×
20.04.2023
223.018.4ade

Результат интеллектуальной деятельности: СПОСОБ УПРАВЛЕНИЯ ЦИФРОВОЙ ЭЛЕКТРОМЕХАНИЧЕСКОЙ СЛЕДЯЩЕЙ СИСТЕМОЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области машиностроения и может быть использовано для управления положением различных инерционных объектов, например для управления положением камер сгорания жидкостных ракетных двигателей (ЖРД). Техническим результатом настоящего изобретения является снижение токопотребления электромеханического привода цифровой следящей электромеханической системы пропорционально уменьшению напряжения питания электродвигателя. Согласно способу управления цифровой электромеханической следящей системой преобразуют двоичный код Грея δ дискретного датчика угла электромеханического привода в двоичный код обратной связи δ, сравнивают командный двоичный код от формирователя командного кода δ с двоичным кодом обратной связи δ, формируют двоичный код рассогласования δ, сравнивают код рассогласования δ с заданными значениями кодов переключения режима управления электродвигателями δ, …, δ, δ, причем n=2, 3, …, и с заданной величиной кода точности поддержания требуемого положения δ. При |δр|>δ преобразуют код рассогласования δ в напряжение соответствующей коду рассогласования δ полярности, усиливают его до максимального значения и подают на электродвигатель электромеханического привода, приводящий во вращение вал редуктора и вал дискретного датчика угла электромеханического привода в требуемом направлении. По мере уменьшения значения кода рассогласования δ последовательно уменьшают подаваемое на электродвигатель электромеханического привода напряжение питания и приводят во вращение вал электродвигателя, вал редуктора и вал дискретного датчика угла электромеханического привода в требуемом при пониженных значениях напряжения питания. При совпадении кодов δ и δс заданной точностью ±δ, то есть |δ|≤δ, прекращают подачу на электродвигатель электромеханического привода напряжения питания и формируют в нем ток торможения, чем осуществляют его динамическое торможение, за счет чего останавливают вращение вала электродвигателя, вала редуктора и вала дискретного датчика угла электромеханического привода. Это позволяет повысить плавность процесса регулирования системы, при автоколебательных режимах ее работы, вызванных действием на выходной вал электромеханического привода значительных позиционных или постоянно действующих нагрузок, а также при работе в условиях действия вибраций и ударов за счет функционирования перед остановом только одного из электродвигателей. 1 ил.

Изобретение относится к области машиностроения и может быть использовано для управления положением различных инерционных объектов, например, для управления положением камер сгорания жидкостных ракетных двигателей (ЖРД).

Известен способ управления цифровой электромеханической следящей системой - аналог (Батоврин А.А., Дашевский П.Г., Лебедев В.Д. и др. Цифровые системы управления электроприводами. Л., «Энергия», 1977. 256 с.) [1], заключающийся в том, что сравнивают командный двоичный код от формирователя командного кода с двоичным кодом преобразователя угла поворота, формируют двоичный код ошибки, преобразуют двоичный код ошибки в напряжение определенной полярности, усиливают его и подают на исполнительный двигатель, которым вращают исполнительный механизм и преобразователь угла поворота, а при совпадении командного двоичного кода от формирователя командного кода и двоичного кода преобразователя угла поворота прекращают подачу напряжения на исполнительный двигатель.

Недостатком такого способа управления цифровой электромеханической следящей системой является невозможность обеспечения требования по точности слежения при больших скоростях привода и длительных тактах квантования цифровой вычислительной машины. Это связано с тем, что при таком способе все сигналы внутри контура передаются с тактом квантования, присущим данному формирователю командного кода, и дискретностью по уровню, определяемой разрядностью аналого-цифрового преобразователя датчика обратной связи. При этом логика управления системой построена таким образом, что останов выходного вала может произойти только при совпадении кода от формирователя командного кода с кодом от аналого-цифрового преобразователя датчика обратной связи. А так, как с повышением скорости вращения выходного вала привода уменьшается вероятность того, что из-за большой величины такта квантования коды совпадут именно в момент достижения валом требуемого положения, то имеют место "выбеги" или перерегулирование с забросом вала за уровень, определяемый дискретностью команды, т.е. не обеспечиваются требования по качеству переходного процесса.

