×
15.05.2023
223.018.59fd

Результат интеллектуальной деятельности: Способ удаления диоксида углерода из природного газа

Вид РИД

Изобретение

Аннотация: Изобретение относится к области неорганической химии, а именно к разделению компонентов природного газа газогидратной кристаллизацией, и может быть использовано для удаления диоксида углерода из природного газа. Способ удаления диоксида углерода из природного газа включает образование газовых гидратов диоксида углерода при давлении от 2.0 до 8.0 МПа и температуре от 273 до 278 K и последующее их разложение с образованием концентрата диоксида углерода. В газогидратный кристаллизатор подают поток природного газа с находящимся в нем 6-10-кратным мольным избытком воды относительно мольной концентрации гидратообразующих газов в природном газе. Не перешедшие в газогидратную фазу компоненты природного газа выводят из газогидратного кристаллизатора. Образовавшиеся газовые гидраты отбирают шнеком в модуль сепарации для разрушения на воду и концентрат диоксида углерода при повышении температуры от 293 до 323 K. Оставшиеся компоненты природного газа выводят на переработку. Технический результат от использования изобретения заключается в повышении степени удаления диоксида углерода из природного газа. 1 ил., 1 табл., 2 пр.

Изобретение относится к области неорганической химии, а именно к разделению компонентов природного газа газогидратной кристаллизацией, и может быть использовано для удаления диоксида углерода из природного газа.

Диоксид углерода снижает теплотворную способность и может блокировать поток природного газа, затвердевая при низких температурах. Также диоксид углерода способствует коррозии стальных труб. Согласно ГОСТ 5542-2014, концентрация диоксида углерода в природном газе должна составлять не более 2.50 мол.%.

Концентрация диоксида углерода в природном газе может достигать высоких значений, равных 22 об.% [Мишин В.М. Переработка природного газа и конденсата. М.: Издательский центр «Академия», 1999. С. 9].

В настоящее время основными технологиями разделения и очистки природного газа от диоксида углерода являются абсорбция, адсорбция и мембранное газоразделение [Афанасьев А.И. и др. Технология переработки природного газа и конденсата. М.: Недра, 2002. 517 с.]. Однако данные технологии обладают определенными недостатками. При абсорбции: высокие затраты на регенерацию абсорбента; высокое парциальное давление диоксида углерода; применяемые растворители достаточно хорошо поглощают углеводороды. Затраты энергии на получение диоксида углерода (95 мол.%) составляют 1055-1282 кВт⋅ч/т. При адсорбции: малая емкость адсорбентов и непродолжительное время работы при высоких концентрациях диоксида углерода в потоке; сложность регенерации адсорбентов и их утилизации. Затраты энергии на получение диоксида углерода (95 мол.%) составляют 537-692 кВт⋅ч/т. При мембранном газоразделении также есть проблемы: мембрана может быть закупорена механическими примесями газового потока; имеется необходимость предотвращения смачивания мембраны; необходимость использования больших поверхностей мембраны, т.к. процессы молекулярного массопереноса весьма медленные. Затраты энергии на получение диоксида углерода (95 мол.%) составляют 651-873 кВт⋅ч/т.

Таким образом, энергозатраты основных технологий разделения и очистки природного газа от диоксида углерода являются высокими. В целом, все перечисленные проблемы противоречат основным принципам «зеленой» химии. Новые технологии разделения, которые являются экологически безопасными и с низкими эксплуатационными расходами, должны быть разработаны для удаления диоксида углерода из месторождений природного газа с высоким содержанием диоксида углерода.

Также можно отметить, что удаление диоксида углерода из природного газа может быть экономически выгодным, т.к. диоксид углерода является ценным продуктом, который может быть использован в различных отраслях промышленности (пищевая, машиностроительная, химическая, горная, сельскохозяйственная, медицинская) или закачан в газовые пласты для хранения после вытеснения метана из газогидратного состояния. Таким образом, возможно решение двух глобальных проблем человечества, таких как увеличение парникового эффекта и исчерпание ресурсов природного газа.

