×
14.05.2023
223.018.55c8

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ УГЛЕВОЛОКНА И МЕТАЛЛА

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии получения новых композиционных материалов с углеволокном и может быть использовано, в частности, для изготовления элементов конструкций в авиационной, ракетно-космической и морской технике. Способ получения композиционного материала, содержащего углеволокно и металл, включает сборку пакета, состоящего из чередующихся слоев металлического листа и армирующего углеволокна, и пропитку слоя армирующего углеволокна образующимся при нагреве эвтектическим расплавом, при этом перед сборкой в пакет на поверхности металлического листа или ленты из титанового или никелевого сплава формируют слой, содержащий никель, титан или никель и титан, нагрев пакета осуществляют до температуры, превышающей температуру плавления эвтектики не более чем на 100°С, а пропитку слоя армирующего углеволокна проводят в направлении, перпендикулярном его плоскости, образующимся расплавом эвтектики Ti-TiNi. Изобретение направлено на получение композиционных материалов с упрочняющим углеволокном и металлической матрицей, имеющих удельные механические характеристики, превышающие композиционные материалы с полимерной матрицей и сплавы. 5 ил., 1 табл., 5 пр.

Изобретение относится к технологии получения новых композиционных материалов с металлической матрицей и углеволокном.

Изобретение может быть использовано в авиационной, ракетно-космической и морской технике для производства элементов конструкций из материалов, превосходящих по удельным механическим характеристикам металлические сплавы и композиты с полимерной матрицей в аналогичных применениях.

В настоящее время углеволокна широко применяются в конструкциях вышеуказанных областей в качестве армирующего средства в полимерных матрицах. Полимеры оказываются технологически удобным связующим для углеволокон, поскольку связующее с малой вязкостью относительно легко пропитывает пучки угленити, состоящие из филаментов диаметром около 10 мкм. Однако это привносит и определенные ограничения в применении углепластиков. В частности: предельная температура использования не превышает 300°С (в случае применения полиимидных связующих); углепластики с однонаправленным армированием характеризуются чрезвычайно высокой анизотропией. Так, прочность в направлении армирования однонаправленного углепластика (высокопрочное волокно -эпоксидное связующее) достигает 1900 МПа при модуле Юнга 130 ГПа, аналогичные характеристики в случае высоко модульного углеволокна - 1200 МПа и 210 ГПа, соответственно [Concise Encyclopedia of Composite Materials, ed. A.Kelly, Pergamon, 1995, p.43]. Очевидная анизотропия (величина прочности и модуля Юнга для углепластикас двумя типами волокон в поперечном направлении: 50 МПа тире 10 ГПа и 35 МПа 7 ГПа, соответственно [Concise Encyclopedia of Composite Materials, ed. A. Kelly, Pergamon, 1995, p. 43] заставляют применять многонаправленное армирование в плоскости. Это приводит к тому, что, например, для композита со структурой армирования, обеспечивающей изотропию механических характеристик в плоскости (0°/90°/±45°) величины прочности и модуля Юнга композитов с высокопрочным углеволокном равны 600 МПа и 50 ГПа, соответственно, для композитов с высокомодульными волокнами эти величины 350 МПа и 75 ГПа, соответственно [Concise Encyclopedia of Composite Materials, ed. A/Kelly, Pergamon, 1995, p. 44]. Столь же большая анизотропия прочности современных углепластиков демонстрируется в материалах основного производителя углеволокна - компании Torey [http://www.torayca.com/en/lineup/product/gt_z600.html].

Малый диаметр филаментов не позволяет их эффективное использование в твердофазных технологических процессах, хорошо развитых в случаях армирования металлической матрицей волокнами с диаметром более 100 мкм. Примерами таких технологий могут служить технологии, применяемые в производстве изделий из боро-алюминиевых композитов (Патент SU 1331097 Способ изготовления изделий из волокнистых композиционных материалов с металлической матрицей Авторы: Милейко С.Т., Грязнов В.П., Сулейманов Ф.Х., Милейко Н.С., Михеев В.И.) или из композитов SiC - волокна/титановая матрица (Ch. Leyens, F. Kocian, J. Hausmann, W.A. Kaysser, Materials and design concepts for high performance compressor components, Aerospace Science and Technology 7 (2003) 201-210).

