×
12.04.2023
223.018.495a

Результат интеллектуальной деятельности: Устройство для обеззараживания семян холодной атмосферной воздушной плазмой и способ его работы

Вид РИД

Изобретение

Аннотация: Изобретение относится к сельскому хозяйству. Предложено устройство для обеззараживания семян перед посевом холодной атмосферной воздушной плазмой, которое состоит из камеры, ионизатора воздуха, вентилятора, соединительного патрубка, загрузочного бункера, ленточного транспортера с возможностью изменения скорости движения. При этом ионизатор воздуха состоит из плазмотрона постоянного тока и генератора с регулятором напряжения на электроде до 20 кВ. Вентилятор соединен с ионизатором воздуха соединительным патрубком, а ионизатор воздуха соединен с камерой. Также предложен способ для обеззараживания семян перед посевом холодной атмосферной воздушной плазмой, реализуемый с использованием данного устройства. Изобретение обеспечивает высокую эффективность в процессе использования. 2 н.п. ф-лы, 5 ил., 16 пр.

Изобретение относится к сельскому хозяйству, а именно - к предпосевной обработке семян биофизическими методами. Заявленный способ обработки семян сельскохозяйственных культур может быть использован в агропромышленном комплексе.

Далее в тексте заявителем приведены термины, которые необходимы для облегчения однозначного понимания сущности заявленных материалов и исключения противоречий и/или спорных трактовок при выполнении экспертизы по существу.

Корневые гнили - наиболее вредоносные заболевания зерновых культур, которые способны комплексно поражать растения несколькими видами патогенов одновременно [https://www.cropscience.bayer.ru/kornievyie-ghnili].

Временной интервал - любой периодически повторяющийся интервал времени, который может быть однозначно опознан и определен [https://normative_reference_dictionary.academic.ru/9442/временной_интервал].

Обеззараживание - широкое понятие, включающее проведение работ по дезактивации, дегазации, дезинфекции, дезинсекции и дератизации [http://bgd.bti.secna.ru/book/export/html/60].

Электрод - электрический проводник, имеющий электронную проводимость и находящийся в контакте с ионным проводником [https://resh.edu.ru/subject/lesson/3523/main/151163/].

Плазма - ионизированный газ, одно из четырех классических агрегатных состояний вещества [https://plasmatape.ru/about-plazma/].

Семена - части растений (клубни, луковицы, плоды, собственно семена, соплодия, части сложных плодов и другие), применяемые для воспроизводства сельскохозяйственных растений.

Семена яровой пшеницы - относятся к однодольным растениям с одной семядолей в зародыше.

Семена зернобобовых - зернобобовые культуры (зерновые бобовые культуры) - группа растений порядка бобовые, возделываемых ради плодов, являющихся продуктами питания.

Группа «зернобобовые» ограничена теми культурами, плоды которых собирают исключительно в целях использования сухих зерен. Зернобобовыми не являются овощные бобовые культуры (например, зеленый горошек и стручковая фасоль), а также бобовые растения, плоды которых используются для извлечения растительного масла (например, соя и арахис) и для кормовых целей (например, клевер и люцерна) [https://ru.wikipedia.org/wiki/%D0%97%D0%B5%D1%80%D0%BD%D0%BE%D0%B1%D0%BE%D0%B1%D0%BE%D0%B2%D1%8B%D0%B5_%D0%BA%D1%83%D0%BB%D1%8C%D1%82%D1%83%D1%80%D1%8B].

На дату представления заявочных материалов известны такие методы обеззараживания семян, как:

- воздушно-тепловой обогрев [http://www.groont.ru/grassseeds/seedstorage/5.html],

- инкрустация семян химическими и биологическими препаратами, солевыми растворами и др. [https://agrostory.com/info-centre/knowledge-lab/inkrustatsiya-semyan-pered-posevom/].

- УФ-облучение [http://agrosvit.in.ua/agronews/ultrafioletovoe-obluchenie-semyan-sovremennyj-podhod-k-uvelicheniyu-urozhajnosti]

- магнитным полем [https://cyberleninka.ru/article/n/proraschivanie-semyan-v-magnitnom-pole/viewer]

- лазерная [https://agbz.ru/articles/lazernaya-obrabotka-semyan/]

Однако известные методы обработки не могут обеспечить полное обеззараживание семян от патогенов, повысить энергию прорастания и всхожесть вследствие низкой эффективности при использовании их по назначению

Заявителем выполнен анализ уровня техники и выявлено большое количество способов обеззараживания семян с использованием различных физических и химических агентов.

Однако они обладают общими недостатками, а именно:

- технологической и технической сложностью, что обуславливает их высокую стоимость;

- обработка семян происходит непосредственно перед посевом, в случае ранней обработки семян, возможность хранения отсутствует;

- малым объемом обрабатываемых семян, обусловленным размерами загрузочной камеры;

- низкая производительность, связанная с необходимостью разгерметизации системы при загрузке и выгрузке семян с последующим процессом создания низкого давления для проведения обработки.