В последние несколько лет одним из перспективных способов газоразделения является процесс гидратообразования [Gas hydrates in sustainable chemistry / Hassanpouryouzband A., Joonaki E., Farahani M.V. [et al.] // Chem. Soc. Rev. - 2020. - V. 49. - P. 5225-5309].

Преимуществами процесса газогидратной кристаллизации являются низкие затраты энергии (процесс возможен при температурах выше 273 K); простота экспериментальной установки; высокая эффективность газоразделения из-за разницы в давлениях диссоциации газовых гидратов; высокая емкость газа в газогидратной фазе; простота масштабируемости процесса газогидратной кристаллизации; единственным материалом является вода, которая может быть восстановлена. Таким образом, технология газогидратной кристаллизации является экологически безопасной. Затраты энергии на получение диоксида углерода (95 мол.%) составляют 362-420 кВт⋅ч/т.

Известен «Способ удаления кислотных газов из природного газа» (RU2671253C2), в котором богатая углеводородом фракция охлаждается и частично конденсируется, а получающаяся при этом обогащенная диоксидом углерода жидкая фракция путем ректификации разделяется на богатую диоксидом углерода жидкую фракцию и обедненную диоксидом углерода газовую фракцию. Богатая углеводородом фракция с помощью замкнутого многоступенчатого холодильного цикла, доля диоксида углерода в хладагенте которого составляет более чем 99.5%, охлаждается до температуры, близкой к температуре тройной точки для диоксида углерода.

В данном способе присутствуют определенные недостатки, среди них: возможное затвердевание примесей в потоке хладагента; возникновение температурных напряжений в кожухе и трубах двухходового теплообменника; существует риск образования твердого диоксида углерода в трубопроводе между теплообменником и компрессорным блоком.

Известен «Способ и устройство для удаления кислых веществ из потока природного газа» (EA 012227 B1), сущность которого заключается в охлаждении подаваемого потока дегидратированного природного газа и формировании суспензии твердых кислых веществ и углеводородных жидкостей совместно с газовым потоком, содержащим газообразные кислые вещества; отделении газового потока, содержащего газообразные кислые вещества, от суспензии и обработке жидким растворителем; образование жидкого раствора кислых веществ и дегидратированного раскисленного природного газа.

Недостатками известного способа являются необходимость в дополнительных технологиях разделения для повторного использования растворителя; работа ограничена образованием гидратов при охлаждении природного газа под высоким давлением при адиабатическом расширении; затвердевание диоксида углерода предотвратит использование распылительных форсунок для подачи потока жидкости в зону замораживания; не описано дальнейшее разделение кислых веществ.

Наиболее близким по технической сущности является патент US 5819555, в котором основой для процесса разделения является свойство диоксида углерода образовывать твердые вещества и его низкая растворимость в паровой фазе при низких температурах. Охлажденный подаваемый поток природного газа поступает в разделительную емкость, в которой предусмотрены технологии получения и отделения твердого диоксида углерода. Диоксид углерода удаляется из емкости как поток жидкости, обогащенный диоксидом углерода. Очищенный холодный пар удаляется из разделительной емкости в виде потока продукта.

Недостатки данного способа связаны с тем, что для повторного использования растворителя требуются дополнительные технологии разделения; невысокая скорость осаждения в случае гравитационного разделения; затвердевание диоксида углерода предотвратит использование распылительных форсунок; не описан процесс дальнейшего разделения компонентов с близкими температурами плавления.

Задача заявляемого решения - создание эффективного способа удаления диоксида углерода из природного газа.

Технический результат от использования изобретения заключается в повышении степени удаления диоксида углерода из природного газа.

