×
10.04.2019
219.017.0422

СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002378051
Дата охранного документа
10.01.2010
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способам приготовления катализатора, например, для окисления аммиака и углеводородсодержащих газов и может быть использовано преимущественно в производстве азотной кислоты. Способ получения катализатора включает предварительную термическую обработку инертного носителя в токе воздуха или кислорода, нанесение на его поверхность промежуточного покрытия из оксида алюминия и одного или нескольких металлов платиновой группы и осуществление сушки, причем промежуточное покрытие - оксид алюминия наносят из геля, полученного совмещением в воде исходных компонентов при следующем соотношении компонентов, мас.%: азотнокислый алюминий девятиводный - 3-10; аммиак водный (25%концентрации) - 1,7-5,5; ПАВ ионогенный 0,25-1,0; вода, остальное до 100. Технический результат - приготовление катализатора с увеличенным рабочим ресурсом, позволяющего повысить производительность производства и снизить его стоимость, улучшить регенерацию и утилизацию катализатора.
Реферат Свернуть Развернуть

Изобретение относится к способам приготовления катализатора, например, для окисления аммиака и углеводородсодержащих газов и может быть использовано преимущественно в производстве азотной кислоты.

Известен способ приготовления катализатора, включающего предварительную термическую обработку инертного носителя в токе воздуха или кислорода, нанесение на его поверхность промежуточного покрытия из оксида алюминия и одного или нескольких металлов платиновой группы и осуществление сушки (п. РФ на изобретение №2169614, В01J 37/025, опубл. 2001 г.) - прототип.

Недостатком этого способа является недостаточная механическая прочность для использования в процессах высокотемпературного (до 950°С) каталитического окисления аммиака и углеродсодержащих газов вследствие его большой толщины и пористости, небольшой ресурс работы из-за многочасовой длительности операций, плохая регенерация и утилизация катализатора, полученного по этому способу из - за его высокой пористости.

Задачей заявленного технического решения является разработка способа приготовления катализатора, который дает возможность использовать катализатор в процессах высокотемпературного окисления, например, аммиака и углеводородсодержащих газов, позволяющего увеличить рабочий ресурс катализатора, повысить производительность производства и снизить его стоимость, улучшить регенерацию и утилизацию катализатора.

Эта задача осуществляется путем создания способа получения катализатора, включающего предварительную термическую обработку инертного носителя в токе воздуха или кислорода, нанесение на его поверхность промежуточного покрытия из оксида алюминия и одного или нескольких металлов платиновой группы, и осуществление сушки, причем промежуточное покрытие - оксид алюминия наносят из геля, полученного совмещением в воде исходных компонентов при следующем соотношении компонентов, мас.%:

азотнокислый алюминий девятиводный 3-10
аммиак водный (25% концентрации) 1,7-5,5
ПАВ ионогенный 0,25-1,0
вода, остальное до 100

Промежуточное покрытие из оксида алюминия наносится не из суспензии, а из геля определенного химического состава, позволяющего за один технологический цикл получить качественное покрытие необходимой толщины, прочности и пористости.

Введение в состав ПАВа ионогенного в заявленных пределах позволяет улучшить адгезию промежуточного покрытия к поверхности термообработанной стали. Качественное покрытие, т.е. сочетание выбранной толщины, пористости, хорошей адгезии позволяет нам увеличить рабочий ресурс катализатора, повысить производительность производства и снизить его стоимость, улучшить регенерацию и утилизацию катализатора.

Примеры осуществления способа

Пример 1.

В качестве инертного носителя использовали металлические сетки из нержавеющей стали Х23Ю5Т с диаметром проволоки 0,2 мм., содержащие в своем составе 5 мас.% алюминия (хромалевые стали), создающие коррозионную устойчивость к процессам окисления. Сетки подвергали предварительной термической обработке при температуре 900°С в течение 12 часов.

На обработанный таким образом носитель наносят оксид алюминия из геля, полученного совмещением в воде при комнатной температуре исходных компонентов, а именно: азотнокислого алюминия девятиводного - 3 мас.%, аммиака водного (25% концентрации) - 5,5 мас.%, ПАВа ионогенного (гексадецил сульфат аммония) - 0,25 мас.%, вода - до 100 мас.%.

Использование предлагаемого геля позволяет нанести на инертный носитель (металлические сетки из нержавеющей стали) примерно 0,5% оксида алюминия. Удельная поверхность оксида алюминия составляет 20 м2/г. Дальнейшие операции сушки и нанесения активной фазы металлов платиновой группы проводят по условиям, описанными в прототипе, а именно: после нанесения промежуточного покрытия из оксида алюминия сушат при температуре 100-120°С и прокаливают при 400-500°С в токе воздуха или азота, после нанесения металлов платиновой группы - сушат при температуре 100-120°С в течение 2 часов.

Полученный катализатор испытывали в реакции окисления аммиака на пилотной установке при следующих параметрах проведения процесса:

диаметр реактора (рабочий размер катализаторных сеток) 55 мм,

скорость потока аммиачно-воздушной смеси 0,5 м/сек;

температура сетки катализатора 820°С;

Степень превращения аммиака в окись азота на катализаторном пакете из трех сеток составила 94% в начале процесса конверсии и 90,5% в конце опытного пробега через 3000 часов работы.