Из исследованного уровня техники выявлено изобретение по патенту РФ №2402188, средство обеззараживания семян зерновых культур с использованием хлорида хлорид полигексаметиленгуанидина и 2-этилгексилфосфат. Сущностью является средство для обеззараживания семян зерновых культур, включающее хлорид полигексаметиленгуанидина и воду, отличающееся тем, что оно дополнительно содержит 2-этилгексилфосфат натрия при следующем соотношении компонентов, мас. %: хлорид полигексаметиленгуанидина 10-20, 2-этилгексилфосфат натрия 0,2-0,5 остальное вода.

Известный способ обладает следующими недостатками:

- обработка семян происходит непосредственно перед посевом, в случае ранней обработки семян, возможность хранения отсутствует.

- сложный дорогостоящий химический состав, применяемый для обработки семян.

Из исследованного уровня техники выявлено изобретение по патенту РФ №2404564, сущностью является способ обеззараживания семян овощных культур от патогенной инфекции, включающий тепловое воздействие, отличающийся тем, что семена засыпают в бумажные или газопроницаемые полиэтиленовые (ПНД) пакеты, предварительно содержат 180 мин при температуре 55°С и влажности 57%, а затем выдерживают 30-45 мин в атмосфере газовой смеси оксида этилена (10-20%) и двуокиси углерода (90-80%) при давлении 0,8-1,3 бар, температуре 55°С и 57% влажности.

Известный способ обладает следующими недостатками:

- длительное время предварительной обработки (210-225 минут)

- технологической и технической сложностью, что обуславливает их высокую стоимость.

- использование немеханизированного труда при загрузке семян в газопроницаемые пакеты.

Из исследованного уровня техники выявлено изобретение по патенту РФ №2496291, сущностью является способ обеззараживания зерна и семян сельскохозяйственных культур, включающий увлажнение зерна и последующую его обработку, отличающийся тем, что на обеззараживание поступает сухое очищенное зерно, обработка которого осуществляется в три последовательных этапа: на первом этапе - перемещающееся в потоке зерно равномерно увлажняют неподогретой озонированной водой, количество которой определяется полным насыщением влагой его плодовых оболочек, на втором этапе - зерно отволаживают до проникновения влаги в периферийные слои эндосперма или семядолей и одновременно перемешивают, на третьем этапе - зерно, непрерывно подаваемое в плотном слое, обрабатывают в электромагнитном поле сверхвысокой частоты. Способ по п. 1, отличающийся тем, что после обработки зерно сушат до влажности, безопасной для хранения.

Известный способ обладает следующими недостатками:

- малым объемом обрабатываемых семян, обусловленным размерами загрузочной камеры;

- технологической и технической сложностью, что обуславливает их высокую стоимость;

- обязательный процесс сушки семян, как на первом и последнем этапе (время сушки разница, по отношению к виду семян.

Известно изобретение по патенту РФ №2076555 «Устройство для плазменной обработки семян растений», являющееся наиболее близким к заявленному техническому решению по совокупности совпадающих признаков и достигаемому техническому результату, выбранному заявителем в качестве прототипа. Сущностью является устройство для плазменной обработки семян растений, содержащее камеру, подсоединенную к источнику неорганического газа, электрический генератор, электроды и вакуумную систему, отличающееся тем, что один из электродов выполнен в виде полого металлического элемента с возможностью циркуляции в нем охлаждающего агента, в качестве другого электрода использован металлический корпус камеры, в которой размещен транспортирующий механизм, а камера имеет загрузочный и сбросовый бункеры.

При этом сущностью известного способа работы является то, что семена засыпают в загрузочный бункер, из которого они попадают на несущий элемент транспортирующего механизма в камере обработки. Транспортирующий механизм подает семена в зону плазменного разряда, создаваемого между корпусом камеры и внутренним электродом. Охлаждение внутреннего электрода осуществляется за счет циркуляции в нем охлаждающего агента. Необходимое давление в камере поддерживается вакуумной системой, а газовый состав - подачей неорганического газа от внешнего источника. Обработанные плазмой семена выгружаются из камеры через сбросовый бункер. Таким образом, цели известного изобретения достигаются за счет того, что в известном устройстве, содержащем камеру, присоединенную к источнику неорганического газа, электрический генератор, вакуумную систему и электроды, один из электродов выполнен в виде полого металлического элемента с возможностью циркуляции в нем охлаждающего агента, в качестве другого электрода использован металлический корпус камеры, внутри которой размещен транспортирующий механизм, а камера имеет загрузочный и сбросовый бункеры.

Семена засыпают в загрузочный бункер, из которого они попадают на несущий элемент транспортирующего механизма в камере обработки. Транспортирующий механизм подает семена в зону плазменного разряда, создаваемого между корпусом камеры и внутренним электродом. Охлаждение внутреннего электрода осуществляется за счет циркуляции в нем охлаждающего агента. Необходимое давление в камере поддерживается вакуумной системой, а газовый состав - подачей неорганического газа от внешнего источника. Обработанные плазмой семена выгружаются из камеры через сбросовый бункер.