Технический результат достигается тем, что в способе удаления диоксида углерода из природного газа, включающем образование газовых гидратов диоксида углерода при давлении от 2.0 до 8.0 МПа и температуре от 273 до 278 K и последующее их разложение с образованием концентрата диоксида углерода, в газогидратный кристаллизатор подают поток природного газа с находящейся в ней 6-10-кратным мольным избытком воды относительно мольной концентрации гидратообразующих газов в природном газе, не перешедшие в газогидратную фазу компоненты природного газа выводят из газогидратного кристаллизатора, образовавшиеся газовые гидраты отбирают шнеком в модуль сепарации для разрушения на воду и концентрат диоксида углерода при повышении температуры от 293 до 323 K, оставшиеся компоненты природного газа выводят на переработку.

Предлагаемое изобретение поясняется фиг. 1, на которой изображено устройство удаления диоксида углерода из природного газа.

Устройство состоит, по меньшей мере, из одного газогидратного кристаллизатора 1, который включает: перемешивающее устройство якорного типа 2 для интенсификации процесса образования газовых гидратов; шнек 3 для отбора газовых гидратов, содержащих концентрат диоксида углерода. Газогидратный кристаллизатор 1 снабжен линией подачи 4 природного газа и соединен с модулем сепарации 5 шнеком 3. В газогидратном кристаллизаторе 1 имеется линия 6 для подачи природного газа, очищенного от диоксида углерода и воды на дальнейшее разделение и очистку.

Устройство может быть изготовлено из нержавеющей стали марки 12Х18Н10Т. Перемешивающее устройство якорного типа может быть изготовлено из нержавеющей стали марки 12Х18Н10Т.

Способ осуществляют следующим образом.

В газогидратный кристаллизатор 1 подают поток природного газа по линии подачи 4, в котором находится 6-10-кратный мольный избыток воды относительно мольной концентрации гидратообразующих газов в природном газе при давлении от 2.0 до 8.0 МПа и температуре от 273 до 278 K для образования газовых гидратов диоксида углерода.

Выбранный 6-кратный мольный избыток воды относительно мольной концентрации гидратообразующих газов в природном газе обусловлен тем, что при меньшем количестве воды не наблюдается образование газовых гидратов.

Выбранный 10-кратный мольный избыток воды относительно мольной концентрации гидратообразующих газов в природном газе обусловлен тем, что при большем количестве воды дополнительно наблюдается образование ледяной фазы.

Разница в давлениях диссоциации газовых гидратов является основой распределения газов между газогидратной и паровой фазами и характеризуется коэффициентом газогидратного распределения.

Не перешедшие в газогидратную фазу компоненты природного газа, например, метан, поступают через линию 6 на дальнейшее разделение и очистку.

При давлении от 2.0 до 8.0 МПа и температуре от 273 до 278 K наблюдается образование газовых гидратов, содержащих концентрат диоксида углерода. Перемешивающее устройство якорного типа 2 интенсифицирует этот процесс. В газогидратном кристаллизаторе 1 поддерживается постоянное давление. Доля отбора (мольное отношение потока газа, выходящего из газогидратного кристаллизатора по линии 6, к мольному потоку газа, входящего в газогидратный кристаллизатор по линии 4) варьируется от 0 до 1. Образовавшиеся газовые гидраты отбирают шнеком 3 в модуль сепарации 5, где при повышении температуры от 293 до 323 K (т.к. в данном диапазоне максимальное извлечение газа из жидкой фазы в зависимости от состава входящего природного газа) наблюдается разрушение газовых гидратов с образованием воды и концентрата диоксида углерода.

Для дальнейшей очистки концентрата диоксида углерода от примесей возможно использование каскада газогидратных кристаллизаторов, а с целью соответствия спецификации по сухости природного газа возможно использование адсорбентов. На выходе концентрация диоксида углерода в природном газе не более 2.5 мол.%, а воды не более 0.1 мол.%.

Выбранное значение давления технологии газогидратной кристаллизации, равное 2.0 МПа, обусловлено тем, что ниже данного давления процесс гидратообразования модельной газовой смеси (метан (81.70 мол.%) - диоксид углерода (18.30 мол.%)), содержащей компоненты природного газа, при выбранной минимальной температуре процесса, равной 273 K, не наблюдается.