Прямые жидко-фазные технологии для получения углеметаллических композитов либо ведут к образованию нежелательных карбидов на границе раздела волокна и матрицы в случае матриц с относительно низкой температурой плавления (алюминий является примером), которые ослабляют границу раздела и приводят к катастрофическому падению прочности, либо вообще неприменимы (случай титановой матрицы), поскольку даже кратковременный контакт титана с углеродом превратит углеволокно в поликристаллический хрупкий и непрочный карбид титана.

Настоящее изобретение относится к получению композитов с матрицами, температура плавления которых выше температуры плавления алюминия. Такого типа композиты получаются либо методами порошковой металлургии. Примером могут служить композиты с углеволокном и титановой матрицей [Mileiko S.T., Rudnev A.M., Gelachov M.V. Low cost PM route for titanium matrix carbon fibre composites, Powder Metallurgy 39 (1996) 97-99]. В этом случае рубленое волокно смешивается с порошком титана, смесь подвергается горячему прессованию с последующим контролируемым отжигом с целью формирования слоя карбида титана такой толщины, которая не приводит к уменьшению прочности волокна, но при этом растет модуль упругости композита (модуль упругости карбида титана - около 500 ГПа). Эти композиты не отличаются высокими характеристиками прочности и жесткости, поскольку в силу особенностей технологии, не удается получить материал с объемной долей волокон, превышающей 10%. Аналогичная схема с аналогичными результатами изложена в статье (С. Even, С. Arvieu, J.M. Quenisset, Powder route processing of carbon fibres reinforced titanium matrix composites, Composites Science and Technology 68 (2008) 1273-1281).

Известны также композиты с никелевой и кобальтовой матрицами, которые получаются электролитическим осаждением никеля или кобальта на углеволокно с последующим спеканием (Composite Materials, Vol. 4 Metallic Matrix Composites, Ed. K.G. Kreider, Academic Press, N-Y, London, 1974 со ссылкой на патенты США 3,473,900 от 1969 г. и 3,553,820 от 1971 г. ). Технология оказывается столь непроизводительной, и механические свойства композитов столь низкими, что с конца 60-х - начала 70-х годов такие композиты и такой способ их получения в литературе не встречаются.

Известна также схема жидкофазной пропитки пучка углеволокон титаном, содержащим 25 и 35 весовых % меди с температурами ликвидус 1280 и 1100°С, соответственно (Toloui В., Development of carbon fibre reinforced titanium-copper composites, in: Proc. of 5th Int.Conf. Composite Mater. (ICCM-5), eds W.C. Harrigan, Jr., J. Strife, and A.K. Dhingra, Metall. Soc AIME, 1985, 773-777). Снижение температуры заливки ценой значительного содержания меди в сплаве привело к существенному снижению механических характеристик матрицы и, как следствие, к низким величинам прочности композита. Максимальные величины прочности достигаются при объемном содержании волокна 10% и равны 475 и 300 МПа для матрицы с 35 и 25% содержания меди, соответственно.

Прототипом настоящего изобретения является способ получения угле-титанового композита иерархической структуры, изложенный в статье (Mileiko.S.T., Rudnev.A.M., and Gelachov.M.V., Carbon-fibre/titanium-silicide-interphase/titanium-matrix composites - fabrication, structure and mechanical properties, Comp. Sci. and Technol, 55 (1995) 255-260). В этом способе формируется промежуточная матрица, состоящая из эвтектики Ti-Ti5Si3 с температурой плавления 1330°С, путем пропитки углеволоконной ленты, уложенной между фольгами титанового сплава, расплавом указанной эвтектики. В предварительно подготовленный в специальном тигле расплав промежуточной матрицы, состоящий из материала с температурой плавления ниже температуры плавления основной матрицы, погружается указанная выше заготовка-пакет титановой фольги и углеволокна; в результате расплав, смачивающий углеволокно, распространяется вдоль армирующего углеволокна.

