×
16.05.2023
223.018.6153

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ОПТИМАЛЬНЫХ ПАРАМЕТРОВ ПРИ ПОЛУЧЕНИИ НЕФТЕПРОДУКТОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к определению оптимальных параметров при получении нефтепродуктов, например, для получения из них зимнего дизельного топлива, реактивного топлива, углеводородных основ буровых растворов и других нефтепродуктов путем анализа узких фракций разгонки исходного сырья. Способ включает фракционирование исходного нефтепродукта на узкие фракции по 10-20°С, анализ каждой узкой фракции на определяющие качество конечного продукта заданные параметры во всех узких фракциях, выбор основных фракций с показателями, полностью соответствующими заданным параметрам. Затем выбирают фракцию, показатели качества которой наиболее близки к заданным, и добавляют ее к смеси основных фракций, проводят анализ полученной новой смеси на соответствие заданным параметрам качества. Если параметры новой смеси соответствуют заданным, то выбирают следующую узкую фракцию, показатели которой наиболее близки к заданным, и добавляют ее к полученной ранее смеси. Достигается упрощение и ускорение определения оптимальных параметров при получении нефтепродуктов. 3 табл., 3 пр.

Изобретение относится к способу определения оптимальных параметров при получении нефтепродуктов, например, при получении зимнего дизельного топлива, реактивного топлива, углеводородных основ буровых растворов и других нефтепродуктов путем анализа узких фракций разгонки исходного сырья.

Известен способ переработки тяжелого и остаточного нефтяного сырья путем легкого термоакустического висбрекинга (RU №2375409, МПК C10G 9/00, опубликован 10.12.2009). Висбрекинг осуществляют при снижении температуры и давления от ступени к ступени: от 390-450°С и 0,1-1,2 МПа - на первой ступени до 360-390°С и 0,01 МПа - на конечной ступени.

Однако известный способ не дает возможности определить оптимальные параметры процесса переработки сырья в различных аппаратах в короткие сроки и с приемлемыми затратами сырья, времени и энергии, так как обычно оптимизация проводится в заводских условиях на промышленных аппаратах, при этом расходуются сотни тонн сырья, месяцы по времени и тысячи кВт-ч тепловой энергии.

Известен способ кавитационной обработки жидких нефтепродуктов, в котором мощность кавитационного устройства регулируют в соответствии с измерительной информацией, полученной с поточных анализаторов на входе и выходе кавитационного устройства: по значениям коэффициентов оптического поглощения, и преломления жидкого углеводорода вычисляют вязкость и содержание низкомолекулярных углеводородов (патент RU №2455341, МПК C10G 15/08, опубликован 10.07.2012). Изобретение используется для предварительной подготовки нефти перед крекингом с целью повышения выхода легких низкомолекулярных соединений. В указанном изобретении контролируются параметры производственного технологического процесса, однако не проводится оптимизация этих параметров и нет инструментов, позволяющих снизить затраты времени на оптимизацию параметров процесса, и получить нефтепродукт с заданными эксплуатационными свойствами.