Известен способ управления цифровой электромеханической следящей системой - прототип (см. Белицкий Д.С., Жарков М.Н., Стоялов В.В., Шутенко В.И. Электромеханический привод в системе управления режимами жидкостных ракетных двигателей. Известия академии наук. Теория и системы управления. 1996, №1, С 118-124) [2], заключающийся в том, что преобразуют двоичный код Грея δГ дискретного датчика угла электромеханического привода в двоичный код обратной связи δу, сравнивают командный двоичный код от формирователя командного кода δХ с двоичным кодом обратной связи δу, формируют двоичный код рассогласования δр, сравнивают код рассогласования δ с заданной величиной кода переключения режима управления электродвигателем δ2 и с заданной величиной кода точности поддержания требуемого положения δ1 при |δр|>δ2 преобразуют двоичный код рассогласования δр в напряжение соответствующее коду рассогласования δр полярности, усиливают его и подают на электродвигатели электромеханического привода, которыми приводят во вращение вал редуктора и вал дискретного датчика угла электромеханического привода в требуемом направлении, при δ1<|δp|≤δ2 подают на электродвигатели электромеханического привода досылающие импульсы напряжений определенной полярности, которыми приводят во вращение вал редуктора и вал дискретного датчика угла электромеханического привода в требуемом направлении, а при |δр|≤δп1, прекращают подачу напряжений на электродвигатели электромеханического привода, чем останавливают вращение вала электродвигателя, останавливают вращение выходного вала редуктора и вала дискретного датчика угла электромеханического привода.

При таком способе управления цифровой электромеханической следящей системой для получения высокой точности позиционирования при больших скоростях вращения вала электромеханического привода под нагрузкой управление и цифровую коррекцию электромеханического привода осуществлют через автономное вычислительное устройство, работающее с собственным тактом квантования, который может быть во много раз выше частоты выдачи управляющих сигналов от формирователя командного кода, служащего лишь источником входной информации.

Недостатком такого способа управления цифровой электромеханической следящей системой является ограниченная возможность работы системы при наличии на выходном вале электромеханического привода значительных позиционной и постоянно действующей нагрузкок, а также при его работе в условиях действия вибраций и ударов, при которых в системе наблюдаются автоколебания с большим забросом выходного вала электромеханического привода за уровень, определяемый дискретностью команды, что снижает плавность процесса регулирования. При этом электродвигатель электромеханического привода системы постоянно работает в режиме больших токов, требуемых для возврата вала электромеханического привода в требуемое положение с заданной точностью, что значительно увеличивает электропотребление системой.

Задачей изобретения является повышение плавности процесса регулирования цифровой электромеханической следящей системой.

Техническим результатом настоящего изобретения является снижение затрат электроэнергии на управление электромеханической следящей системой.

Технический результат достигается тем, что в способе управления цифровой электромеханической следящей системой, содержащем преобразование двоичного кода Грея δГ дискретного датчика угла электромеханического привода в двоичный код обратной связи δу, сравнение командного двоичного кода от формирователя командного кода δХ с двоичным кодом обратной связи δу, формирование двоичного кода рассогласования δр, сравнение его с заданной величиной кода переключения режима управления электродвигателем δп2 и с заданной величиной кода точности поддержания требуемого положения δП1, при выполнении условия |δр|>δп2 преобразование кода рассогласования δр в напряжение соответствующей коду рассогласования δр полярности, усиление его до значения напряжения питания и подачу на электродвигатель электромеханического привода, а при |δр|≤δп1 прекращение подачи напряжения питания на электродвигатель электромеханического привода, при этом в отличие от известного способа сравнивают двоичный код рассогласования δр с n-2 дополнительными заданными величинами кода переключения режима управления электродвигателями δп3, δп3, …, δпn-1, причем n=2, 3, …, а n-1 заданным величинам кода переключения режима управления электродвигателем δп2, … δпn-1, δпn, соответствуют n-1 пороговых значений напряжения питания электродвигателя U1, … Un-1, Un, причем Un является максимальным напряжением питания электродвигателя, U2 является минимальным напряжением питания электродвигателя, при котором возможно вращение его вала под нагрузкой, a U1=0, при этом значения кодов и напряжений питания необходимо выполнение следующих условий:

п1|<|δп2|, |δп2|<|δп3|, … <|δпn-1|<|δпn|; |U1|<|U2|, |U2|<|U3|, …<|Un-1|<|Un|;

преобразуют код рассогласования δр в напряжение соответствующей коду рассогласования δр полярности и усиливают, при |δр|>δпn подают на электродвигатель электромеханического привода усиленное напряжение Un соответствующей коду рассогласования δр полярности, чем приводят во вращение вал редуктора и вал дискретного датчика угла электромеханического привода в требуемом направлении, при достижении кодом рассогласования значения, при котором δпn-1<|δp|≤δпn, подают на электродвигатель электромеханического привода усиленное напряжение Un-1 соответствующей коду рассогласования δр полярности, чем приводят во вращение вал редуктора и вал дискретного датчика угла электромеханического привода в требуемом направлении, и так далее до достижения кодом рассогласования δр значения δп1<|δp|≤ δп2, при котором подают на электродвигатель электромеханического привода усиленное напряжение U2 соответствующей коду рассогласования δр полярности, чем приводят во вращение вал редуктора и вал дискретного датчика угла электромеханического привода в требуемом направлении, а при совпадении кодов δХ и δу с заданной точностью ± δп1, то есть |δр|≤δп1, формируют в электродвигателе электромеханического привода ток торможения, чем осуществляют его динамическое торможение, за счет чего останавливают вращение вала электродвигателя, останавливают вращение выходного вала редуктора и вала дискретного датчика угла электромеханического привода, при этом ток торможения определяется дифференциальным уравнением

где I - ток торможения; t - время; R - активное сопротивление обмоток электродвигателя; L - индуктивность обмоток электродвигателя; Kэ - коэффициент электромагнитной скоростной связи; Ω - угловая скорость вращения вала электродвигателя.

При таком способе управления цифровой электромеханической следящей системой автоколебания выходного вала электромеханического привода при значительных позиционной или постоянно действующей нагрузках, а также при работе в условиях действия вибраций и ударов, осуществляются за счет функционирования электродвигателя при минимальном напряжении питания, в результате чего скорость движения выходного вала электромеханического привода перед остановом снижается. Это приводит к уменьшению забросов выходного вала электромеханического привода за уровень, определяемый дискретностью команды, и к повышению плавности процесса регулирования цифровой электромеханической следящей системой. Как следствие, потребляемые токи электромеханического привода снижаются пропорционально снижению напряжения питания электродвигателя.

Так как заявленная совокупность существенных признаков способа позволяет обеспечить технический результат, то заявленный способ соответствует критерию "изобретательский уровень".