Выбранное значение давления технологии газогидратной кристаллизации, равное 8.0 МПа, обусловлено технологическими параметрами поступающего из месторождений природного газа.

Выбранное значение температуры процесса, равное 273 K, обусловлено температурой замерзания воды при выбранном минимальном значении давления технологии газогидратной кристаллизации.

Выбранное значение температуры процесса, равное 278 K, обусловлено тем, что выше данной температуры значение коэффициента газогидратного распределения диоксида углерода к метану менее 1.

Пример 1

Используется газогидратный кристаллизатор 1, изображенный на фиг. 1. При использовании режима непрерывной газогидратной кристаллизации, поток модельной газовой смеси (метан (81.70 мол.%) - диоксид углерода (18.30 мол.%)), содержащей компоненты природного газа, по линии подачи 4 подают в газогидратный кристаллизатор 1, в котором находится 6-кратный мольный избыток воды относительно мольной концентрации гидратообразующих газов при заданных условиях для образования газовых гидратов диоксида углерода.

Не перешедший в газогидратную фазу компонент природного газа (метан) с концентрацией не менее 81.70 мол.% поступает через линию 6 на дальнейшее разделение и очистку.

При давлении, равном 2.0 МПа, и температуре, равной 273 K наблюдается образование газовых гидратов, содержащих концентрат диоксида углерода. Перемешивающее устройство якорного типа 2 интенсифицирует этот процесс. Из потока природного газа в газогидратную фазу переходит не менее 18.30 мол.% диоксида углерода. Доля отбора варьируется от 0 до 1. Образовавшиеся газовые гидраты отбирают шнеком 3 в модуль сепарации 5, где при повышении температуры до 293 K наблюдается разрушение газовых гидратов с образованием воды и концентрата диоксида углерода.

Время проведения эксперимента составляло 8 часов после начала процесса гидратообразования. Данные сведены в табл. 1.

Пример 2

Проведен аналогично примеру 1. Данные сведены в табл. 1.

Табл. 1. Условия процесса гидратообразования модельной газовой смеси метан (81.70 мол.%) - диоксид углерода (18.30 мол.%) для достижения максимально допустимой концентрации диоксида углерода в выходящей паровой фазе, равной 2.5 мол.%

Температура газогидратного кристаллизатора, K Давление газогидратного кристаллизатора, МПа Мольный избыток воды относительно мольной концентрации гидратообразующих газов Температура модуля сепарации, K Доля отбора Коэффициент газогидратного распределения диоксида углерода к метану
273 2.0 6-кратный 293 0.095 2
278 8.0 10-кратный 323 0.010 1.5

Таким образом, заявляемое изобретение обеспечивает достижение технического результата, состоящего в повышении степени удаления диоксида углерода из природного газа. Достигнута максимально допустимая концентрация диоксида углерода в выходящей паровой фазе, равная 2.5 мол.%. Предлагаемый способ показал высокую эффективность при разделении компонентов природного газа с целью удаления диоксида углерода.

Способ удаления диоксида углерода из природного газа, включающий образование газовых гидратов диоксида углерода при давлении от 2.0 до 8.0 МПа и температуре от 273 до 278 K и последующее их разложение с образованием концентрата диоксида углерода, отличающийся тем, что в газогидратный кристаллизатор подают поток природного газа с находящимся в нем 6-10-кратным мольным избытком воды относительно мольной концентрации гидратообразующих газов в природном газе, не перешедшие в газогидратную фазу компоненты природного газа выводят из газогидратного кристаллизатора, образовавшиеся газовые гидраты отбирают шнеком в модуль сепарации для разрушения на воду и концентрат диоксида углерода при повышении температуры от 293 до 323 K, оставшиеся компоненты природного газа выводят на переработку.
Источник поступления информации: Роспатент