Этот способ обладает рядом существенных недостатков. Во-первых, схема сама по себе ограничивает длину получаемого таким образом композитного изделия, во-вторых, время контакта расплава с волокном зависит от координаты, направленной вдоль волокна, что приводит к непостоянной по длине изделия толщине слоя карбида металла, например, карбида титана, по длине изделия, и в-третьих, все это не позволяет управлять технологическим режимом так, чтобы поучить заданный слой карбида на поверхности волокна и, следовательно, заданные величины прочности и модуля Юнга в направлении армирования, в-четвертых, ограничивается выбор волокна только теми сортами, которые смачиваются расплавом промежуточной матрицы, в-пятых, требуется применения специального тигля.

Технический результат, на достижение которого направлено изобретение, заключается в разработке технологии получения таких композитов как угле-титан, угле-никель и другие, превосходящих по удельным механическим характеристикам металлические сплавы и композиты с полимерной матрицей.

Для достижения названного технического результатана поверхность листа или ленты, далее - лист, металлического сплава предварительно наносится химический элемент или элементы, образующий или образующие, композицию с температурой плавления ниже температуры плавления металла матрицы путем нанесения шликера на поверхность листа, либо наложением фольги (фолы в случае более чем один химический элемент), либо иным известным способом нанесения покрытия, затем собирается пакет из чередующихся слоев указанного листа и углеволокна и нагревается до температуры, превышающей температуру плавления указанной композиции не более чем на 100°С, что сопровождается пропиткой волокна полученным расплавом промежуточной матрицы, распространяющимся в направлении, перпендикулярном к плоскости слоя армирующего углеволокна.

Будет удобно продолжить описание настоящего изобретения со ссылкой на сопровождающие схемы и фотографии микроструктур, которые иллюстрируют предпочтительный вариант осуществления способа получения композитных материалов согласно настоящему изобретению. Возможны другие варианты осуществления настоящего изобретения, и, соответственно, особенности сопровождающих схем и фотографий нельзя считать заменяющими общность предшествующего описания настоящего изобретения.

На данных схемах:

фиг. 1 представляет схему получения композита согласно настоящему изобретению, где 1 - фольга, 2 - слой шликера, 3 - слои углеволокна;

фиг. 2 (а)-(в) представляет микроструктуру полученного композита с титановой матрицей согласно настоящему изобретению при разных приближениях, где 1 - титановая матрица, 2 - армирующий слой, содержащий углеволокно 3 и эвтектику Ti-Ti2Ni, 4 - слой карбида титана;

фиг. 3 представляет кривую напряжение-перемещение в центре образца угле-титанового композита, полученного согласно настоящему изобретению, в испытаниях на изгиб с перерезывающей силой;

фиг. 4 (а)-(в) представляет СЭМ-микрофотографии поверхности разрушения полученного композита согласно настоящему изобретению при разных приближениях, где 1 - титановая матрица, 2 - армирующий слой, содержащий углеволокно 3 и эвтектику Ti-Ti2Ni, 4 - слой карбида титана;

фиг. 5 (а)-(в) представляет микроструктуру полученного композита с никелевой матрицей согласно настоящему изобретению при разных приближениях, где 1 - никелевая матрица, 2 - армирующий слой, содержащий углеволокно 3 и эвтектику Ti-Ti2Ni, 4 - слой карбида титана.

Пример 1:

На поверхность фольги 1 (Фиг. 1) титанового сплава ВТ1-0 (технически чистый титан с прочностью при комнатной температуре 350-500 МПа и модулем Юнга 110 ГПа [Авиационные материалы - Справочник, редактор А.Т. Туманов, т. 5, Москва, 1973]) толщиной 300 мкм наносится слой шликера 2, содержащего порошок никеля, так чтобы общее количество никеля в слое было бы 7.7 мг/см2. Затем набирается пакет, содержащий 7 слоев фольги с нанесенным шликером и 6 слоев низкомодульного углеволокна 3. Пакет подвергается нагреву до температуры 1000°С в течение 10 мин при давлении 0.4 МПа. Микроструктура полученного композита приведена на Фиг. 2. Здесь 1 - титановая матрица, 2 - армирующий слой, содержащий углеволокно 3 и эвтектику Ti-Ti2Ni, 4 - слой карбида титана.

