×
15.05.2023
223.018.59f9

Результат интеллектуальной деятельности: Способ получения нанопорошка триоксида ванадия

Вид РИД

Изобретение

Аннотация: Изобретение относится к химической промышлености и нанотехнологии и может быть использовано при производстве высокоэнергетических литиевых батарей, химических источников тока, датчиков, электрохимических и оптических устройств, катализаторов окисления органических и неорганических веществ. В качестве исходного сырья берут соль, содержащую ванадий - формиат ванадила VO(HCOO)HO, и проводят её отжиг при 500-650С в атмосфере гелия в течение 0,5-1 ч. Полученный нанопорошок триоксида ванадия VO не содержит других примесных фаз, а также углерода. Изобретение позволяет получить указанный нанопорошок в одну стадию без использования дополнительных органических соединений. 2 ил., 2 пр.

Изобретение относится к нанотехнологии (наноиндустрии), конкретно к технологии получения наноразмерных оксидов ванадия(III), имеющих большой потенциал применения при производстве высокоэнергетических литиевых батарей, химических источников тока, датчиков, катализаторов окисления органических и неорганических веществ, а также различных электрохимических и оптических устройств.

Известен способ получения триоксида ванадия V2O3, включающий тщательное перемешивание V2O5 и VH2 в агатовой ступке, добавление этанола и брикетирование в металлической пресс-форме. Брикет шихты помещают в стакан из молибденовой фольги, который в свою очередь загружают в вакуумную печь и вакуумируют до давления 9·10-4 мм рт. ст. Температуру в печи поднимают до 600°С и выдерживают при этой температуре в течение 5 ч. Затем температуру в печи поднимают до 1300 - 1500°С и выдерживают при этой температуре в течение 6 ч. Затем температуру снижают до 20°С со скоростью естественного остывания (SU 1329086, МПК C01G 31/02, 1994 год).

Недостатками известного способа являются технологическая сложность и длительность процесса.

Известен способ получения триоксида ванадия V2O3, включающий подготовку исходного вещества для обжига, обжиг с известкованием, выщелачивание, отделение нерастворимого осадка, смешивание продукта выщелачивания с омыленной органической фазой для проведения экстракции, обработку продуктов экстрации серной кислотой с получением осадка поливанадата аммония, который восстанавливают с получением V2O3(патент RU 2456241, МПК C01G 31/02, 2012 год).

Недостатком известного способа является его сложность, обусловленная многостадийностью и длительностью процесса.

Известен способ получения наноразмерного порошка триоксида ванадия V2O3, включающий в качестве исходных реагентов H2C2O4·2H2O, аскорбиновую кислоту, N2H4·2HCl, гидрохлорид гидразина или гидроксиламина или два или более восстановителя для приготовления раствора VOCl2 в среде соляной кислоты; затем в атмосфере CO2, N2 или Ar осуществляют реакцию раствора VOCl2 с пересыщенным раствором (NH4)2CO3 или NH4HCO3 для получения карбоната аммония ванадила(IV), измельчение полученного продукта до ≤2 мкм ультразвуком в абсолютном этаноле с последующим пиролизом в потоке газа H2 и температуре 500-1000°C в течение 0,5 -3 часа, получают порошок V2O3 с размерами частиц менее 100 нм (патент CN 1147449; МПК C04B 35/495, C04B 35/622; 2004 год).

Недостатками известного способа являются его сложность, обусловленная его многостадийностью, в частности использованием ультразвуковой обработки, использование высокотоксичных гидрохлорида гидразина или гидроксиламина, использование высоких температур (предпочтительный температурный интервал отжига 650-850оС). Кроме того, возможно загрязнение конечного продукта углеродом.

Наиболее близким к заявляемому является способ получения V2O3 с размерами частиц от 100 нм. Способ включает стадию получения смеси метаванадат аммония, гидрохлорида гидроксиламина и этиленгликоля, которую обрабатывают в гидротермальных условиях с различным временем перемешивания, а затем полученный продукт обжигают при температуре 720-740 ° C в атмосфере азота в течение 3-4 часов (заявка CN 109368694, МПК C01G 31/02, H01M 10/0525, H01M 4/48; 2019 год)(прототип).