Наиболее близким к предлагаемому является способ облагораживания светлых нефтепродуктов для получения из них зимнего дизельного топлива с установлением оптимальных параметров при их облагораживании путем регулирования параметров кавитационного воздействия и деструктивного гидрирования (гидрогенизации), связанных с таким показателем целевого продукта, как температура его помутнения и анализа промежуточных проб из каждого аппарата кавитационного воздействия и гидрогенизатора, определяемых по результатам ИК-спектроскопии и методов физико-химического анализа охлажденных проб продуктов до и после каждого аппарата кавитационного воздействия и аппарата гидрогенизации, при котором сначала исходный продукт подвергают вышеуказанному анализу, далее с помощью блока управления и безопасности устанавливают в акустическом кавитаторе с магнитострикционным излучателем ультразвуковых колебаний и гидрогенизаторе начальные параметры их работы, при этом сначала исходный продукт подвергают кавитационному воздействию, отбирают промежуточную пробу на выходе из кавитатора, охлаждают ее до 30-50°С, анализируют, снимая ее спектры и определяя физико-химические показатели, включая и температуру помутнения, определяют оптимальные параметры работы кавитатора путем сравнения результатов анализа проб с ожидаемыми свойствами проб, характеризующими их низкотемпературные свойства, при необходимости осуществляют корректировку параметров кавитатора и далее при необходимости осуществляют повторное кавитационное воздействие на исходный продукт с учетом возможной корректировки параметров работы кавитатора, повторно анализируют полученные охлажденные пробы на выходе из кавитатора и заканчивают кавитационное воздействие на исходный продукт до достижения ожидаемых показателей промежуточного продукта на выходе из кавитатора, далее полученный промежуточный продукт подвергают деструктивной гидрогенизации при 260-300°С в реакторе гидрогенизации на катализаторе, куда подают водород и/или метан, отбирают на выходе из гидрогенизатора промежуточную пробу, охлаждают ее и анализируют вышеуказанными методами, сравнивая полученные результаты анализа с ожидаемыми показателями, которые промежуточный продукт должен иметь на выходе из гидрогенизатора, далее при необходимости корректируют параметры процесса гидрогенизации и повторяют при необходимости процесс гидрогенизации, заканчивая его до получения промежуточного продукта с ожидаемыми свойствами и определения оптимальных параметров работы гидрогенизатора для получения продукта с ожидаемыми свойствами, полученный продукт подают в сепаратор, где отделяют газообразные продукты, фракцию жидких углеводородов подвергают фракционной разгонке в разделительной колонне, при этом легкую фракцию возвращают в емкость хранения исходного продукта, а целевой продукт в виде фракции, соответствующей зимнему дизельному топливу, анализируют на соответствие тестированным требованиям, предъявляемым к зимнему дизельному топливу с температурой помутнения не выше минус 25°С и устройство для реализации способа облагораживания светлых нефтепродуктов с установлением оптимальных параметров осуществления его содержащее комплекс аппаратов, включающих блок контроля качества проб, блок управления и безопасности, емкость для исходного продукта, электрический подогреватель сырья, акустический кавитатор, емкость для хранения и подачи газа-донора водорода, каталитический реактор деструктивной гидрогенизации, газовый сепаратор, разделительную колонку, теплообменники, товарную емкость, трубопроводы с насосами, комплект датчиков температуры, давления и расхода, при этом указанный комплекс аппаратов подключен к комплексу управления и безопасности, а пробы, отбираемые после каждого аппарата, подаются в комплекс физико-химических и спектральных методов определения состава промежуточных жидких продуктов (патент RU №2671868).

Однако в данном способе используют сложное и дорогостоящее аппаратурное оформление, сложный многоступенчатый длительный анализ.

Целью настоящего изобретения является упрощение определения оптимальных параметров при получении нефтепродуктов, снижение затрат времени на определение оптимальных параметров, увеличение выпуска продукции и снижение затрат электроэнергии для получения нефтепродуктов с заданными эксплуатационными свойствами.

Технический результат достигается тем, что в способе определения оптимальных параметров при получении нефтепродуктов, включающем фракционирование нефтепродуктов, фракционирование производят исходного нефтепродукта, при этом фракционирование производят на узкие фракции по 10-20°С, оценивают определяющие качество конечного продукта параметры во всех узких фракциях и в соответствии с ним рекомендуют начало и конец температуры кипения используемых фракции исходного нефтепродукта.

Способ осуществляют следующим образом:

Пример 1

Для получения зимнего дизельного топлива с оптимальной температурой помутнения минус 22°С, фракцию прямогонного дизельного топлива разгоняют на мелкие фракции с интервалом температур 10°С, таблица 1. У каждой отдельной узкой фракции дизельного топлива определяют температуру помутнения. На основании полученных данных выбирают узкую фракцию с наиболее близким значением температуры помутнения (узкая фракция 270-280°С с температурой помутнения минус 20°С), объединяют все узкие фракции с температурой кипения ниже 280°С (смесь 1) и определяют для смеси температуру помутнения (минус 24°С), которая ниже необходимой (минус 22°С), затем к смеси 1 добавляют следующую узкую фракцию (280-290°С) и для новой смеси 2 определяют температуру помутнения (полученная температура равна минус 22°С), которая удовлетворяет требованиям по температуре помутнения для зимнего дизельного топлива. Выбранные узкие фракции дизельного топлива с температурой кипения ниже 290°С, с температурой помутнения минус 22°С подвергают процессу гидроочистки, а фракции с температурой кипения выше 290°С (определенная для этой смеси температура помутнения плюс 7°С) подвергают процессу гидроочистки и гидродепарафинизации. На установке гидродепарафинизации снижают температуру помутнения смеси с плюс 7°С до минус 22°С.

Определение оптимальных параметров фракционированием на узкие фракции для разделения данной фракции прямогонного дизельного топлива на две составляющие, одна из которых (с температурой кипения ниже 290°С) идет для получения зимнего дизельного топлива с температурой помутнения минус 22°С и которую подвергают только гидроочистке, а другую дополнительно гидродепарафинизации позволяет снизить затраты времени на определение оптимальных параметров, увеличить выпуск зимнего дизельного топлива на имеющихся мощностях, снизить потребление водорода и электроэнергии.

