×
20.06.2015
216.013.5738

СПОСОБ ПОЛУЧЕНИЯ ТОНКИХ ПЛЕНОК СУЛЬФИДА СВИНЦА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области получения тонких пленок сульфида свинца нанокристаллической структуры, активных в ближнем ИК-диапазоне. Предложен способ получения тонких пленок сульфида свинца, активных в ближнем инфракрасном диапазоне, включающий осаждение из водного раствора смеси ацетата свинца и диамида тиоугольной кислоты в присутствии цитрата натрия и гидроксида натрия. Исходные компоненты берут в соотношении, равном ацетат свинца : диамид тиоугольной кислоты : цитрат натрия : гидроксид натрия = 1:1÷2:0,1÷2:1÷8. Осаждение ведут при температуре 20-35°C в течение 10-50 минут. Изобретение позволяет получить наноструктурированные тонкие пленки сульфида свинца, активные в ближнем инфракрасном диапазоне, обеспечивает расширение рабочего спектрального диапазона и позволяет получать ширину запрещенной зоны в заранее указанном диапазоне за счет получения пленок с заданным заранее размером частиц. 1 табл., 2 пр.
Основные результаты: Способ получения тонких пленок сульфида свинца, активных в ближнем инфракрасном диапазоне, включающий осаждение из водного раствора смеси ацетата свинца и диамида тиоугольной кислоты в присутствии цитрата натрия и гидроксида натрия, отличающийся тем, что исходные компоненты берут в соотношении, равном ацетат свинца: диамид тиоугольной кислоты : цитрат натрия : гидроксид натрия = 1:1÷2:0,1÷2:1÷8, и осаждение ведут при температуре 20-35°C в течение 10-50 минут.
Реферат Свернуть Развернуть

Изобретение относится к области получения тонких пленок сульфида свинца нанокристаллической структуры, активных в ближнем ИК-диапазоне.

Известен способ получения пленок сульфида свинца нанокристаллической структуры, включающий смешивание водного раствора этилксантата натрия или калия с водным раствором нитрата или ацетата свинца в определенном мольном соотношении для получения порошка этилксантата свинца; растворение полученного порошка в пиридине; нанесение прекурсора на подложку с последующим отжигом при температуре 120-300°C (патент CN 103073053, МПК B82Y 30/00; C01G 21/21; 2013 год).

К недостаткам способа относятся длительность и сложность процесса, обусловленная наличием трех стадий, необходимостью использования дополнительного оборудования, выделением токсичным паров этилксантата на стадии обжига. Кроме того, способ не обеспечивает возможность контроля за размером частиц сульфида свинца в нанодиапазоне.

Известен способ получения композиции, поглощающей в ближнем инфракрасном излучении в диапазоне от 800 до 2000 нм, включающей прозрачную смолу с распределенными в ней частицами сульфида свинца (патент JP H07179656, МПК B29D 7/00; C01G 21/21, 1995 год).

К недостаткам способа относятся: наличие матрицы, к которой, во-первых, предъявляются высокие требования по чистоте, однородности, прозрачности в диапазоне от 800 до 2000 нм; во-вторых, ее получение является многостадийным процессом с использованием органических соединений; использование частиц сульфида свинца размером около 12 мкм, что вносит ограничения на минимальную толщину получаемых изделий, толщина которых не может быть меньше 10 мкм, в то время как для нанотехники нужны пленки толщиной менее 1 мкм. Использование частиц с размером более 10 мкм делает невозможным контроль края полосы поглощения сульфида свинца, таким образом получаемые изделия поглощают ближнее инфракрасное излучение во всем диапазоне длин волн, а изменение концентрации сульфида свинца приводит лишь к изменению коэффициента поглощения в том же диапазоне.

Известен способ получения тонких пленок сульфида свинца нанокристаллической структуры путем осаждения на стеклянную подложку в течение 80 минут из водного раствора смеси ацетата свинца и диамида тиоугольной кислоты в прсутствии цитрата натрия и гидроксида натрия при рН=12 и температуре 52°C (С.И. Садовников, Н.С. Кожевникова, А.А. Ремпель "Структура и оптические свойства нанокристаллических пленок сульфида свинца". Физика и техника полупроводников, 2010, том 44, вып.10, с.1394-1404) (прототип).

Однако известный способ, во-первых, дает возможность варьировать диапазон ширины запрещенной зоны только в интервале 0,82-0,88 эВ (1450-1600 нм), во-вторых, не обеспечивает возможности получения запрещенной зоны в заранее заданном диапазоне.