Недостатками прототипа является:

1 - необходимость чистого производства в связи с наличием системы обеспечения герметизации при обработке семян;

2 - низкая производительность, связанная с необходимостью разгерметизации системы при загрузке и выгрузке семян с последующим процессом создания низкого давления для проведения обработки;

3 - высокое потребление энергоресурсов;

4 - технологическая и техническая сложность, что обуславливает их высокую стоимость;

5 - неудобства при работе и обслуживании;

6 - использование инертных газов увеличивает себестоимость производства.

Техническим результатом заявленного технического решения является создание устройства для обработки семян холодной атмосферной воздушной плазмой и разработка способа его работы, обеспечивающие:

1 - исключение необходимости обеспечения герметизации при обработке семян;

2 - высокую производительность;

3 - энергоресурсосбережение;

4 - снижение технологической и технической сложности, что обуславливает снижение стоимости оборудования;

5 - удобство при работе и обслуживании, высокую ремонтопригодность устройства;

6 - низкая себестоимость производства и экологическая безопасность.

Сущностью заявленного технического решения является устройство для обеззараживания семян перед посевом холодной атмосферной воздушной плазмой, характеризующееся тем, что состоит из камеры, ионизатора воздуха, вентилятора, соединительного патрубкка, загрузочного бункера, ленточного транспортера с возможностью изменения скорости движения, при этом ионизатор воздуха состоит из плазматрона постоянного тока и генератора с регулятором напряжения на электроде до 20 кВ, при этом вентилятор соединен с ионизатором воздуха соединительным патрубком, а ионизатор воздуха соединен с камерой. Способ обеззараживания семян перед посевом холодной атмосферной воздушной плазмой, реализуемый с использованием устройства по п. 1, характеризующийся тем, что семена из загрузочного бункера подают на ленточный транспортер, при этом регулируют скорость движения ленточного транспортера для регулирования времени обработки семян; далее семена подают в камеру; одновременно в камеру из ионизатора воздуха с помощью вентилятора подают холодную атмосферную воздушную плазму, при этом регулируют напряжение на электроде генератора ионизатора воздуха до 20 кВ; при этом проводят обработку семян холодной атмосферной воздушной плазмой.

Заявленное техническое решение иллюстрируется Фиг. 1 - Фиг. 5.

На Фиг. 1 представлена заявленная установка для обработки семян холодной атмосферной воздушной плазмой, где:

1 - вентилятор,

2 - патрубок,

3 - ионизатор воздуха с регулятором напряжения на электроде до 20 кВ,

4 - камера,

5 - бункер,

6 - ленточный транспортер.

На Фиг. 2 приведены результаты обработки семян гороха холодной атмосферной воздушной плазмой в течении 30 сек.

На Фиг. 3 приведены результаты обработки семян яровой пшеницы холодной атмосферной воздушной плазмой в течении 10 сек.

На Фиг. 4 приведены результаты обработки семян гороха при напряжении 15 кВ.

На Фиг. 5 приведены результаты обработки семян яровой пшеницы при напряжении 5 кВ.

Далее заявителем приведено описание заявленного технического решения.

Заявленный технический результат достигается разработкой устройства для обработки семян холодной атмосферной воздушной плазмой и способа его работы.

Заявленное техническое решение заключается в воздействии на семена холодной атмосферной воздушной плазмой. В зависимости от пораженности семян патогенами, рекомендуется использовать различные меры воздействия плазмой с соблюдениемвременного интервала. На выходе из устройства получают обеззараженные, готовые к посеву семена зерновых культур с высокой энергией прорастания и всхожестью.

Газоразрядная низкотемпературная плазма содержит различные заряженные (ионы и электроны), нейтральные (молекулы и атомы) частицы и продукты активации плазмохимических реакций, рентгеновское и ультрафиолетовое излучение. Плазма может окислять различные микроорганизмы и разрушать не только их оболочки, но и ДНК вирусов и бактерий. Оставаясь при этом холодной, такая плазма не разрушает теплочувствительные материалы, что дает возможность ее широкого использования в качестве сильного стерилизатора. В отличие от ставших традиционными способов стерилизации, газоразрядный метод обладает целым рядом отличительных преимуществ.

Так, изначально холодные температуры дают возможность стерилизовать теплочувствительные материалы. Кроме того, большой спектр агентов, которые включает в себя плазма с газовым разрядом (это заряженные частицы, нейтралы, разнообразные продукты активации плазмохимических реакций, рентгеновское и ультрафиолетовое излучение, электромагнитные поля), дает возможность значительно сократить время, нужное для обработки семян, что приводит к экономии энергоресурсов.

Далее заявителем приведена конструкция заявленного устройства для обработки семян холодной атмосферной воздушной плазмой.

Заявленная установка состоит из следующих элементов (Фиг. 1):

- вентилятор 1,

- патрубок 2,

- ионизатор воздуха 3,

- камера 4,

- загрузочный бункер 5,

- ленточный транспортер 6.

Ионизатор воздуха 3 состоит из плазматрона постоянного тока (на Фиг. не указан) и генератора с регулятором напряжения на электроде до 20 кВ (на Фиг. не указан).

При этом вентилятор 1 соединен с плазмотроном ионизатора воздуха 3 с помощью патрубка 2, например, сваркой, хомутом и др.

Ионизатор воздуха 3 соединен с камерой 4, например, сваркой.

