего оксид ванадия (V), высокой концентрации, а также операции дополнительной термообработки.

Способ активации порошка алюминия, включающий пропитку исходного порошка алюминия гелем, полученным путем плавления оксида ванадия (V) с последующим добавлением расплава в дистиллированную воду при перемешивании, фильтрацию и сушку, отличающийся тем, что после добавления расплава в дистиллированную воду осуществляют выдержку при температуре не более 100°С в течение 1,5-2,0 часов, пропитывают исходный порошок алюминия гелем при соотношении гель (г): порошок алюминия (г) = 0,34-4,2:1 и дополнительно осуществляют термообработку при температуре 300-310°С в течение 0,5–0,6 часа.
Источник поступления информации: Роспатент

Показаны записи 41-50 из 99.
18.05.2018
№218.016.5071

Способ получения композита триоксид ванадия/углерод

Изобретение может быть использовано для получения электродного материала литиевых источников тока. Способ получения композита триоксид ванадия/углерод VO/C включает растворение в воде карбоновой кислоты, добавление оксидного соединения ванадия, сушку и последующий отжиг. В качестве карбоновой...
Тип: Изобретение
Номер охранного документа: 0002653020
Дата охранного документа: 04.05.2018
29.05.2018
№218.016.53d3

Способ получения наноструктурированных порошков ферритов и установка для его осуществления

Изобретение может быть использовано в химической промышленности. Способ получения наноструктурированных порошков ферритов включает получение смеси соли азотной кислоты и по крайней мере одного оксидного соединения металла, ультразвуковую обработку, термообработку и фильтрацию. Получают смесь...
Тип: Изобретение
Номер охранного документа: 0002653824
Дата охранного документа: 14.05.2018
09.06.2018
№218.016.5e01

Способ получения композита диоксид молибдена/углерод

Изобретение относится к способу получения композитов в мелкодисперсном состоянии, в частности композита диоксид молибдена/углерод MoO/C, который может быть использован в качестве эффективного анодного материала литиевых источников тока. Способ включает растворение порошка металлического...
Тип: Изобретение
Номер охранного документа: 0002656466
Дата охранного документа: 05.06.2018
20.06.2018
№218.016.6538

Способ получения наноструктурированного углерода

Изобретение относится к химической технологии и может быть использовано при изготовлении сорбентов, катализаторов и носителей для катализаторов, сенсоров, газовых накопителей, конструкционных, футеровочных, оптических материалов и электродов для высокоёмких источников тока и энергетических...
Тип: Изобретение
Номер охранного документа: 0002658036
Дата охранного документа: 19.06.2018
25.06.2018
№218.016.66b0

Способ разделения скандия и сопутствующих металлов

Изобретение относится к технологии неорганических веществ, а именно к гидрометаллургии скандия. Способ разделения скандия и сопутствующих металлов заключается в обработке скандийсодержащего раствора серной кислотой в присутствии соли, содержащей ионы аммония, при нагревании с последующими...
Тип: Изобретение
Номер охранного документа: 0002658399
Дата охранного документа: 21.06.2018
01.07.2018
№218.016.697d

Способ получения серебросодержащей ткани растительного происхождения

Изобретение относится к способу получения серебросодержащих тканей, обладающих антибактериальными свойствами. Способ получения серебросодержащей ткани растительного происхождения включает обработку ткани водным раствором смеси нитрата серебра, восстановителя и соединения, содержащего группу NH,...
Тип: Изобретение
Номер охранного документа: 0002659267
Дата охранного документа: 29.06.2018
05.07.2018
№218.016.6c2a

Способ определения оптических констант пленок химически активных металлов или их сплавов

Изобретение относится к способам оптико-физических измерений. Способ определения оптических констант пленок химически активных металлов или их сплавов включает измерения эллипсометрических параметров и пленки соответствующего металла или его сплава, предварительно нанесенной путем вакуумного...
Тип: Изобретение
Номер охранного документа: 0002659873
Дата охранного документа: 04.07.2018
10.08.2018
№218.016.7b57

Способ получения полых микросфер феррита висмута

Изобретение может быть использовано для получения наноструктурированных порошков феррита висмута BiFeO, применяемых в микроэлектронике, спинтронике, устройствах для магнитной записи информации, в производстве фотокатализаторов, материалов для фотовольтаики. Способ получения полых микросфер...
Тип: Изобретение
Номер охранного документа: 0002663738
Дата охранного документа: 09.08.2018
25.10.2018
№218.016.9605

Способ получения формиата железа (ii)

Изобретение относится к получению солей железа из органических кислот, в частности к соли двухвалентного железа из муравьиной кислоты. Предлагается способ получения формиата железа (II), включающий нагревание соединения железа и муравьиной кислоты в присутствии металлической стружки, где...
Тип: Изобретение
Номер охранного документа: 0002670440
Дата охранного документа: 23.10.2018
15.11.2018
№218.016.9da3

Способ получения нанокристаллического порошка титан-молибденового карбида

Изобретение может быть использовано в металлургии при получении тугоплавкой основы безвольфрамовых твердых сплавов. Способ получения нанокристаллического порошка титан-молибденового карбида включает высокотемпературную обработку исходной смеси порошков соединения титана и молибдена с...
Тип: Изобретение
Номер охранного документа: 0002672422
Дата охранного документа: 14.11.2018
Показаны записи 21-21 из 21.
15.05.2023
№223.018.59f9

Способ получения нанопорошка триоксида ванадия

Изобретение относится к химической промышлености и нанотехнологии и может быть использовано при производстве высокоэнергетических литиевых батарей, химических источников тока, датчиков, электрохимических и оптических устройств, катализаторов окисления органических и неорганических веществ. В...
Тип: Изобретение
Номер охранного документа: 0002761849
Дата охранного документа: 13.12.2021
+ добавить свой РИД