Суть способа поясняется с помощью фигуры, на которой изображена блок-схема цифровой электромеханической следящей системы с электромеханическим приводом, на которой изображены:

1 - формирователь командного кода (ФКК);

2 - автономное вычислительное устройство (АВУ);

3 - блок определения сигнала рассогласования (БОСР);

4 - релейное пороговое устройство (РПУ);

5 - преобразователь кода Грея в двоичный код (ПКГ);

6 - усилительно-преобразовательное устройство (УПУ);

7 - электромеханический привод (ЭМП);

8 - электродвигатель (ЭД);

9 - редуктор (Р);

10 - дискретный датчик угла ДДУ;

δГ - двоичный семиразрядный код Грея;

δХ - двоичный семиразрядный код, соответствующий требуемому положению выходного вала электромеханического привода в соответствии с циклограммой работы цифровой электромеханической следящей системы;

δУ - двоичный семиразрядный код сигнала обратной связи;

δр - двоичный код рассогласования;

δп2 и δп3 _ двоичные коды переключения режима управления электродвигателем;

δп1 - двоичный код точности поддержания требуемого положения.

В такой цифровой электромеханической системе БОСР 3 может быть выполнен на базе известных микросхем полусумматоров или полных сумматоров [3], при этом функции сравнения можно обеспечить за счет применения известных схем, реализующих функции равенства, строгого и нестрогого неравенства [4]. ПКГ 5 может быть выполнен на базе известных микросхем арифметико-логических элементов [3]. РПУ 4 может быть выполнено на базе мультиплексора [3], электромагнитных реле и делителей напряжения. УПУ 6 может быть выполнен на базе известных усилителей постоянного тока, например, на основе операционных усилителей [5].

При включении цифровой электромеханической следящей системы преобразуют двоичный код Грея δГ ДДУ 10 ЭМП 7 с помощью ПКГ 5 в двоичный код обратной связи δу. Сравнивают командный двоичный код от ФКК 1 δХ, соответствующий требуемому положению выходного вала ЭМП 7 в соответствии с циклограммой работы цифровой электромеханической следящей системы, с двоичным кодом обратной связи δу в БОСР 3 АВУ 2 и формируют в нем двоичный код рассогласования δр. Сравнивают код рассогласования δр с заданной величиной кода точности поддержания требуемого положения δп1 и с заданными величинами кодов переключения режима управления электродвигателями δп2 и δп3 в РПУ 4 АВУ 2. При |δp|>δп3 преобразуют двоичный код рассогласования δр в напряжение, соответствующее коду рассогласования δр полярности в РПУ 4 АВУ 2, усиливают его в УПУ 6 до значения U3, и подают на ЭД 8, которым приводят во вращение вал Р 9 и вал ДДУ 10 ЭМП 7 в требуемом направлении.

При δп2<|δр|≤δп3 преобразуют двоичный код рассогласования δр в напряжение, соответствующее коду рассогласования δр полярности в РПУ 4 АВУ 2, усиливают его в УПУ 6 до значения U2, и подают на ЭД 8, которым приводят во вращение вал Р 9 и вал ДДУ 10 ЭМП 7 в требуемом направлении.

При δп1<|δр|≤δп2 преобразуют двоичный код рассогласования δр в напряжение, соответствующее коду рассогласования δр полярности в РПУ 4 АВУ 2, усиливают его в УПУ 6 до значения U1, и подают его на ЭД 8, которым приводят во вращение вал Р 9 и вал ДДУ 10 ЭМП 7 в требуемом направлении.

При совпадении кодов δХ и δу с заданной точностью ±δп1, то есть |δp|≤δп1, прекращают подачу на ЭД 8 ЭМП 7 напряжения и в нем формируют ток торможения, чем осуществляют его динамическое торможение, за счет чего останавливают вращение вала ЭД 8, останавливают вращение выходного вала Р 9 и вала ДДУ 10 ЭМП 7, при этом ток торможения определяется дифференциальным уравнением

где I - ток торможения; t - время; R - активное сопротивление обмоток электродвигателя; L - индуктивность обмоток электродвигателя; Kэ - коэффициент электромагнитной скоростной связи; Ω - угловая скорость вращения вала электродвигателя.