Было испытано на изгиб с перерезывающей силой (3-точечный) три полученных образца. Величины прочности и нижняя оценка модуля Юнга даются в Таблица 1. Кривая деформирования образца, приведенная на Фиг. 3, свидетельствует о нехрупком разрушении композиционного материала.

Пример 2:

На поверхность фольги 1 (Фиг. 1) титанового сплава ВТ1-0 толщиной 300 мкм наносится слой шликера 2, содержащего смесь порошков никеля и титана, так чтобы соотношение массовых количеств никеля и титана было 28:72 и общее количество металлических порошков в слое было бы 0.14 г/см2. Затем набирается пакет, содержащий 7 слоев фольги с нанесенным шликером и 6 слоев низкомодульного углеволокна 3. Пакет подвергается нагреву до температуры 1000°С в течение 1 мин при давлении 1.3 МПа. Микроструктура полученного композита приведена на Фиг. 4. Обозначения те же, что и на Фиг. 2.

Пример 3:

На поверхность фольги 1 (Фиг. 1) никелевого сплава НП1 (технически чистый никель с прочностью при комнатной температуре 370-540 МПа и модулем Юнга 220 ГПа [Авиационные материалы - Справочник, редактор А.Т. Туманов, т. 3, Москва, 1973]) толщиной 100 мкм наносится слой шликера 2, содержащего порошок титана, так чтобы общее количество титана с слое было бы 19.8 мг/см2. Затем набирается пакет, содержащий 7 слоев фольги с нанесенным шликером и 6 слоев низкомодульного углеволокна 3. Пакет подвергается нагреву до температуры 1000°С в течение 10 мин при давлении 0.4 МПа. Микроструктура полученного композита приведена на Фиг. 5. Здесь 1 - никелевая матрица, 2 - армирующий слой, содержащий углеволокно 3 и эвтектику Ti-Ti2Ni, 4 - слой карбида титана.

Пример 4:

На поверхность фольги 1 (Фиг. 1) титанового сплава ВТ1-0 толщиной 300 мкм электролитически осаждается слой никеля 2 толщиной 20 мкм. Затем набирается пакет, содержащий 7 слоев фольги с осажденным никелем и 6 слоев низкомодульного углеволокна 3. Пакет подвергается нагреву до температуры 1000°С в течение 1 мин при давлении 1 МПа.

Пример 5:

На поверхности титановой ленты толщиной 200 мкм с помощью точечной сварки закрепляется фольга никелевого сплава 96%Ni-4%Co толщиной 10 мкм. Затем лента помещается в вакуумную камеру. Двухслойная лента протягивается через зону нагрева со скоростью, обеспечивающей плавление поверхностного слоя с образованием эвтектики Ti-Ti2Ni. Далее полученная лента разрезается на отрезки в соответствии с формой подлежащего изготовлению изделия, производится выкладка чередующихся слоев двухслойной ленты углеволокна. Следующий шаг - полученная заготовка помещается в пресс-форму, находящуюся в вакуумной камере и подвергается штамповке при температуре 1000°С для придания заданной формы и размеров изделия.

Способ получения композиционного материала, содержащего углеволокно и металл, включающий сборку пакета, состоящего из чередующихся слоев металлического листа или ленты и армирующего углеволокна, и пропитку слоя армирующего углеволокна образующимся при нагреве эвтектическим расплавом, отличающийся тем, что перед сборкой в пакет на поверхности металлического листа или ленты из титанового или никелевого сплава формируют слой, содержащий никель, титан или никель и титан, нагрев пакета осуществляют до температуры, превышающей температуру плавления эвтектики не более чем на 100°С, а пропитку слоя армирующего углеволокна проводят в направлении, перпендикулярном его плоскости, образующимся расплавом эвтектики Ti-TiNi.
Источник поступления информации: Роспатент

Показаны записи 31-40 из 91.
25.08.2017
№217.015.bfac

Способ изготовления изделия с фильтром для агрессивных жидкостей и газов

Изобретение относится к области химической технологии и может быть использовано для изготовления фильтров, способных применяться для очистки агрессивных жидкостей и газов от инородных включений при высоких температурах эксплуатации, в том числе диметилгидразина, используемого в качестве...
Тип: Изобретение
Номер охранного документа: 0002617105
Дата охранного документа: 20.04.2017
25.08.2017
№217.015.cee8