Пример 2

Для оптимизации выпуска реактивного топлива на установках первичной переработки нефти подвергают ректификации образец нефти на узкие фракции по 10°С. Каждую узкую фракцию анализируют на основные показатели качества, требуемые для реактивного топлива. Результаты представлены в таблице 2.

Для увеличения выпуска реактивного топлива необходимо расширить температурный диапазон обычно используемой целевой фракции (150-250°С) для его получения. Для этого, к целевой фракции реактивного топлива добавляют узкую фракцию (140-150°С) и узкую фракцию (250-260°С), полученную смесь анализируют на соответствие показателям качества для реактивного топлива. Так как по показателям есть резерв качества, кроме температуры начала кристаллизации, к полученной смеси добавляют узкую фракцию 130-140°С и затем снова проводят анализ на соответствие показателям качества, результаты представлены в таблице 2. Полученная смесь полностью соответствует показателям качества для реактивного топлива.

Определение оптимальных параметров фракционированием на узкие фракции для увеличения выпуска реактивного топлива путем расширения температурного интервала обычно используемой целевой фракции (150-250°С) для его получения, позволяет снизить затраты времени на определение оптимальных параметров, увеличить выпуск реактивного топлива на 4% масс, на имеющихся мощностях, снизить потребление электроэнергии.

Пример 3

Для оценки возможности получения маловязких углеводородных основ для буровых растворов из дизельной фракции (депарафинизата) процесса производства базовых масел третьей группы подвергают ректификации депарафинизат на узкие фракции по 20°С, каждую узкую фракцию анализируют на соответствие требованиям для маловязких углеводородных основ для буровых растворов по СТО 00149765-008-2017, результаты представлены в таблице 3.

Для установления максимального интервала температур дизельной фракции (депарафинизата), которую предполагают применять в качестве маловязких углеводородных основ для буровых растворов, выбирают смесь узких фракции 220-240°С, 240-260°С, 260-280°С (смесь 1), которая для этого подходит по всем параметрам качества. Для снижения нижней температурной границы фракции для получения маловязких углеводородных основ для буровых растворов к смеси 1 добавляют узкую фракцию 200-220°С с получением смеси 2, а затем узкую фракцию 180-200°С с получением смеси 3. Каждую смесь анализируют на соответствие показателей качества требованиям для маловязких углеводородных основ для буровых растворов, на основании полученных данных для повышения температуры застывания и увеличения верхней границы к смеси добавляют узкую фракцию 280-300°С (смесь 4), которая по результатам анализа подходит по всем параметрам для маловязких углеводородных основ для буровых растворов с максимально широким интервалом температур.

Определение оптимальных параметров фракционированием на узкие фракции для процесса получения маловязких углеводородных основ для буровых растворов из дизельной фракции (депарафинизата) процесса производства базовых масел третьей группы по параметрам качества для маловязких углеводородных основ для буровых растворов по СТО 00149765-008-2017 позволяет снизить затраты времени на определение оптимальных параметров, организовать выпуск маловязкой углеводородной основы для буровых растворов из дизельной фракции (депарафинизата) процесса производства базовых масел третьей группы, снизить потребление электроэнергии. Потребность в маловязкой углеводородной основе для буровых растворов в России составляет около 75 тыс.тонн в год, при этом импорт продукта в настоящее время составляет более 70%.

Способ определения оптимальных параметров при получении нефтепродуктов, включающий фракционирование нефтепродуктов, отличающийся тем, что производят фракционирование исходного нефтепродукта, при этом фракционирование производят на узкие фракции по 10-20°С, проводят анализ каждой узкой фракции на определяющие качество конечного продукта заданные параметры во всех узких фракциях, выбирают основные фракции с показателями, полностью соответствующими заданным параметрам, затем выбирают фракцию, показатели качества которой наиболее близки к заданным, и добавляют ее к смеси основных фракций, проводят анализ полученной новой смеси на соответствие заданным параметрам качества, если параметры новой смеси соответствуют заданным, то выбирают следующую узкую фракцию, показатели которой наиболее близки к заданным, и добавляют ее к полученной ранее смеси.
Источник поступления информации: Роспатент