К недостаткам известного способа относится его сложность, обусловленная необходимостью обработки смеси реагентов в гидротермальных условиях, а также возможность загрязнения конечного продукта углеродом за счет использование токсичных гидрохлорида гидроксиламина и этиленгликоля.

Таким образом, перед авторами стояла задача разработать простой способ получения нанопорошка триоксида ванадия V2O3.

Поставленная задача решена в предлагаемом способе получения нанопорошка триоксида ванадия V2O3, включающем использование в качестве исходного сырья соль, содержащую ванадий, и отжиг в инертной атмосфере, в котором в качестве соли, содержащей ванадий, используют формиат ванадила VO(HCOO)2.H2O, а отжиг ведут при температуре 500-650оС в атмосфере гелия в течение 0.5 – 1 час.

В настоящее время из патентной и научно-технической литературы не известен способ получения триоксида ванадия в виде наноразмерных частиц с использованием в качестве исходного формиата ванадила в предлагаемых условиях.

Авторами были определены условия, позволяющие получать наноразмерный оксид ванадия (III) простым и технологичным способом. Было установлено, что существенным фактором, определяющим состав и структуру конечного продукта, является условия выбора ванадийсодержащей соли и проведения процесса отжига. Этим условиям полностью соответствует использование формиата ванадила VO(HCOO)2.H2O, поскольку эта соль включает в свой состав источник ванадия в виде иона ванадила VO2+, и анион карбоновой кислоты в виде формиатной группы, препятствующий окислению ванадия до пятивалентного состояния. Обязательным условием получения оксида ванадия (III) в наноразмерном состоянии является отжиг VO(HCOO)2.H2O в инертной атмосфере в предлагаемых условиях. Формиат ванадила VO(HCOO)2.H2O – комплексная ванадийсодержащая соль карбоновой (муравьиной) кислоты. В анионе ион ванадила VO2+, в котором ванадий находится в четырехвалентном состоянии (более восстановленная форма ванадия по сравнению с V2O5 или метаванадатом аммония NH4VO3). Формиат-анион HCOO- в составе VO(HCOO)2.H2O при отжиге обеспечивает восстановительную атмосферу, что позволяет снижать температуру и время термообработки. В процессе отжига внутри молекулы VO(HCOO)2.H2O происходит разрушение связи HCOO-VO-OOCH, распад аниона 2HCOO- на 2CO2 и H2 (или CO и H2O) и удаление газообразных продуктов, что приводит к образованию пустот и пор внутри образующегося V2O3. Это обеспечивает повышение дисперсности продукта до наносостояния. Отжиг формиата ванадила напрямую в воздушной атмосфере приводит к формированию крупных агломератов микронных размеров. В случае несоблюдения указанных температурных интервалов при отжиге в инертной атмосфере приводит к появлении в конечном продукте примесных фаз: при температуре ниже 500оС возможно образование углерода и фаз переменного состава VnO2n-1. Выше 650оС возможно агломерирование и частичное оплавление V2O3.

Заявленный способ отличается хорошей воспроизводимостью, позволяет получить V2O3 в одну ступень.

На фиг. 1 представлена рентгенограмма оксида ванадия V2O3 , полученная при отжиге формиата ванадила в атмосфере гелия.

На фиг. 2 приведено СЭМ изображения V2O3, полученная при отжиге VO(HCOO)2.H2O в атмосфере гелия.

Предлагаемый способ может быть осуществлен следующим образом. Берут порошок формиата ванадила VO(HCOO)2.H2O и помещают его в трубчатую печь, после чего проводят отжиг в атмосфере гелия при температуре 500 ÷ 650 оС в течение 0,5-1,0 часа. Полученный продукт аттестуют следующими методами: фазовый состав подтвержден с помощью рентгенофазового анализа, проведенного на XRD-7000 (SHIMADZU) с вторичным монохроматором Cu Kα излучения с поликристаллическим кремнием, используемым в качестве внутреннего стандарта. Анализ рентгенограмм осуществляли с помощью программы PowderCell. По данным РФА полученный порошок имеет ромбоэдрическую структуру триоксида ванадия V2O3 (фиг. 1). Морфологию образцов изучали с использованием сканирующего электронного микроскопа JEOL JSM-6390LA. Согласно СЭМ агрегаты V2O3 представляют собой рыхлые образования, состоящие из кристаллитов размером 10-15 нм (фиг. 2).