Способ получения полых нагревателей сопротивления на основе углеродкарбидокремниевого материала

Предложен способ получения полых трубчатых нагревателей из композиционного материала на основе углерода, кремния и карбида кремния путем пропитки расплавленным кремнием предварительно сформированной трубы из углеграфитовых тканей. Заготовку перемещают в вакуумной среде относительно капиллярного...
Тип: Изобретение
Номер охранного документа: 0002620688
Дата охранного документа: 29.05.2017
26.08.2017
№217.015.d64a

Устройство квантовой криптографии (варианты)

Устройство квантовой криптографии включает источник излучения, первый волоконный светоделитель, волоконный интерферометр, второй волоконный светоделитель, первый фазовый модулятор, третий волоконный светоделитель, детектор, аттенюатор, линию задержки, поляризационный фильтр, второй фазовый...
Тип: Изобретение
Номер охранного документа: 0002622985
Дата охранного документа: 21.06.2017
26.08.2017
№217.015.d8c0

Способ получения сульфида галлия (ii)

Изобретение относится к неорганической химии, а именно к получению сульфида галлия (II), являющегося перспективным материалом для полупроводниковой оптоэлектронной техники и инфракрасной оптики. Cинтез GaS проводили в замкнутом объеме из элементарных галлия и серы, взятых в стехиометрическом...
Тип: Изобретение
Номер охранного документа: 0002623414
Дата охранного документа: 26.06.2017
26.08.2017
№217.015.e440

Модулятор электромагнитного излучения субтерагерцового и терагерцового диапазона для систем высокоскоростной беспроводной связи

Изобретение относится к оптоэлектронике, а именно к модуляторам электромагнитного излучения, в частности, работающим в субтерагерцовом и терагерцовом диапазонах частот (100-10000 ГГц). Изобретение может использоваться в областях науки и техники, использующих данные диапазоны частот, в...
Тип: Изобретение
Номер охранного документа: 0002626220
Дата охранного документа: 24.07.2017
19.01.2018
№218.016.0759

Способ получения кремниевых мишеней для магнетронного распыления

Изобретение относится к литейному производству, в частности к получению кремниевых профильных отливок для мишеней магнетронного распыления. Шихту полупроводникового поликристаллического кремния расплавляют в графитовом тигле, который перемещают вертикально в полости нагревателя. В донном...
Тип: Изобретение
Номер охранного документа: 0002631372
Дата охранного документа: 21.09.2017
10.05.2018
№218.016.4d2f

Способ выращивания кристаллов фуллерена с60

Изобретение может быть использовано в полупроводниковой оптоэлектронике. Навеску порошка исходного фуллерена С60 загружают в кварцевую ампулу, внутренняя поверхность которой покрыта пироуглеродом для защиты исходного порошка от воздействия УФ излучения. Затем проводят низкотемпературную...
Тип: Изобретение
Номер охранного документа: 0002652204
Дата охранного документа: 25.04.2018
12.07.2018
№218.016.6fa1

Способ изготовления смесей для калибровки газоаналитического оборудования с использованием твердотельного электролизера

Изобретение относится к исследованию и анализу газов. Способ изготовления смесей для калибровки газоаналитического оборудования, включает: электролиз поступающих в электролизер газовых компонентов с контролируемым выходом продуктов, их смешивание с известным потоком инертного газа и получение...
Тип: Изобретение
Номер охранного документа: 0002661074
Дата охранного документа: 11.07.2018
09.08.2018
№218.016.78ff

Материал шпонки для высокотемпературных применений

Изобретение относится к области машиностроения и может быть использовано в устройствах, при работе которых возможно выделение большого количества тепла, приводящего к тепловому расширению шпонки и заклиниванию устройства. Композиционный материал шпонки представляет собой матрицу из...
Тип: Изобретение
Номер охранного документа: 0002663146
Дата охранного документа: 01.08.2018
14.03.2019
№219.016.dfbb