Показаны записи 51-60 из 96.
20.05.2019
№219.017.5ce8

Суспензия для изготовления оболочковых форм в литье по выплавляемым моделям

Изобретение относится к литейному производству. Суспензия содержит (мас.%) этилсиликат (8,0-15,0), воду (1,0-5,5), соляную кислоту (0,2-0,8), дисперсный кремнезем в виде пыли от электрофильтров ферросплавных печей (0,5-5,0), органические растворители в виде ацетона или этилового спирта...
Тип: Изобретение
Номер охранного документа: 0002688038
Дата охранного документа: 17.05.2019
29.05.2019
№219.017.6235

Способ подготовки горячекатаного проката для изготовления крепежных изделий

Изобретение относится к области обработки сортового горячекатаного проката и может быть использовано при изготовлении из него высокопрочных длинномерных крепежных изделий. Для получения требуемых прочностных и пластических свойств калиброванного проката согласно ГОСТ 10702-2016 за счет...
Тип: Изобретение
Номер охранного документа: 0002689349
Дата охранного документа: 27.05.2019
29.05.2019
№219.017.62f5

Жидкостекольная смесь для изготовления литейных форм и стержней и способ ее приготовления

Изобретение относится к литейному производству. Смесь для изготовления форм и стержней содержит жидкое стекло, кварцевый песок и огнеупорную глину. Смесь также включает комплексную добавку-модификатор. Соотношение ингредиентов смеси составляет, мас. %: кварцевый песок - 94,9, глина огнеупорная...
Тип: Изобретение
Номер охранного документа: 0002688322
Дата охранного документа: 21.05.2019
31.05.2019
№219.017.7187

Способ глубокой очистки хладагента r717

Изобретение относится к способам очистки веществ и касается разработки способа глубокой очистки хладагента R717 (аммиака), используемого в двухфазных системах терморегулирования (СТР) крупногабаритных конструкций космических летательных аппаратов. Cпособ глубокой очистки хладагента R717...
Тип: Изобретение
Номер охранного документа: 0002689602
Дата охранного документа: 28.05.2019
20.06.2019
№219.017.8d70

Способ изготовления керамических оболочковых форм для литья по выплавляемым моделям

Изобретение относится к литейному производству и может быть использовано при изготовлении оболочковых форм по выплавляемым моделям. Модельный блок обрабатывают огнеупорной суспензией, причем первые один или два слоя выполняют с использованием в качестве связующего гидролизованного раствора...
Тип: Изобретение
Номер охранного документа: 0002691914
Дата охранного документа: 18.06.2019
29.06.2019
№219.017.a28d

Способ получения n-[(дибутиламино)метил]метакриламида

Изобретение относится к способу получения N-[(дибутиламино)метил]метакриламида - соединения, являющегося катионным поверхностно-активным (мет)акриловым мономером (сурфомером), который заключается в синтезе N-[(дибутиламино)метил]метакриламида из формальдегида, дибутиламина и метакриламида в...
Тип: Изобретение
Номер охранного документа: 0002692770
Дата охранного документа: 27.06.2019
04.07.2019
№219.017.a4db

Способ получения биоразлагаемых разветвленных олигомерных сложных эфиров молочной кислоты и глицерина

Изобретение относится к способу получения биоразлагаемых разветвленных олигомерных сложных эфиров молочной кислоты и глицерина формулой где n=2-10, со среднечисловыми молекулярными массами от 620 до 2500, в качестве исходного вещества используется водный раствор глицерина, на первой стадии...
Тип: Изобретение
Номер охранного документа: 0002693385
Дата охранного документа: 02.07.2019
02.08.2019
№219.017.bb73

Способ 3d печати на оборудовании с чпу с интеллектуальной оптимизацией режимов

Изобретение относится к способу изготовления изделия путем трехмерной печати электродуговой наплавкой на оборудовании с ЧПУ. Способ включает формирование заготовки электродуговой наплавкой в среде защитных газов из слоев, состоящих из соприкасающихся друг с другом наплавленных...
Тип: Изобретение
Номер охранного документа: 0002696121
Дата охранного документа: 31.07.2019
01.09.2019
№219.017.c5ac