Таким образом, перед авторами стояла задача разработать способ получения наноструктурированных полупроводниковых тонких пленок сульфида свинца, активных в ближнем инфракрасном диапазоне, обеспечивающий получение пленок с более широким диапазоном изменения запрещенной зоны и, главное, обеспечивающий возможность получать ширину запрещенной зоны в заранее заданном диапазоне.

Поставленная задача решена в предлагаемом способе получения наноструктурированных полупроводниковых тонких пленок сульфида свинца, активных в ближнем инфракрасном диапазоне, включающем осаждение из водного раствора смеси ацетата свинца и диамида тиоугольной кислоты в присутствии цитрата натрия и гидроксида натрия, в котором исходные компоненты берут в соотношении, равном ацетат свинца : диамид тиоугольной кислоты : цитрат натрия : гидроксид натрия = 1:1÷2:0,1÷2:1÷8, и осаждение ведут при температуре 20-35°C в течение 10-50 минут.

В настоящее время из патентной и научно-технической литературы не известен способ получения тонких пленок сульфида свинца, в котором исходные компоненты берут в предлагаемом соотношении и осаждение ведут при соблюдении временных и температурных параметров в предлагаемых пределах.

Исследования, проведенные авторами, позволили сделать вывод о прямой зависимости размера получаемых частиц сульфида свинца и ширины запрещенной зоны в ближнем инфракрасном диапазоне для пленок сульфида свинца, имеющих данный размер частиц. Таким образом, получая тонкие пленки с заранее заданным размером частиц, можно получать пленки сульфида свинца, характеризующиеся шириной запрещенной зоны в определенном интервале длин волн (излучаемых энергий). При этом существенным является соотношение исходных компонентов. Экспериментальным путем авторами установлено, что изменение соотношения содержания исходных компонентов в предлагаемых пределах, а именно ацетат свинца : диамид тиоугольной кислоты : цитрат натрия : гидроксид натрия = 1:1÷2:0,1÷2:1÷8, позволяет при конкретном соотношении из предлагаемого интервала получать частицы определенного размера, что в свою очередь обусловливает наличие необходимой ширины запрещенной зоны. Причем нанесение на подложки из различных материалов наноструктурированных пленок высокого качества, не имеющих загрязнений, может быть осуществлено только при соблюдении предлагаемого соотношения компонентов, при выходе за предлагаемые пределы получают неоднородные пленки малой толщины, непригодные для дальнейшего использования.

В зависимости от соотношения исходных компонентов в реакционной смеси средний размер частиц, оцененный по уширению рентгеновских дифракционных отражений, меняется от 35-50 до 90-105 нм. Задавая конкретное соотношение компонентов на начальном этапе, можно получать необходимый размер частиц в пленках и регулировать его в диапазоне от 35 до 105 нм.

Методом рентгеновской дифракции установлено, что наноструктурированные пленки сульфида свинца, полученные предлагаемым способом, имеют кубическую структуру типа DO3, отличающуюся от структуры В1, характерной для крупнокристаллического сульфида свинца. Обработка рентгенограмм показала, что в кубической структуре пленок сульфида свинца атомы серы с вероятностями ≈0,84 и ≈ 0,08 неупорядоченно размещены на октаэдрических и тетраэдрических позициях 4(b) и 8(с) соответственно. С учетом структуры и степеней заполнения позиций 4(b) и 8(с) химическая формула сульфида свинца в полученных наноструктурированных пленках представлена как . Период кубической кристаллической решетки сульфида свинца в полученных пленках равен 0,59395±0, 00005 нм. Для полученных пленок характерен квантоворазмерный эффект, который проявляется в смещении края фундаментального поглощения в сторону коротких длин волн по сравнению с объемным кристаллом и ведет к появлению структурированного спектра, связанного с дискретизацией валентных подзон и зоны проводимости. Управляя размерами нанокристаллов сульфида свинца со структурой, отличной от В1, можно плавно смещать положение полосы поглощения, соответствующей первому экситонному переходу в широком спектральном диапазоне от 3000 до 800 нм (от 0,4эВ до 1,5 эВ), тем самым расширяя рабочий спектральный диапазон устройств, основанных на полупроводниковых свойствах.