Пример 2.

Осуществляется аналогично примеру 1 при следующем соотношении компонентов, мас.%:

азотнокислый алюминий девятиводный 10
аммиак водный 1,7
ПАВ ионогенный (соли четвертичных аммониевых
оснований высших спиртов ОС-20) 1,0
вода, остальное до 100

Степень превращения аммиака в окись азота на катализаторном пакете из трех сеток составила 94% в начале процесса конверсии и 89% в конце опытного пробега через 3000 часов работы.

Использование предлагаемого геля позволяет нанести на инертный носитель

( металлические сетки из нержавеющей стали) 5,5 мас.% оксида алюминия. Удельная поверхность поверхности оксида алюминия составляет 20 м2 /г. Добавление ПАВа позволяет улучшить адгезию промежуточного покрытия к поверхности термообработанной стали.

Однократное нанесение промежуточного покрытия на носитель из предлагаемого состава геля достаточно для приготовления эффективного катализатора с отличным адгезионным слоем оксида алюминия.

Способ приготовления катализатора, включающего предварительную термическую обработку инертного носителя в токе воздуха или кислорода, нанесение на его поверхность промежуточного покрытия из оксида алюминия и одного или нескольких металлов платиновой группы и осуществление сушки, отличающийся, тем, что промежуточное покрытие - оксид алюминия наносят из геля, полученного совмещением в воде исходных компонентов при следующем соотношении компонентов, мас.%:
Источник поступления информации: Роспатент

Показаны записи 1-1 из 1.
19.04.2019
№219.017.3469

Устройство для термокаталитической очистки газовых выбросов в химических процессах

Изобретение относится к области дожигания промышленных газообразных выбросов, в частности к устройствам для термокаталитической очистки газообразных выбросов в химических процессах. Техническим результатом заявляемого изобретения является устранение байпасирования части очищаемого воздуха,...
Тип: Изобретение
Номер охранного документа: 0002460016
Дата охранного документа: 27.08.2012
Показаны записи 1-7 из 7.
27.11.2013
№216.012.8528

Способ каталитического окисления аммиака

Изобретение может быть использовано в каталитических процессах окисления аммиака до азотной или синильной кислот и гидроксламинсульфата. Способ каталитического окисления аммиака включает пропускание аммиачно-воздушной смеси через двухступенчатый катализаторный пакет промышленного агрегата,...
Тип: Изобретение
Номер охранного документа: 0002499766
Дата охранного документа: 27.11.2013
25.08.2017
№217.015.b151

Неорганический монокристаллический сцинтиллятор

Изобретение относится к новым неорганическим кристаллическим сцинтилляционным материалам на основе бромида лантана, легированного церием, и может быть использовано для регистрации ионизирующего излучения – гамма-квантов, рентгеновского излучения, космических излучений, элементарных частиц в...
Тип: Изобретение
Номер охранного документа: 0002613057
Дата охранного документа: 15.03.2017
29.12.2017
№217.015.f145

Каталитическая система для конверсии аммиака

Изобретение относится к каталитической системе для конверсии аммиака, включающей катализаторный пакет, содержащий на первой ступени слой катализаторных сеток из сплавов платиноидов и улавливающий пакет на второй ступени. В качестве улавливающего пакета каталитическая система содержит слой...
Тип: Изобретение
Номер охранного документа: 0002638927
Дата охранного документа: 19.12.2017
19.01.2018
№218.016.050e

Каталитический узел для термокаталитической очистки газовых выбросов в химических процессах

Изобретение относится к устройствам для термокаталитической очистки газообразных выбросов и может использоваться в машиностроении, энергетике, различных отраслях химической промышленности, в нефтехимической и нефтегазовой, в газоперекачивающих агрегатах (ГПА). Техническим результатом является...
Тип: Изобретение
Номер охранного документа: 0002630825
Дата охранного документа: 13.09.2017
19.04.2019
№219.017.3469

Устройство для термокаталитической очистки газовых выбросов в химических процессах

Изобретение относится к области дожигания промышленных газообразных выбросов, в частности к устройствам для термокаталитической очистки газообразных выбросов в химических процессах. Техническим результатом заявляемого изобретения является устранение байпасирования части очищаемого воздуха,...
Тип: Изобретение
Номер охранного документа: 0002460016
Дата охранного документа: 27.08.2012
20.04.2023
№223.018.4b40

Способ получения микрокристаллов csso(ti) из водного раствора

Изобретение относится к области получения микрокристаллов CsSO-TI, являющихся люминофорами и сцинтилляторами для регистрации ионизирующих излучений в медицине, системах безопасности, в мониторинге окружающей среды. Микрокристалл CsSO-TI получают из ненасыщенного водного раствора, содержащего...
Тип: Изобретение
Номер охранного документа: 0002772758
Дата охранного документа: 25.05.2022
14.05.2023
№223.018.55c8

Способ получения композиционных материалов на основе углеволокна и металла

Изобретение относится к технологии получения новых композиционных материалов с углеволокном и может быть использовано, в частности, для изготовления элементов конструкций в авиационной, ракетно-космической и морской технике. Способ получения композиционного материала, содержащего углеволокно и...
Тип: Изобретение
Номер охранного документа: 0002731699
Дата охранного документа: 08.09.2020
+ добавить свой РИД