Предлагаемый способ иллюстрируется следующими примерами.

Пример 1. Берут 2,5 г. формиата ванадила VO(HCOO)2.H2O помещают в трубчатую печь, синтез ведут в атмосфере гелия при 500°С в течение 1 часа. Полученный на выходе порошок черного цвета согласно данным РФА и СЭМ имеет ромбоэдрическую структуру триоксида ванадия V2O3 (Фиг. 1). Размер кристаллитов не превышает 15 нм (Фиг. 2).

Пример 2. Берут 1,5 г. формиата ванадила VO(HCOO)2.H2O помещают в трубчатую печь, синтез ведут в атмосфере гелия при 650°С в течение 0.5 часа. Полученный на выходе порошок черного цвета согласно данным РФА и СЭМ имеет ромбоэдрическую структуру триоксида ванадия V2O3. Размер кристаллитов не превышает 20 нм.

Таким образом, авторами предлагается простой способ получения нанопорошка триоксида ванадия V2O3 в одну стадию без использования дополнительных органических соединений.

Способ получения нанопорошка триоксида ванадия VO, включающий использование в качестве исходного сырья соль, содержащую ванадий, и отжиг в инертной атмосфере, отличающийся тем, что в качестве соли, содержащей ванадий, используют формиат ванадила VO(HCOO)HO, а отжиг ведут при температуре 500-650С в атмосфере гелия в течение 0,5-1 ч.
Источник поступления информации: Роспатент

Показаны записи 11-20 из 99.
20.02.2015
№216.013.2a33

Ионоселективный материал для определения ионов аммония и способ его получения

Изобретение может быть использовано в аналитической химии. Гидратированную оксидную ванадиевую бронзу аммония состава (NH)VO·0,5HO используют в качестве ионоселективного материала для селективного определения концентрации ионов аммония в растворах. Для получения гидратированной оксидной...
Тип: Изобретение
Номер охранного документа: 0002542260
Дата охранного документа: 20.02.2015
27.04.2015
№216.013.45fd

Способ получения наноигл оксидной ванадиевой бронзы натрия

Изобретение может быть использовано в производстве катодного материала химических источников тока, а также термисторов, резисторов, устройств для записи и хранения информации. Способ получения наноигл оксидной ванадиевой бронзы натрия состава α'-NaVO включает получение реакционной смеси,...
Тип: Изобретение
Номер охранного документа: 0002549421
Дата охранного документа: 27.04.2015
10.05.2015
№216.013.4994

Способ извлечения радионуклидов и микроэлементов

Изобретение относится к области сорбционной технологии извлечения радионуклидов и микроэлементов при переработке различных жидких и твердых объектов радиохимических производств. Заявленный способ включает контактирование с сорбентом на основе цианоферрата переходного металла, при этом...
Тип: Изобретение
Номер охранного документа: 0002550343
Дата охранного документа: 10.05.2015
10.06.2015
№216.013.5525

Способ получения галлия из щелочно-алюминатных растворов глиноземного производства

Изобретение относится к способу электрохимического выделения галлия из шелочно-алюминатных растворов глиноземного производства процесса Байера. Способ включает подготовку исходной смеси смешением маточного и оборотного растворов в соотношении, равном 1: (0,8÷0,9), при постоянном перемешивании и...
Тип: Изобретение
Номер охранного документа: 0002553318
Дата охранного документа: 10.06.2015
20.06.2015
№216.013.5738

Способ получения тонких пленок сульфида свинца

Изобретение относится к области получения тонких пленок сульфида свинца нанокристаллической структуры, активных в ближнем ИК-диапазоне. Предложен способ получения тонких пленок сульфида свинца, активных в ближнем инфракрасном диапазоне, включающий осаждение из водного раствора смеси ацетата...
Тип: Изобретение
Номер охранного документа: 0002553858
Дата охранного документа: 20.06.2015
20.08.2015
№216.013.6e94

Никель-алюминиевая шпинель в качестве катализатора парциального окисления метана и способ ее получения