Таким образом, заявленный способ управления цифровой электромеханической следящей системой позволяет при значительных позиционной или постоянно действующей нагрузках, а также при работе ЭМП 9 в условиях действия вибраций и ударов, уменьшить за счет функционирования при минимальном напряжении питания ЭД 8, скорость движения выходного вала ЭМП 7, что приводит к уменьшению забросов выходного вала ЭМП 7 за уровень, определяемый дискретностью команды, а, значит, и к повышению плавности процесса регулирования цифровой электромеханической следящей системой.

Как следствие потребляемые токи ЭМП 7 снижаются пропорционально снижению напряжения питания ЭД 8 ЭМП 7.

С одной стороны, чем больше в такой цифровой электромеханической следящей системе пороговых значений напряжения питания ЭД 8, тем выше плавность процесса регулирования, однако с другой стороны при этом увеличивается суммарная масса РПУ 4 АВУ 2 и снижается его надежность, что приводит к увеличению массы и снижению надежности всей системы. Поэтому выбор количества пороговых значений напряжения питания электродвигателя электромеханического привода U1, U2, …, Un-1, Un, и значений соответствующих им кодов переключения режима управления электродвигателем δп1, δп2, …, δпn-1, δпn является предметом оптимизации под конкретное техническое задание.

Литература

1. Батоврин А.А., Дашевский П.Г., Лебедев В.Д. и др. Цифровые системы управления электроприводами. Л., «Энергия», 1977. 256 с. - аналог.

2. Белицкий Д.С, Жарков М.Н., Стоялов В.В., Шутенко В.И. / Электромеханический привод в системе управления режимами жидкостных ракетных двигателей. // Известия Академии наук. Теория и системы управления, 1996, №1, с. 118-124 - прототип.

3. Справочник по интегральным микросхемам / Б.В. Тарабрин, С. В. Якубовский, Н.А. Барканов и др. под ред. Б.В. Тарабрина. -2-е изд. Перераб. и доп.М.: Энергия, 1981.

4. Токхейм Р. / Основы цифровой электроники. Пер. с англ. М.: Мир, 1988.

5. Алексеенко А.Г. и др. Применение прецизионных аналоговых микросхем / А.Г. Алексеенко, Е.А. Коломберт, Г.И. Стародуб. 2-е изд. перераб. и доп. М.: Радио и связь, 1983.

Источник поступления информации: Роспатент

Показаны записи 11-20 из 92.
18.05.2018
№218.016.50e7

Способ контроля готовности космонавта к выполнению полетных операций

Изобретение относится к методам обучения экипажей космических аппаратов. Способ включает воспроизведение заданий одному или нескольким космонавтам (К), регистрацию параметров, характеризующих выполнение К заданий, сравнение полученных данных с задаваемыми значениями и определение уровня...
Тип: Изобретение
Номер охранного документа: 0002653219
Дата охранного документа: 07.05.2018
29.05.2018
№218.016.526f

Способ контроля производительности солнечной батареи космического аппарата с инерционными исполнительными органами

Изобретение относится к солнечным батареям (СБ) космических аппаратов (КА). Способ включает определение угла между нормалью к рабочей поверхности СБ и нормалью к плоскости орбиты КА при условии минимального затенения СБ конструкцией КА. Измеряют также угол между направлением на Солнце и...
Тип: Изобретение
Номер охранного документа: 0002653891
Дата охранного документа: 15.05.2018
29.05.2018
№218.016.52b6

Способ определения производительности установленной на космическом аппарате солнечной батареи с положительной выходной мощностью тыльной поверхности

Изобретение относится к солнечным батареям (СБ) космических аппаратов (КА). Способ включает измерение вектора направления на Солнце в инерциальной системе координат, угла между направлением на Солнце и нормалью к плоскости орбиты КА, а также изменения данного угла за виток. При некотором...
Тип: Изобретение
Номер охранного документа: 0002653890
Дата охранного документа: 15.05.2018
07.02.2019
№219.016.b778