Далее заявителем приведен заявленный способ работы заявленного устройства для обработки семян холодной атмосферной воздушной плазмой.

Семена из загрузочного бункера 5 подают на ленточный транспортер 6, при этом регулируют скорость движения ленточного транспортера 6 для регулирования времени обработки семян; далее семена подают в камеру 4; одновременно в камеру 4 из ионизатора воздуха 3 с помощью вентилятора 1 подают холодную атмосферную воздушную плазму, при этом регулируют напряжение на электроде генератора ионизатора воздуха до значения не более 20 кВ в зависимости от культуры семян; при этом проводят обработку семян холодной атмосферной воздушной плазмой.

В качестве плазмотрона ионизатора воздуха 3 возможно использовать, например, плазмотрон РТ-31 Varteg [https://www.vseinstrumenti.ru/rashodnie-materialy/instrument/dlya-svarochnyh-rabot/dlya-plazmennoy-rezki/plazmotrony-gorelki/varteg/6296/].

В качестве генератора ионизатора воздуха 3 возможно использовать, например, генератор высокого напряжения СКАТ-70М [https://www.electronpribor.ru/catalog/2/skat-70m.htm].

Далее заявителем приведены Примеры осуществления заявленного технического решения.

Заявителем приведены Примеры обработки семян, например, гороха и яровой пшеницы холодной атмосферной воздушной плазмой с различным временем обработки (30 сек., 50 сек., 80 сек. для гороха (Примеры 9-11), и 10 сек., 15 сек, 20 сек. для яровой пшеницы (Примеры 13-15), а также контрольные Примеры без обработки холодной атмосферной воздушной плазмой (Примеры 12, 16).

При этом перед обработкой проведен подбор оптимального значения напряжения для конкретной культуры семян, для чего проведена обработка при одинаковом времени воздействия плазмой, например, 30 сек. и различным напряжением для гороха (Примеры 1-3) и 10 сек. и различным напряжением для яровой пшеницы (Примеры 5-7), а также контрольные Примеры без обработки холодной атмосферной воздушной плазмой (Примеры 4, 8).

Пример 1. Результаты обработки семян гороха холодной атмосферной воздушной плазмой в течение 30 сек при напряжении на электроде генератора ионизатора воздуха 10 кВ.

Семена гороха из загрузочного бункера 5 подают на ленточный транспортер 6, при этом регулируют скорость движения ленточного транспортера 6 таким образом, чтобы время обработки составило, например, 30 сек. Далее семена гороха подают в камеру 4.

Одновременно в камеру 4 из ионизатора воздуха 3 с помощью вентилятора 1 подают холодную атмосферную воздушную плазму, при этом задают напряжение на электроде генератора ионизатора воздуха, например, 10 кВ. Обрабатывают семена гороха в течение, например, 30 сек.

Получены обеззараженные, готовые к посеву семена с высокой энергией прорастания и всхожестью.

Пример 2. Результаты обработки семян гороха холодной атмосферной воздушной плазмой в течении 30 сек при напряжении на электроде генератора ионизатора воздуха 15 кВ.

Семена гороха из загрузочного бункера 5 подают на ленточный транспортер 6, при этом регулируют скорость движения ленточного транспортера 6 таким образом, чтобы время обработки составило, например, 30 сек. Далее семена гороха подают в камеру 4.

Одновременно в камеру 4 из ионизатора воздуха 3 с помощью вентилятора 1 подают холодную атмосферную воздушную плазму, при этом задают напряжение на электроде генератора ионизатора воздуха, например, 15 кВ. Обрабатывают семена гороха в течение, например, 30 сек.

Получены обеззараженные, готовые к посеву семена с высокой энергией прорастания и всхожестью.

Пример 3. Результаты обработки семян гороха холодной атмосферной воздушной плазмой в течении 30 сек при напряжении на электроде генератора ионизатора воздуха 20 кВ.

Семена гороха из загрузочного бункера 5 подают на ленточный транспортер 6, при этом регулируют скорость движения ленточного транспортера 6 таким образом, чтобы время обработки составило, например, 30 сек. Далее семена гороха подают в камеру 4.

Одновременно в камеру 4 из ионизатора воздуха 3 с помощью вентилятора 1 подают холодную атмосферную воздушную плазму, при этом задают напряжение на электроде генератора ионизатора воздуха, например, 20 кВ. Обрабатывают семена гороха в течение, например, 30 сек.

Получены обеззараженные, готовые к посеву семена с высокой энергией прорастания и всхожестью.

Пример 4. Контрольный пример без обработки семян гороха холодной атмосферной воздушной плазмой.

Для подтверждения эффективности заявленного устройства проводят измерения характеристик семян гороха без обработки заявленным способом.

Результаты обработки семян гороха по Примерам 1-4 представлены в Таблице 1 на Фиг. 2.

Анализ результатов, приведенных в Таблице 1, показывает, что характеристики роста менялись в следующих пределах по сравнению с контролем:

- энергия прорастания от 79,6 до 87,1%;

- всхожесть от 83,1 до 91,8%;

- общая длина от 13,4 до 15,4 мм.;

- длина корня от 8 до 9,1 мм;

- длина стебля от 5,4 до 6,3 мм;

- общий вес от 1,2 до 1,5 гр;

- вес корня от 0,6 до 0,8 гр;

- вес стебля от 0,6 до 0,7 гр.