Изобретение относится к катализатору парциального окисления метана, который представляет собой никель-алюминиевую шпинель. Данная шпинель имеет общую химическую формулу (Ni(МO))·γ-АlO, где М - Сr, Мn или Fe, 0,01≤x≤0,99, 0,01≤y≤1. Изобретение также относится к способу получения такого...
Тип: Изобретение
Номер охранного документа: 0002559878
Дата охранного документа: 20.08.2015
27.08.2015
№216.013.7492

Способ извлечения оксида алюминия из красного шлама

Изобретение относится к металлургии, а именно к переработке красного шлама - отхода глиноземного производства переработки бокситов щелочным способом Байера. Способ извлечения оксида алюминия из красного шлама включет автоклавное выщелачивании красного шлама при температуре 230-260°С и давлении...
Тип: Изобретение
Номер охранного документа: 0002561417
Дата охранного документа: 27.08.2015
10.11.2015
№216.013.8b87

Способ получения коллоидного раствора наночастиц сульфида свинца

Изобретение относится к способам получения коллоидных растворов, содержащих наночастицы полупроводникового соединения, и может быть использовано в оптоэлектронике и медицине. Предлагается способ получения коллоидного раствора наночастиц сульфида свинца, включающий смешивание исходного раствора...
Тип: Изобретение
Номер охранного документа: 0002567326
Дата охранного документа: 10.11.2015
27.11.2015
№216.013.9496

Сырьевая смесь для сульфатированного цемента

Изобретение относится к области строительных материалов и может быть использовано в производстве портландцементов. Технический результат заключается в повышении прочности на сжатие, ускорении сроков схватывания. Сырьевая смесь для сульфатированного цемента состоит из двуводного гипса,...
Тип: Изобретение
Номер охранного документа: 0002569657
Дата охранного документа: 27.11.2015
20.12.2015
№216.013.9a52

Сплав для получения водорода на основе алюминия

Изобретение относится к области химии и может быть использовано для получения водорода. Сплав для получения водорода на основе алюминия и добавки, разрушающей окисную пленку алюминия при взаимодействии с водой, содержит в качестве добавки лантан при следующем соотношении компонентов: лантан-...
Тип: Изобретение
Номер охранного документа: 0002571131
Дата охранного документа: 20.12.2015
Показаны записи 11-14 из 14.
04.11.2019
№219.017.de29

Способ получения сложного литиевого танталата лантана и кальция

Изобретение относится к получению порошка сложного литиевого танталата лантана и кальция состава LiCaLaTaO, используемого в качестве одного из основных компонентов литий-ионной батареи. Способ включает добавление пентоксида тантала к кислоте с последующим получением геля и добавлением нитратов...
Тип: Изобретение
Номер охранного документа: 0002704990
Дата охранного документа: 01.11.2019
24.03.2020
№220.018.0f15

Способ определения удельной скорости процессов на поверхности материала в реакции фотостимулированного электролиза воды и ячейка для осуществления способа

Изобретение относится к способу определения удельной скорости процессов на поверхности материала в реакции фотостимулированного электролиза воды, включающему использование трехзондовой электрохимической ячейки с индифферентными электродами. Способ характеризуется тем, что за удельную скорость...
Тип: Изобретение
Номер охранного документа: 0002717315
Дата охранного документа: 20.03.2020
14.05.2023
№223.018.56c3

Способ получения формиата ванадила (iv) (варианты)

Изобретение относится к получению солей ванадия с использованием органических кислот, в частности к получению формиатов ванадия, которые могут быть использованы для синтеза ванадатов щелочных и щелочноземельных металлов, катодных материалов, получения магнитных полупроводников. Способ получения...
Тип: Изобретение
Номер охранного документа: 0002732254
Дата охранного документа: 14.09.2020
23.05.2023
№223.018.6c03

Способ активации порошка алюминия

Изобретение относится к порошковой металлургии и предназначено для получения порошка активированного алюминия, используемого в качестве энергетической добавки в различных композициях. Способ активации порошка алюминия, включающий пропитку исходного порошка алюминия гелем, полученным путем...
Тип: Изобретение
Номер охранного документа: 0002737950
Дата охранного документа: 07.12.2020
+ добавить свой РИД