Авторами на основе экспериментальных данных об оптическом поглощении доказано, что уменьшение среднего размера наночастиц в пленках, полученных в предлагаемых авторами условиях, приводит к увеличению ширины запрещенной зоны от 0,4 до 1,5 эВ. Анализ спектров оптического поглощения пленок позволил найти зависимость ширины запрещенной зоны в зависимости от размера частиц. Авторами установлено, что ширина запрещенной зоны увеличивается до 1,5 эВ при уменьшении среднего размера частиц до 35 нм.

Предлагаемый способ может быть осуществлен следующим образом. Готовят водные растворы ацетата свинца Pb(CH3COO)2 и диамида тиоугольной кислоты (NH2)2CS. Затем к ацетату свинца добавляют цитрат натрия NA3C6H5O7 в качестве комплексообразователя и гидроксид натрия NaOH для получения pH раствора в пределах 10-13. Затем к полученному раствору добавляют диамид тиоугольной кислоты. При этом соотношение исходных компонентов получают равным ацетат свинца : диамид тиоугольной кислоты : цитрат натрия : гидроксид натрия = 1:1÷2:0,1÷2:1÷8. Осаждение из раствора, например, на стеклянную подложку осуществляют при температуре 20-35°C в течение 10-50 минут. Размеры частиц полученной пленки определяют рентгено-дифракционным методом и с помощью сканирующей электронной микроскопии. Ширину запрещенной зоны определяют из спектров оптического поглощения.

Предлагаемый способ иллюстрируется следующими примерами конкретного исполнения.

Пример 1. Готовят водный раствор 20 мл (0,5 М) ацетата свинца Pb(CH3COO)2 и 10 мл (1М) диамида тиоугольной кислоты (NH2)2CS. Затем к раствору ацетата свинца добавляют 10 мл (0,5М) цитрата натрия NA3C6H5O7 и 20 мл (2М) гидроксида натрия NaOH. Затем к полученному раствору добавляют раствор диамида тиоугольной кислоты и 140 мл дистиллированной воды. При этом pH раствора равно 12,8. Соотношение исходных компонентов равно ацетат свинца : диамид тиоугольной кислоты : цитрат натрия : гидроксид натрия = 1:1:0,5:4. Осаждение из раствора на стеклянную подложку осуществляют при температуре 20°C в течение 50 минут. Данные по размеру частиц и ширине запрещенной зоны приведены в табл. (образец 6).

Пример 2. Готовят водный раствор 20 мл (0,5 М) ацетата свинца Pb(СН3СОО)2 и 10 мл (1М) диамида тиоугольной кислоты (NH2)2CS. Затем к раствору ацетата свинца добавляют 2 мл (0,5М) цитрата натрия Na3C6H5O7 и 20 мл (2М) гидроксида натрия NaOH. Затем к полученному раствору добавляют раствор диамида тиоугольной кислоты и 148 мл дистиллированной воды. При этом pH раствора равно 12,8. Соотношение исходных компонентов равно ацетат свинца : диамид тиоугольной кислоты : цитрат натрия : гидроксид натрия = 1:1:0,1:4. Осаждение из раствора на стеклянную подложку осуществляют при температуре 35°C в течение 10 минут. Данные по размеру частиц и ширине запрещенной зоны приведены в табл.(образец 4).

Таким образом, авторами предлагается способ получения наноструктурированных тонких пленок сульфида свинца, активных в ближнем инфракрасном диапазоне, обеспечивающий расширение рабочего спектрального диапазона и позволяющий получать ширину запрещенной зоны в заранее указанном диапазоне за счет получения пленок с заданным заранее размером частиц.

Способ получения тонких пленок сульфида свинца, активных в ближнем инфракрасном диапазоне, включающий осаждение из водного раствора смеси ацетата свинца и диамида тиоугольной кислоты в присутствии цитрата натрия и гидроксида натрия, отличающийся тем, что исходные компоненты берут в соотношении, равном ацетат свинца: диамид тиоугольной кислоты : цитрат натрия : гидроксид натрия = 1:1÷2:0,1÷2:1÷8, и осаждение ведут при температуре 20-35°C в течение 10-50 минут.
Источник поступления информации: Роспатент

Показаны записи 1-10 из 99.
10.11.2013
№216.012.7cd8

Способ получения нанодисперсного порошка карбида вольфрама (варианты)