На основании проведенных исследований заявитель делает логический вывод, что оптимальными параметрами предпосевной обработки семян гороха холодной атмосферной воздушной плазмой являются напряжение 15 кВ.

Пример 5. Результаты обработки семян яровой пшеницы холодной атмосферной воздушной плазмой в течении 10 сек при напряжении на электроде генератора ионизатора воздуха 2 кВ.

Семена яровой пшеницы из загрузочного бункера 5 подают на ленточный транспортер 6, при этом регулируют скорость движения ленточного транспортера 6 таким образом, чтобы время обработки составило, например, 10 сек. Далее семена яровой пшеницы подают в камеру 4.

Одновременно в камеру 4 из ионизатора воздуха 3 с помощью вентилятора 1 подают холодную атмосферную воздушную плазму, при этом задают напряжение на электроде генератора ионизатора воздуха, например, 2 кВ. Обрабатывают семена яровой пшеницы в течение, например, 10 сек.

Получены обеззараженные, готовые к посеву семена с высокой энергией прорастания и всхожестью.

Пример 6. Результаты обработки яровой пшеницы холодной атмосферной воздушной плазмой в течении 10 сек при напряжении на электроде генератора ионизатора воздуха 5 кВ.

Семена яровой пшеницы из загрузочного бункера 5 подают на ленточный транспортер 6, при этом регулируют скорость движения ленточного транспортера 6 таким образом, чтобы время обработки составило, например, 10 сек. Далее семена яровой пшеницы подают в камеру 4.

Одновременно в камеру 4 из ионизатора воздуха 3 с помощью вентилятора 1 подают холодную атмосферную воздушную плазму, при этом задают напряжение на электроде генератора ионизатора воздуха, например, 5 кВ. Обрабатывают семена яровой пшеницы в течение, например, 10 сек.

Получены обеззараженные, готовые к посеву семена с высокой энергией прорастания и всхожестью.

Пример 7. Результаты обработки семян яровой пшеницы холодной атмосферной воздушной плазмой в течении 10 сек при напряжении на электроде генератора ионизатора воздуха 8 кВ.

Семена яровой пшеницы из загрузочного бункера 5 подают на ленточный транспортер 6, при этом регулируют скорость движения ленточного транспортера 6 таким образом, чтобы время обработки составило, например, 10 сек. Далее семена яровой пшеницы подают в камеру 4.

Одновременно в камеру 4 из ионизатора воздуха 3 с помощью вентилятора 1 подают холодную атмосферную воздушную плазму, при этом задают напряжение на электроде генератора ионизатора воздуха, например, 8 кВ. Обрабатывают семена яровой пшеницы в течение, например, 10 сек.

Получены обеззараженные, готовые к посеву семена с высокой энергией прорастания и всхожестью.

Пример 8. Контрольный пример без обработки семян яровой пшеницы холодной атмосферной воздушной плазмой.

Для подтверждения эффективности заявленного устройства проводят измерения характеристик семян яровой пшеницы без обработки заявленным способом.

Результаты обработки семян яровой пшеницы по Примерам 4-8 представлены в Таблице 2 на Фиг. 3.

Анализ результатов, приведенных в Таблице 2, показывает, что характеристики роста менялись в следующих пределах по сравнению с контролем:

- энергия прорастания от 83,1 до 90,1%;

- всхожесть от 88,4 до 92,1%;

- общая длина от 26,4 до 28,8 мм.;

- длина корня от 12,1 до 13,7 мм;

- длина стебля от 14,3 до 15,1 мм;

- общий вес от 0,1 до 0,14 гр;

- вес корня от 0,04 до 0,07 гр;

- вес стебля от 0,06 до 0,07 гр.

На основании проведенных исследований заявитель делает логический вывод, что оптимальными параметрами предпосевной обработки семян яровой пшеницы холодной атмосферной воздушной плазмой являются напряжение 5 кВ.

Далее приведены Примеры обработки семян при различном времени воздействия плазмой.

Пример 9. Обработка семян гороха холодной атмосферной воздушной плазмой в течение 30 сек при напряжении на электроде генератора ионизатора воздуха 15 кВ.

Семена гороха из загрузочного бункера 5 подают на ленточный транспортер 6, при этом регулируют скорость движения ленточного транспортера 6 таким образом, чтобы время обработки составило, например, 30 сек. Далее семена гороха подают в камеру 4.

Одновременно в камеру 4 из ионизатора воздуха 3 с помощью вентилятора 1 подают холодную атмосферную воздушную плазму, при этом задают напряжение на электроде генератора ионизатора воздуха, например, 15 кВ. Обрабатывают семена гороха в течение, например, 30 сек.

Получены обеззараженные, готовые к посеву семена с высокой энергией прорастания и всхожестью.

Пример 10. Обработка семян гороха холодной атмосферной воздушной плазмой в течение 50 сек при напряжении на электроде генератора ионизатора воздуха 15 кВ.