Способ управления снабженным солнечными батареями космическим аппаратом

Изобретение относится к управлению функционированием космического аппарата (КА) с солнечными батареями (СБ). Способ включает поддержание заданной ориентации КА и выставку СБ рабочей поверхностью к Солнцу. Измеряют угловое положение КА в инерциальном пространстве и ток нагрузки () от...
Тип: Изобретение
Номер охранного документа: 0002679101
Дата охранного документа: 05.02.2019
07.02.2019
№219.016.b78c

Способ управления снабженным солнечными батареями космическим аппаратом

Изобретение относится к управлению функционированием космического аппарата (КА) с солнечными батареями (СБ). Способ включает поддержание заданной ориентации КА и выставку СБ рабочей поверхностью к Солнцу. Измеряют угловое положение КА в инерциальном пространстве, ток нагрузки () и температуру...
Тип: Изобретение
Номер охранного документа: 0002679094
Дата охранного документа: 05.02.2019
26.02.2019
№219.016.c7f0

Электронасосный агрегат

Изобретение относится к машиностроению и может быть использовано в системах терморегулирования изделий авиационной и ракетной техники. Электронасосный агрегат содержит корпус, установленные в нем электродвигатель и двухопорный полый вал насоса с рабочим колесом, связанный с валом...
Тип: Изобретение
Номер охранного документа: 0002680635
Дата охранного документа: 25.02.2019
14.03.2019
№219.016.df54

Способ кодирования и декодирования блокового кода

Изобретение относится к способам парирования ошибок при передаче, хранении, чтении и восстановлении цифровых данных. Технический результат заключается в повышении устойчивости цифровых данных к ошибкам, возникающим на этапе информационного обмена и на этапе кодирования. В способе кодирования и...
Тип: Изобретение
Номер охранного документа: 0002681704
Дата охранного документа: 12.03.2019
29.03.2019
№219.016.ed54

Способ контроля лесного пожара с космического аппарата

Изобретение относится к области дистанционного мониторинга. Способ контроля лесного пожара с космического аппарата. Способ контроля лесного пожара с космического аппарата включает выполнение съемки с космического аппарата и определение по изображению контура пожара. Дополнительно запоминают...
Тип: Изобретение
Номер охранного документа: 0002683142
Дата охранного документа: 26.03.2019
29.03.2019
№219.016.ed96

Гидроразъем

Изобретение относится к космической технике, в частности в стыковочных устройствах космических аппаратов для соединения и разъединения магистралей. Техническим результатом является повышение надежности с обеспечением герметичности магистрали жидкостей. В гидроразъеме, содержащем стыкуемые...
Тип: Изобретение
Номер охранного документа: 0002683054
Дата охранного документа: 26.03.2019
29.03.2019
№219.016.ee1d

Способ контроля лесного пожара с космического аппарата

Изобретение относится к области дистанционного мониторинга. Способ контроля лесного пожара с космического аппарата. Способ контроля лесного пожара с космического аппарата включает выполнение съемки с космического аппарата подстилающей поверхности и определение по получаемому изображению контура...
Тип: Изобретение
Номер охранного документа: 0002683143
Дата охранного документа: 26.03.2019
Показаны записи 11-20 из 22.
15.12.2018
№218.016.a78b

Посадочное устройство космического корабля

Изобретение относится к космической технике, а именно к посадочным устройствам космических кораблей. Посадочное устройство содержит посадочные опоры, каждая из которых включает центральную стойку, сотовый энергопоглотитель и узел крепления к корпусу космического корабля, телескопический шток с...
Тип: Изобретение
Номер охранного документа: 0002675042
Дата охранного документа: 14.12.2018
19.12.2018
№218.016.a8e4

Струйный диод

Струйный диод предназначен для использования в струйной гидро- и пневмотехнике. Струйный диод содержит корпус со штуцерами входа и выхода, отверстия которых сообщаются с концами выполненного в корпусе главного канала спиральной формы. По руслу главного канала спиральной формы выполнены один или...
Тип: Изобретение
Номер охранного документа: 0002675172
Дата охранного документа: 17.12.2018
24.05.2019
№219.017.5f94