Способ количественной оценки пережога в деформируемых термоупрочняемых алюминиевых сплавах с помощью eds-анализа

Изобретение относится к области материаловедения и может быть использовано для количественной оценки развития степени пережога в деформируемых алюминиевых сплавах после упрочняющей термической обработки. Способ включает металлографический анализ, при этом производится определение массовой доли...
Тип: Изобретение
Номер охранного документа: 0002698698
Дата охранного документа: 29.08.2019
02.10.2019
№219.017.cf49

Универсальное транспортное средство на роторно-винтовом движителе

Изобретение относится к конструкции транспортных средств на роторно-винтовом движителе. Универсальное транспортное средство с роторно-винтовым движителем включает корпус и роторно-винтовой движитель. Роторно-винтовой движитель состоит из модулей, закрепленных на корпусе транспортного средства...
Тип: Изобретение
Номер охранного документа: 0002700240
Дата охранного документа: 13.09.2019
Показаны записи 11-16 из 16.
19.06.2019
№219.017.8872

Способ глубокой очистки аммиака

Заявляемое изобретение относится к способам очистки веществ и касается разработки способа глубокой очистки аммиака, используемого в технологии получения эпитаксиальных структур нитридов кремния, галлия, алюминия и других материалов, применяемых в опто- и микроэлектронике. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002327640
Дата охранного документа: 27.06.2008
19.06.2019
№219.017.8b8b

Способ очистки тетрафторметана и устройство для его осуществления

Изобретение относится к устройству для очистки тетрафторметана. При этом устройство представляет собой мембранный модуль радиального типа, состоящий из полостей высокого и низкого давлений, разделенных между собой мембраной. Каждая полость содержит распределительный диск, которые обеспечивают...
Тип: Изобретение
Номер охранного документа: 0002467994
Дата охранного документа: 27.11.2012
29.06.2019
№219.017.a1c1

Способ выделения аммиака из газовых смесей и устройство для его осуществления

Изобретение может быть использовано в химической промышленности. Газовую смесь подают в область высокого давления 1 через барботер 5, опущенный в слой абсорбента 4. Разделительный диск 6 удерживает образующиеся пузырьки газовой смеси в слое абсорбента, пока они движутся от центра к периферии к...
Тип: Изобретение
Номер охранного документа: 0002468994
Дата охранного документа: 10.12.2012
26.10.2019
№219.017.db01

Фармацевтическая композиция на основе хлорбензоиламиноадамантана, повышающая физическую работоспособность в условиях высоких и низких температур

Настоящее изобретение относится к фармацевтической промышленности, а именно фармацевтической композиции, обладающей актопротекторной и термопротекторной активностью. Фармацевтическая композиция, обладающая актопротекторной и термопротекторной активностью, в виде таблеток содержит в определенных...
Тип: Изобретение
Номер охранного документа: 0002704126
Дата охранного документа: 24.10.2019
12.04.2023
№223.018.456f

Способ получения концентрата ксенона из природного газа

Изобретение относится к области неорганической химии, а именно к разделению компонентов природного газа методами газогидратной кристаллизации и мембранного газоразделения, объединенных в едином массообменном аппарате, и может быть использовано для получения концентрата ксенона. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002754223
Дата охранного документа: 30.08.2021
15.05.2023
№223.018.59fc

Способ удаления диоксида углерода из природного газа

Изобретение относится к области неорганической химии, а именно к разделению компонентов природного газа газогидратной кристаллизацией, и может быть использовано для удаления диоксида углерода из природного газа. Способ удаления диоксида углерода из природного газа включает образование газовых...
Тип: Изобретение
Номер охранного документа: 0002761705
Дата охранного документа: 13.12.2021
+ добавить свой РИД