Семена гороха из загрузочного бункера 5 подают на ленточный транспортер 6, при этом регулируют скорость движения ленточного транспортера 6 таким образом, чтобы время обработки составило, например, 50 сек. Далее семена гороха подают в камеру 4.

Одновременно в камеру 4 из ионизатора воздуха 3 с помощью вентилятора 1 подают холодную атмосферную воздушную плазму, при этом задают напряжение на электроде генератора ионизатора воздуха, например, 15 кВ. Обрабатывают семена гороха в течение, например, 50 сек.

Получены обеззараженные, готовые к посеву семена с высокой энергией прорастания и всхожестью.

Пример 11. Обработка семян гороха холодной атмосферной воздушной плазмой в течение 80 сек при напряжении на электроде генератора ионизатора воздуха 15 кВ.

Семена гороха из загрузочного бункера 5 подают на ленточный транспортер 6, при этом регулируют скорость движения ленточного транспортера 6 таким образом, чтобы время обработки составило, например, 80 сек. Далее семена гороха подают в камеру 4.

Одновременно в камеру 4 из ионизатора воздуха 3 с помощью вентилятора 1 подают холодную атмосферную воздушную плазму, при этом задают напряжение на электроде генератора ионизатора воздуха, например, 15 кВ. Обрабатывают семена гороха в течение, например, 80 сек.

Получены обеззараженные, готовые к посеву семена с высокой энергией прорастания и всхожестью.

Пример 12. Контрольный пример без обработки семян гороха холодной атмосферной воздушной плазмой.

Для подтверждения эффективности заявленного устройства проводят измерения характеристик семян гороха без обработки заявленным способом.

Результаты обработки семян гороха по Примерам 9-12 представлены в Таблице 3 на Фиг. 4.

Анализ результатов, приведенных в Таблице 3, показывает, что характеристики роста менялись в следующих пределах по сравнению с контролем:

- энергия прорастания от 80,6 до 93,6%;

- всхожесть от 87,1 до 98,2%;

- общая длина от 14,5 до 18,9 мм.;

- длина корня от 9,1 до 12,5 мм;

- длина стебля от 5,4 до 6,4 мм;

- общий вес от 1,3 до 1,8 гр;

- вес корня от 0,8 до 1 гр;

- вес стебля от 0,5 до 0,8 гр.

На основании проведенных исследований заявитель делает логический вывод, что оптимальными параметрами предпосевной обработки семян гороха холодной атмосферной воздушной плазмой являются напряжение 15 кВ и время обработки 50 секунд.

Пример 13. Обработка семян яровой пшеницы холодной атмосферной воздушной плазмой в течение 10 сек при напряжении на электроде генератора ионизатора воздуха 5 кВ.

Семена яровой пшеницы из загрузочного бункера 5 подают на ленточный транспортер 6, при этом регулируют скорость движения ленточного транспортера 6 таким образом, чтобы время обработки составило, например, 10 сек. Далее семена яровой пшеницы подают в камеру 4.

Одновременно в камеру 4 из ионизатора воздуха 3 с помощью вентилятора 1 подают холодную атмосферную воздушную плазму, при этом задают напряжение на электроде генератора ионизатора воздуха, например, 5 кВ. Обрабатывают семена яровой пшеницы в течение, например, 10 сек.

Получены обеззараженные, готовые к посеву семена с высокой энергией прорастания и всхожестью.

Пример 14. Обработка семян яровой пшеницы холодной атмосферной воздушной плазмой в течение 15 сек при напряжении на электроде генератора ионизатора воздуха 5 кВ.

Семена яровой пшеницы из загрузочного бункера 5 подают на ленточный транспортер 6, при этом регулируют скорость движения ленточного транспортера 6 таким образом, чтобы время обработки составило, например, 15 сек. Далее семена яровой пшеницы подают в камеру 4.

Одновременно в камеру 4 из ионизатора воздуха 3 с помощью вентилятора 1 подают холодную атмосферную воздушную плазму, при этом задают напряжение на электроде генератора ионизатора воздуха, например, 5 кВ. Обрабатывают семена яровой пшеницы в течение, например, 15 сек.

Получены обеззараженные, готовые к посеву семена с высокой энергией прорастания и всхожестью.

Пример 15. Обработка семян яровой пшеницы холодной атмосферной воздушной плазмой в течение 20 сек при напряжении на электроде генератора ионизатора воздуха 5 кВ.

Семена яровой пшеницы из загрузочного бункера 5 подают на ленточный транспортер 6, при этом регулируют скорость движения ленточного транспортера 6 таким образом, чтобы время обработки составило, например, 20 сек. Далее семена яровой пшеницы подают в камеру 4.

Одновременно в камеру 4 из ионизатора воздуха 3 с помощью вентилятора 1 подают холодную атмосферную воздушную плазму, при этом задают напряжение на электроде генератора ионизатора воздуха, например, 5 кВ. Обрабатывают семена яровой пшеницы в течение, например, 20 сек.

Получены обеззараженные, готовые к посеву семена с высокой энергией прорастания и всхожестью.

Пример 16. Контрольный пример без обработки семян яровой пшеницы холодной атмосферной воздушной плазмой.