Изобретение относится к области порошковой металлургии. Нанодисперсные порошки могут быть использованы для изготовления инструментов, близких по твердости и износоустойчивости к инструментам на основе алмаза. Способ (вариант 1) позволяет получить нанодисперсный порошок карбида вольфрама. Смесь...
Тип: Изобретение
Номер охранного документа: 0002497633
Дата охранного документа: 10.11.2013
20.02.2014
№216.012.a27a

Способ нанесения пленки металла

Изобретение относится к способам получения пленок металлов, например, в виде покрытий, и может быть использован в металлургии и машиностроении при изготовлении материалов с необычными физико-химическими, электрофизическими, фотофизическими, магнитными или каталитическими свойствами. Согласно...
Тип: Изобретение
Номер охранного документа: 0002507309
Дата охранного документа: 20.02.2014
20.03.2014
№216.012.ab87

Способ получения нанодисперсных порошков металлов или их сплавов

Изобретение относится к области порошковой металлургии. Порошкообразный хлорид металла или порошкообразную смесь по крайней мере двух хлоридов металлов обрабатывают в атмосфере водяного пара, который подают в реакционное пространство со скоростью 50-100 мл/мин, при температуре 400-800°C в...
Тип: Изобретение
Номер охранного документа: 0002509626
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ac2b

Способ активации порошка алюминия

Изобретение относится к области порошковой металлургии, в частности к способам активации горения дисперсных порошков алюминия, которые могут быть использованы в различных областях промышленности. Способ активации порошка алюминия включает пропитку исходного порошка активатором на основе...
Тип: Изобретение
Номер охранного документа: 0002509790
Дата охранного документа: 20.03.2014
10.04.2014
№216.012.b088

Катодный материал для резервной батареи, активируемой водой

Изобретение относится к электротехнике и электрохимии и касается катодного материала водоактивируемых резервных батарей, которые преимущественно предназначены для энергопитания метеорологических радиозондов, шаров-пилотов, морских сигнальных устройств, спасательных средств, буев, аварийных...
Тип: Изобретение
Номер охранного документа: 0002510907
Дата охранного документа: 10.04.2014
10.08.2014
№216.012.e86c

Твердая смазка для абразивной обработки металлов и сплавов

Настоящее изобретение относится к твердой смазке для абразивной обработки металлов и сплавов, содержащей хлорфторуглеродное масло, низкомолекулярный полиэтилен, минеральное масло, высокодисперсный порошок смеси продукта термического восстановления лейкоксена и карбида кремния или нитрида...
Тип: Изобретение
Номер охранного документа: 0002525293
Дата охранного документа: 10.08.2014
20.08.2014
№216.012.eabf

Способ получения сульфата ванадила

Изобретение может быть использовано в производстве катализаторов. Способ получения сульфата ванадила включает экстракцию из сернокислого раствора ванадия (IV) неразбавленной ди-2-этилгексилфосфорной кислотой в присутствии сульфата натрия и последующую фильтрацию под вакуумом. Экстракцию ведут...
Тип: Изобретение
Номер охранного документа: 0002525903
Дата охранного документа: 20.08.2014
27.11.2014
№216.013.0ad6

Способ легирования алюминия или сплавов на его основе

Изобретение относится к области металлургии, в частности к легированию алюминия и сплавов на его основе. В способе осуществляют введение в расплав легирующего компонента в составе порошковой смеси путем продувки смесью в струе транспортирующего газа. При этом используют порошковую смесь,...
Тип: Изобретение
Номер охранного документа: 0002534182
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0ce6

Способ диагностики реальной структуры кристаллов

Использование: для диагностики реальной структуры кристаллов. Сущность изобретения заключается в том, что выполняют электронно-микроскопическое и микродифракционное исследования кристалла, при этом в случае присутствия на электронно-микроскопическом изображении исследуемого нанотонкого...
Тип: Изобретение
Номер охранного документа: 0002534719
Дата охранного документа: 10.12.2014
10.02.2015
№216.013.25f6

Биосовместимый пористый материал и способ его получения

Группа изобретений относится к области медицины. Описан биосовместимый пористый материал, содержащий никелид титана с пористостью 90-95% и открытой пористостью 70-80% со средним размером пор 400 мкм, который пропитан гидроксиапатитом в количестве 26-46 мас.% от массы никелида титана. Описан...
Тип: Изобретение
Номер охранного документа: 0002541171
Дата охранного документа: 10.02.2015
Показаны записи 1-10 из 41.
10.11.2013
№216.012.7cd8

Способ получения нанодисперсного порошка карбида вольфрама (варианты)