Способ прочного соединения изделий из графита

Изобретение относится к области химической технологии и может быть использовано для изготовления блоков из графитовых деталей, способных использоваться при высоких температурах. Сначала на торцевые поверхности подлежащих соединению графитовых деталей наносят слои поливинилацетата, в полученный...
Тип: Изобретение
Номер охранного документа: 0002681628
Дата охранного документа: 11.03.2019
Показаны записи 1-8 из 8.
12.01.2017
№217.015.580f

Трещиностойкие волокнистые керамические композиты

Изобретение относится к области высокотемпературных керамических материалов и может быть использовано при разработке конструкционных композитов с хрупкими компонентами. Трещиностойкие волокнистые керамические композиты содержат керамические матрицы и оксидные волокна. Используют...
Тип: Изобретение
Номер охранного документа: 0002588534
Дата охранного документа: 27.06.2016
25.08.2017
№217.015.b151

Неорганический монокристаллический сцинтиллятор

Изобретение относится к новым неорганическим кристаллическим сцинтилляционным материалам на основе бромида лантана, легированного церием, и может быть использовано для регистрации ионизирующего излучения – гамма-квантов, рентгеновского излучения, космических излучений, элементарных частиц в...
Тип: Изобретение
Номер охранного документа: 0002613057
Дата охранного документа: 15.03.2017
10.04.2019
№219.017.0422

Способ приготовления катализатора

Изобретение относится к способам приготовления катализатора, например, для окисления аммиака и углеводородсодержащих газов и может быть использовано преимущественно в производстве азотной кислоты. Способ получения катализатора включает предварительную термическую обработку инертного носителя в...
Тип: Изобретение
Номер охранного документа: 0002378051
Дата охранного документа: 10.01.2010
21.08.2019
№219.017.c1cb

Способ нанесения жаростойких покрытий y-мо-о из плазмы вакуумно-дугового разряда

Изобретение относится к способу нанесения жаростойких покрытий из плазмы вакуумно-дугового разряда и может быть использовано для повышения надежности и долговечности широкого ряда деталей машин и инструмента. Технический результат изобретения заключается в улучшении стойкости деталей к газовой...
Тип: Изобретение
Номер охранного документа: 0002697758
Дата охранного документа: 19.08.2019
18.12.2019
№219.017.ee62

Способ получения алюминиевых композитных проводов, армированных длинномерным волокном

Изобретение относится к области машиностроения и предназначено для изготовления длинномерных композитных изделий на основе керамических, борных или углеродных волокон. В способе получения алюминиевых композитных проводов, армированных длинномерным волокном, в котором волокно с катушек...
Тип: Изобретение
Номер охранного документа: 0002709025
Дата охранного документа: 13.12.2019
31.01.2020
№220.017.fb95

Высокотемпературные композиты с молибденовой матрицей и способ их получения

Изобретение относится к высокотемпературным композитным материалам с металлической матрицей и к способам их получения и может быть использовано для производства лопаток авиационных газотурбинных двигателей, работающих при температурах до 1400°С. Высокотемпературный композит с молибденовой...
Тип: Изобретение
Номер охранного документа: 0002712333
Дата охранного документа: 28.01.2020
31.07.2020
№220.018.3921

Способ нанесения градиентных жаростойких покрытий y-mo-o плазмы вакуумно-дугового разряда

Изобретение относится к способу нанесения жаростойкого покрытия и может быть использовано для повышения надежности и долговечности широкого ряда деталей машин и инструмента. Осуществляют осаждение из плазмы вакуумно-дугового разряда с двух поочередно используемых однокомпонентных катодов Мо и Y...
Тип: Изобретение
Номер охранного документа: 0002728117
Дата охранного документа: 28.07.2020
20.04.2023
№223.018.4b40

Способ получения микрокристаллов csso(ti) из водного раствора

Изобретение относится к области получения микрокристаллов CsSO-TI, являющихся люминофорами и сцинтилляторами для регистрации ионизирующих излучений в медицине, системах безопасности, в мониторинге окружающей среды. Микрокристалл CsSO-TI получают из ненасыщенного водного раствора, содержащего...
Тип: Изобретение
Номер охранного документа: 0002772758
Дата охранного документа: 25.05.2022
+ добавить свой РИД