Для подтверждения эффективности заявленного устройства проводят измерения характеристик семян яровой пшеницы без обработки заявленным способом.

Результаты обработки семян яровой пшеницы по Примерам 13 - 16 представлены в Таблице 4 на Фиг. 5.

Анализ результатов, приведенных в Таблице 4, показывает, что характеристики роста менялись в следующих пределах по сравнению с контролем:

- энергия прорастания от 84,1 до 99,4%;

- всхожесть от 90,6 до 97,8%;

- общая длина от 23 до 29,1 мм;

- длина корня от 10,7 до 13,8 мм;

- длина стебля от 12,3 до 15,3 мм;

- общий вес от 0,1 до 0,15 гр;

- вес корня от 0,04 до 0,09 гр;

- вес стебля составил 0,06 гр.

На основании проведенных исследований заявитель делает логический вывод, что оптимальными параметрами предпосевной обработки семян яровой пшеницы холодной атмосферной воздушной плазмой являются напряжение 5 кВ и время обработки 15 сек.

На окончательном этапе получаем обеззараженные, готовые к посеву семена с высокой энергией прорастания и всхожестью.

Из описанного выше можно сделать вывод, что заявителем достигнуты заявленные технические результаты, а именно: создано устройство для обработки семян холодной атмосферной воздушной плазмой и разработан способ его работы, что обеспечило:

1 - повышение энергии прорастания и всхожести (по ГОСТ 10968-88 Зерно. Методы определения энергии прорастания и способности прорастания) - см. Примеры 1-16;

При этом в заявленном техническом решении не используются химические препараты и инертные газы, нет необходимости создания вакуумной системы. Поэтому заявленное техническое решение данное по сравнению с прототипом имеет:

2 - более высокую производительность;

3 - меньшую энергозатратность;

4 - более ремонтопригодность устройства;

5 - низкую стоимость оборудования;

6 - исключается необходимость обеспечения герметизации при обработке семян;

7 - более низкую себестоимость производства и экологическую безопасность.

Заявленное техническое решение соответствует условию патентоспособности «новизна», предъявляемому к изобретениям, так как из исследованного уровня техники не выявлены технические решения, обладающие заявленной совокупностью отличительных признаков, обеспечивающих достижение заявленных результатов.

Заявленное техническое решение соответствует условию патентоспособности «изобретательский уровень», предъявляемому к изобретениям, так как не является очевидным для специалиста в данной области науки и техники.

Заявленное техническое решение соответствует условию патентоспособности «промышленная применимость», так как может быть реализовано на любом специализированном предприятии с использованием стандартного оборудования, известных отечественных материалов и технологий.

Источник поступления информации: Роспатент

Показаны записи 1-7 из 7.
13.01.2017
№217.015.8576

Способ детоксикации белого фосфора с применением штамма микроорганизмов trichoderma asperellum вкпм f-1087

Изобретение относится к области биотехнологии, а именно к способу детоксикации белого фосфора в загрязненной почве. Обеззараживание выполняют путем обработки загрязненной белым фосфором почвы штаммом Trichoderma asperellum ВКПМ F-1087. Способ позволяет проводить детоксикацию почв, содержащих...
Тип: Изобретение
Номер охранного документа: 0002603259
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.89b0

Средство адресной доставки лекарств в клетки и способ его применения

Изобретение относится к медицине, в частности к средству адресной доставки лекарств в клетки. Средство для адресной доставки лекарственного средства в клетки содержит природного происхождения нанотрубки галлуазита, которые отмывают в этаноле и воде, помещают в емкость с жидким лекарственным...
Тип: Изобретение
Номер охранного документа: 0002602299
Дата охранного документа: 20.11.2016
19.10.2018
№218.016.93eb

Пептидный препарат из коллагена для регенерации тканей кожи, способ его получения и применения

Группа изобретений относится к медицине, а именно к фармацевтике, и может быть использовано для создания препарата для регенерации тканей организма. Пептидный препарат из коллагена для регенерации тканей кожи состоит из фракции активных пептидов с молекулярной массой в диапазоне от 3600 до...
Тип: Изобретение
Номер охранного документа: 0002669933
Дата охранного документа: 17.10.2018
06.07.2020
№220.018.2fa3

Композиция реагентов для химической конверсии тяжелой нефти при закачке пара

Предложена композиция реагентов для химической конверсии тяжелой нефти при закачке пара и интенсификации нефтеотдачи, включающая наноразмерный катализатор на основе смешанного оксида переходных металлов, где металлы выбраны из группы: Сг, Mn, Fe, Со, Ni, Cu, Zn, Mo, водород-донорный...
Тип: Изобретение
Номер охранного документа: 0002725624
Дата охранного документа: 03.07.2020
10.05.2023
№223.018.531f

Четвертичные аммониевые соединения на основе производных пиридоксина и жирных карбоновых кислот, обладающие антибактериальной активностью

Изобретение относится к химии органических гетероциклических соединений, а именно к четвертичным аммониевым соединениям на основе производных пиридоксина и жирных карбоновых кислот общей формулы (I), где радикалы R, R, R и R определены в формуле изобретения. Технический результат: соединения...
Тип: Изобретение
Номер охранного документа: 0002795265
Дата охранного документа: 02.05.2023
21.05.2023
№223.018.6867