Изобретение относится к области порошковой металлургии. Нанодисперсные порошки могут быть использованы для изготовления инструментов, близких по твердости и износоустойчивости к инструментам на основе алмаза. Способ (вариант 1) позволяет получить нанодисперсный порошок карбида вольфрама. Смесь...
Тип: Изобретение
Номер охранного документа: 0002497633
Дата охранного документа: 10.11.2013
20.02.2014
№216.012.a27a

Способ нанесения пленки металла

Изобретение относится к способам получения пленок металлов, например, в виде покрытий, и может быть использован в металлургии и машиностроении при изготовлении материалов с необычными физико-химическими, электрофизическими, фотофизическими, магнитными или каталитическими свойствами. Согласно...
Тип: Изобретение
Номер охранного документа: 0002507309
Дата охранного документа: 20.02.2014
20.03.2014
№216.012.ab87

Способ получения нанодисперсных порошков металлов или их сплавов

Изобретение относится к области порошковой металлургии. Порошкообразный хлорид металла или порошкообразную смесь по крайней мере двух хлоридов металлов обрабатывают в атмосфере водяного пара, который подают в реакционное пространство со скоростью 50-100 мл/мин, при температуре 400-800°C в...
Тип: Изобретение
Номер охранного документа: 0002509626
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ac2b

Способ активации порошка алюминия

Изобретение относится к области порошковой металлургии, в частности к способам активации горения дисперсных порошков алюминия, которые могут быть использованы в различных областях промышленности. Способ активации порошка алюминия включает пропитку исходного порошка активатором на основе...
Тип: Изобретение
Номер охранного документа: 0002509790
Дата охранного документа: 20.03.2014
10.04.2014
№216.012.b088

Катодный материал для резервной батареи, активируемой водой

Изобретение относится к электротехнике и электрохимии и касается катодного материала водоактивируемых резервных батарей, которые преимущественно предназначены для энергопитания метеорологических радиозондов, шаров-пилотов, морских сигнальных устройств, спасательных средств, буев, аварийных...
Тип: Изобретение
Номер охранного документа: 0002510907
Дата охранного документа: 10.04.2014
10.08.2014
№216.012.e86c

Твердая смазка для абразивной обработки металлов и сплавов

Настоящее изобретение относится к твердой смазке для абразивной обработки металлов и сплавов, содержащей хлорфторуглеродное масло, низкомолекулярный полиэтилен, минеральное масло, высокодисперсный порошок смеси продукта термического восстановления лейкоксена и карбида кремния или нитрида...
Тип: Изобретение
Номер охранного документа: 0002525293
Дата охранного документа: 10.08.2014
20.08.2014
№216.012.eabf

Способ получения сульфата ванадила

Изобретение может быть использовано в производстве катализаторов. Способ получения сульфата ванадила включает экстракцию из сернокислого раствора ванадия (IV) неразбавленной ди-2-этилгексилфосфорной кислотой в присутствии сульфата натрия и последующую фильтрацию под вакуумом. Экстракцию ведут...
Тип: Изобретение
Номер охранного документа: 0002525903
Дата охранного документа: 20.08.2014
27.11.2014
№216.013.0ad6

Способ легирования алюминия или сплавов на его основе

Изобретение относится к области металлургии, в частности к легированию алюминия и сплавов на его основе. В способе осуществляют введение в расплав легирующего компонента в составе порошковой смеси путем продувки смесью в струе транспортирующего газа. При этом используют порошковую смесь,...
Тип: Изобретение
Номер охранного документа: 0002534182
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0ce6

Способ диагностики реальной структуры кристаллов

Использование: для диагностики реальной структуры кристаллов. Сущность изобретения заключается в том, что выполняют электронно-микроскопическое и микродифракционное исследования кристалла, при этом в случае присутствия на электронно-микроскопическом изображении исследуемого нанотонкого...
Тип: Изобретение
Номер охранного документа: 0002534719
Дата охранного документа: 10.12.2014
10.02.2015
№216.013.25f6

Биосовместимый пористый материал и способ его получения

Группа изобретений относится к области медицины. Описан биосовместимый пористый материал, содержащий никелид титана с пористостью 90-95% и открытой пористостью 70-80% со средним размером пор 400 мкм, который пропитан гидроксиапатитом в количестве 26-46 мас.% от массы никелида титана. Описан...
Тип: Изобретение
Номер охранного документа: 0002541171
Дата охранного документа: 10.02.2015
+ добавить свой РИД