Показаны записи 11-20 из 34.
25.08.2017
№217.015.c4bd

Способ получения дорожного битума

Изобретение относится к области приготовления дорожных битумов путем окисления, может быть использовано в нефтеперерабатывающей промышленности и в промышленности строительных материалов. Способ получения битума осуществляют путем окисления части гудрона без предварительного его разбавления с...
Тип: Изобретение
Номер охранного документа: 0002618266
Дата охранного документа: 03.05.2017
19.01.2018
№218.016.0bd5

Способ электродуговой многоэлектродной сварки под слоем флюса продольных стыков толстостенных труб большого диаметра

Изобретение может быть использовано при производстве толстостенных сварных труб большого диаметра с использованием многоэлектродной сварки под слоем флюса. В зоне окончания кристаллизации ванны расплавленного металла осуществляют удаление расплавленного флюса. Принудительное охлаждение...
Тип: Изобретение
Номер охранного документа: 0002632496
Дата охранного документа: 05.10.2017
08.07.2018
№218.016.6e71

Способ производства сварных прямошовных труб большого диаметра для магистральных трубопроводов

Изобретение относится к области производства стальных сварных прямошовных труб для магистральных трубопроводов. Способ включает приварку технологических планок к исходной заготовке, обработку ее продольных кромок, подгибку продольных кромок заготовки, формовку трубной заготовки, сборку...
Тип: Изобретение
Номер охранного документа: 0002660464
Дата охранного документа: 06.07.2018
25.08.2018
№218.016.7ecb

Способ переработки нефти

Изобретение относится к процессам нефтеперерабатывающей промышленности, в частности к способам переработки нефти с целью получения керосина и дизельного топлива. Способ переработки нефти включает перегонку нефти с получением керосина и выделением прямогонных фракций легкого и тяжелого...
Тип: Изобретение
Номер охранного документа: 0002664653
Дата охранного документа: 21.08.2018
25.08.2018
№218.016.7fa5

Способ очистки от сероводорода мазута и нефтяных фракций - компонентов мазута

Изобретение относится к процессам нефтеперерабатывающей промышленности, в частности к способам очистки от сероводорода мазута и нефтяных фракций - компонентов товарного мазута. Способ очистки от сероводорода мазута и нефтяных фракций - компонентов мазута, включает продувку их циркулирующим...
Тип: Изобретение
Номер охранного документа: 0002664652
Дата охранного документа: 21.08.2018
04.10.2018
№218.016.8f1b

Способ получения компонента для буровых растворов

Изобретение относится к способам получения компонентов для буровых растворов. Технический результат – высокая пожаробезопасность и улучшенные низкотемпературные свойства компонента бурового раствора, а именно температура вспышки не ниже 80°C, температура помутнения порядка минус 68°C,...
Тип: Изобретение
Номер охранного документа: 0002668612
Дата охранного документа: 02.10.2018
26.12.2018
№218.016.ab4d

Способ получения дизельного топлива

Изобретение описывает способ получения дизельного топлива, включающий перегонку нефти с выделением керосина, тяжелого и легкого дизельного топлива, гидроочистку легкого и тяжелого дизельного топлива, депарафинизацию, введение присадок, характеризующийся тем, что тяжелое дизельное топливо...
Тип: Изобретение
Номер охранного документа: 0002675853
Дата охранного документа: 25.12.2018
31.01.2019
№219.016.b53d

Способ получения котельного топлива

Способ получения котельного топлива, включающий вакуумную ректификацию прямогонного мазута, с получением утяжеленного гудрона и металлизированной фракции вакуумной ректификации, фракции вакуумного газойля с последующим висбрекингом утяжеленного гудрона с получением комбинированного продукта...
Тип: Изобретение
Номер охранного документа: 0002678449
Дата охранного документа: 29.01.2019
31.01.2019
№219.016.b59d

Топливо дизельное арктическое

Изобретение описывает топливо дизельное арктическое на основе среднедистиллятных нефтяных фракций, содержащее в качестве базового компонента изодепарафинизированную дизельную фракцию и противоизносную присадку, добавленную на базовый компонент, при этом в качестве базового компонента используют...
Тип: Изобретение
Номер охранного документа: 0002678453
Дата охранного документа: 29.01.2019
31.01.2019
№219.016.b5b3

Способ получения котельного топлива

Изобретение раскрывает способ получения котельного топлива, включающий вакуумную ректификацию прямогонного мазута с получением утяжеленного гудрона, металлизированной фракции вакуумной ректификации и фракции вакуумного газойля, с последующим висбрекингом утяжеленного гудрона с получением...
Тип: Изобретение
Номер охранного документа: 0002678451
Дата охранного документа: 29.01.2019
+ добавить свой РИД