Фосфорсодержащие бетаины с липофильными октильными заместителями у атома азота, обладающие бактерицидной активностью

Изобретение относится к области ветеринарии и сельского хозяйства, в частности к фосфорсодержащим бетаинам, которые могут быть полезны в качестве дезинфицирующих средств. Раскрываются фосфорсодержащие бетаины общей формулы (I), где R = CH (бутил), R = CH (метил) (Iа), R = CH (бутил), R = СH...
Тип: Изобретение
Номер охранного документа: 0002794901
Дата охранного документа: 25.04.2023
21.05.2023
№223.018.695a

Способ культивирования биомассы миобластов, полученных из мышц стерляди

Изобретение относится к биотехнологии и клеточной биологии, в частности к способу культивирования биомассы миобластов, полученных из мышц стерляди, с целью получения клеточного мясного продукта. Осуществление указанного способа проводят в три этапа: на первом этапе проводят выделение миобластов...
Тип: Изобретение
Номер охранного документа: 0002794773
Дата охранного документа: 24.04.2023
Показаны записи 1-8 из 8.
10.10.2014
№216.012.fc89

Упрочняющее теплоотражающее просветляющее покрытие

Изобретение относится к конструкции упрочняющих теплоотражающих просветляющих покрытий для прозрачных пластиковых изделий, например для экранов средств индивидуальной защиты. Предложено упрочняющее теплоотражающее просветляющее покрытие на прозрачной пластиковой подложке, состоящее из...
Тип: Изобретение
Номер охранного документа: 0002530495
Дата охранного документа: 10.10.2014
10.02.2015
№216.013.262e

Способ получения упрочняющего теплоотражающего просветляющего покрытия для прозрачных пластиковых изделий

Изобретение относится к вакуумной технологии, а именно к технологии изготовления многослойных функциональных покрытий для органических подложек, в том числе упрочняющих теплоотражающих просветляющих покрытий для прозрачных пластиковых изделий, например для экранов средств индивидуальной защиты,...
Тип: Изобретение
Номер охранного документа: 0002541227
Дата охранного документа: 10.02.2015
29.05.2018
№218.016.5718

Способ динамических испытаний опор воздушных линий электропередачи

Изобретение относится к энергетическому строительству, а именно к способу динамических испытаний опор воздушных линий электропередачи, который позволяет определить влияние динамических нагрузок, связанных, например, с обрывом проводов вследствие гололедных аварий или усталостных колебательных...
Тип: Изобретение
Номер охранного документа: 0002654897
Дата охранного документа: 23.05.2018
30.03.2019
№219.016.f97d

Многогранная стойка опоры воздушной линии электропередачи

Изобретение относится к строительству, а именно к опорам воздушной линии электропередачи (ВЛ), телекоммуникационным антеннам, башням сотовой связи, стойкам электроосвещения и другим опорам. Представлена многогранная стойка опоры воздушной линии электропередачи, содержащая по меньшей мере одну...
Тип: Изобретение
Номер охранного документа: 0002683468
Дата охранного документа: 28.03.2019
30.03.2019
№219.016.f980

Многогранная стойка опоры воздушной линии электропередачи

Изобретение относится к строительству, а именно к опорам воздушной линии электропередачи (ВЛ), опорам светосигнального оборудования, башням сотовой связи, и другим устройствам различного назначения, способным надежно функционировать в услових воздействия высоких сдвигающих и изгибающих усилий....
Тип: Изобретение
Номер охранного документа: 0002683424
Дата охранного документа: 28.03.2019
04.02.2020
№220.017.fd2d

Интрамедуллярный расширяющийся стержень для остеосинтеза трубчатых костей

Изобретение относится к медицине. Интрамедуллярный расширяющийся стержень для остеосинтеза трубчатых костей состоит из центральной оси, прижимной детали, втулки, ручки, наконечника, прижимной гайки и двух групп периферических спиц. Центральная ось оснащена наружной резьбой, размещенной в...
Тип: Изобретение
Номер охранного документа: 0002712803
Дата охранного документа: 31.01.2020
10.04.2020
№220.018.13db

Образовательно-исследовательский комплекс робот малый антропоморфный

Изобретение относится к образовательно-исследовательскому комплексу для обучения робототехнике. Комплекс содержит робота антропоморфного и взаимодействующий с ним интерфейс с программным обеспечением для обучения робототехнике. Робот имеет корпус в виде двух манипуляторов с захватами,...
Тип: Изобретение
Номер охранного документа: 0002718513
Дата охранного документа: 08.04.2020
04.05.2020
№220.018.1b90

Тренажер с биологической обратной связью для реабилитации суставов кистей и пальцев рук и способ его работы

Группа изобретений относится к медицинской технике и может быть использована для реабилитации двигательной активности и амплитуды движений суставов кистей и пальцев рук. Тренажер с биологической обратной связью состоит из модуля управления, выполненного в виде полого пластикового корпуса,...
Тип: Изобретение
Номер охранного документа: 0002720323
Дата охранного документа: 28.04.2020
+ добавить свой РИД