Релейный регулятор

Изобретение относится к технике автоматического управления, в частности к технике формирования управляющих сигналов. Технический результат заключается в повышении надежности. Релейный регулятор содержит в каждом из (2m+1) канале аналого-цифровой преобразователь (АЦП), запоминающее устройство...
Тип: Изобретение
Номер охранного документа: 0002342690
Дата охранного документа: 27.12.2008
30.05.2019
№219.017.6ba6

Способ получения нитроэфиров

Изобретение относится к области химии органических нитросоединений, а именно, к способу получения нитроэфиров общей формулой R(ONO), где n=1-3, R - одно-, двух- или трехвалентный углеводородный радикал С-C, либо двухвалентный радикал, содержащий в углеродной цепи один или несколько атомов...
Тип: Изобретение
Номер охранного документа: 0002689406
Дата охранного документа: 28.05.2019
29.06.2019
№219.017.a116

Исполнительный механизм

Исполнительный механизм может быть использован в областях машиностроения, в частности в космической технике для раскрытия посадочного устройства пилотируемого космического корабля. В корпусе размещается цилиндр и зубчато-реечный механизм. Внутри цилиндра установлен поршень со штоком. На конце...
Тип: Изобретение
Номер охранного документа: 0002446322
Дата охранного документа: 27.03.2012
29.06.2019
№219.017.a131

Пневмопривод с тормозным устройством

Заявленный пневмопривод может быть использован в областях машиностроения, в частности в космической технике для раскрытия посадочного устройства пилотируемого космического корабля, где необходимо осуществить торможение поршня пневмоцилиндра в конце его движения для избежания удара. Пневмопривод...
Тип: Изобретение
Номер охранного документа: 0002447329
Дата охранного документа: 10.04.2012
27.06.2020
№220.018.2b92

Способ получения наноразмерной нитроцеллюлозы или композитов на ее основе

Изобретение относится к технологии высокоэнергетических материалов, а именно к способу получения наноразмерной нитроцеллюлозы или композитов на ее основе, заключающийся в том, что 1-3 мас.% раствор нитроцеллюлозы в ацетоне или суспензию углеродных нанотрубок в 1-3 мас.% растворе нитроцеллюлозы...
Тип: Изобретение
Номер охранного документа: 0002724764
Дата охранного документа: 25.06.2020
01.07.2020
№220.018.2d51

Система раскрытия посадочных опор космического корабля

Изобретение относится к средствам мягкой вертикальной посадки, главным образом космического объекта. В системе раскрытия посадочных опор (ПО) использованы приводные механизмы: раздвижные упоры и устройства выдвижения телескопических штоков ПО, а также устройства разделения ПО - пневматического...
Тип: Изобретение
Номер охранного документа: 0002725004
Дата охранного документа: 29.06.2020
20.04.2023
№223.018.4ae7

Способ управления цифровой электромеханической следящей системой

Изобретение относится к области машиностроения и может быть использовано для управления положением различных инерционных объектов, например, для управления положением камер сгорания жидкостных ракетных двигателей (ЖРД). Техническим результатом настоящего изобретения является снижение...
Тип: Изобретение
Номер охранного документа: 0002771459
Дата охранного документа: 04.05.2022
20.04.2023
№223.018.4b7b

Система управления вектором тяги жидкостного ракетного двигателя

Изобретение относится к области ракетостроения и может быть использовано для управления положением камер сгорания жидкостных ракетных двигателей. Система управления вектором тяги жидкостного ракетного двигателя содержит раму с карданным подвесом под установку жидкостного ракетного двигателя,...
Тип: Изобретение
Номер охранного документа: 0002768637
Дата охранного документа: 24.03.2022
+ добавить свой РИД