×
24.07.2020
220.018.35fe

Результат интеллектуальной деятельности: СПОСОБ НАНЕСЕНИЯ ИЗНОСОСТОЙКИХ ПОКРЫТИЙ НА ОСНОВЕ АЛЮМИНИЯ И ОКСИДА ИТТРИЯ НА СИЛУМИН

Вид РИД

Изобретение

Аннотация: Изобретение относится к области поверхностного упрочнения алюминиевых сплавов с помощью комбинированной обработки и может быть использовано при нанесении предлагаемым способом покрытий на детали и изделия, подверженные износу. Способ нанесения износостойких покрытий на основе алюминия и оксида иттрия на силумин включает электрический взрыв композиционного электрически взрываемого проводника, состоящего из двухслойной плоской алюминиевой оболочки массой до 60 мг и сердечника в виде порошка оксида иттрия массой 58-89 мг, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности силумина при поглощаемой плотности мощности 2,6-2,8 ГВт/м, осаждение на поверхность продуктов взрыва и формирование на ней композиционного покрытия системы YO-Al с последующим облучением поверхности низкоэнергетическими сильноточными электронными пучками с плотностью энергии пучка электронов E=25-35 Дж/см, энергией электронов 17 кэВ тремя импульсами с длительностью импульса пучка электронов τ=140-160 мкс. Изобретение направлено на получение покрытия на силуминах, обладающего высокой микротвердостью и износостойкостью. 4 ил., 2 пр.

Изобретение относится к области поверхностного упрочнения алюминиевых сплавов с помощью комбинированной обработки, включающей в себя электровзрывное напыление и электронно-пучковую обработку, в частности к поверхностному упрочнению силумина системой Y2O3-Al и последующей обработке низкоэнергетическими сильноточными электронными пучками и может быть использовано при нанесении предлагаемым способом покрытий на детали и изделия, подверженные износу.

Известен способ электровзрывного напыления композиционных износостойких покрытий системы TiC-Mo на поверхности трения. Данный способ включает в себя размещение порошковой навески из карбида титана между двумя слоями молибденовой фольги, электрический взрыв фольги с формированием импульсной многофазной плазменной струи, оплавление плазменной струей поверхности трения при значении удельного потока энергии 3,5…4,5 ГВт/м2 и напыление на оплавленный слой компонентов плазменной струи с последующей самозакалкой и получением композиционного покрытия, содержащего карбид титана и молибден (патент RU №2518037, МПК С23С 4/10, С23С 14/32, опубл. 10.06.2014).

Недостатком данного метода являются различные структурные дефекты типа кратеров, наплывов, впадин, пор, микротрещин, образующиеся на поверхности при проведении обработки поверхности. Кроме того, данный вид модификации поверхности сопровождается неравномерным распределением легирующих элементов в процессе их распыления и плавления, а так же кипения и испарения поверхностного слоя обработки. Эти факторы ограничивают практическое использование данной технологии вследствие быстрого износа покрытия.

Наиболее близким к заявленному техническому решению является способ обработки поверхностных слоев силумина марки АК12 интенсивным импульсным электронным пучком с энергией электронов 18 кэВ, частотой следования импульсов ƒ=0,3 Гц, длительностью импульса пучка электронов τ=50-150 мкс, плотностью энергии пучка электронов ES=10-25 Дж/см2 и количеством импульсов воздействия n=1-5. Облучение проводится на лицевой поверхности образца, расположенной над надрезом, имитирующим трещину, в среде аргона при остаточном давлении 0,02 Па (патент RU №2666817, МПК C22F 1/043, С22С 21/02, C22F 3/00, опубл. 10.04.2018).

Недостатком данного метода является то, что облучение поверхности силумина высокоинтенсивными импульсными электронными пучками в режиме оплавления включений кремния сопровождается формированием в поверхностном слое микропор и микротрещин, ослабляющих материал. Последнее является определяющим фактором, способствующим лишь незначительному повышению микротвердости и износостойкости.

Техническая проблема, решаемая предлагаемым изобретением, заключается в формировании композиционного покрытия алюминий - оксид иттрия, подвергнутого дополнительной обработке высокоинтенсивными импульсными электронными пучками, обладающего высокой микротвердостью и износостойкостью.

Решение проблемы реализуется способом нанесения износостойких покрытий на основе алюминия и оксида иттрия на силумин, включающем электрический взрыв композиционного электрически взрываемого проводника, состоящего из двухслойной плоской алюминиевой оболочки массой до 60 мг и сердечника в виде порошка оксида иттрия массой 58-89 мг, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности силумина при поглощаемой плотности мощности 2,6-2,8 ГВт/м2, осаждение на поверхность продуктов взрыва и формирование на ней композиционного покрытия системы Y2O3-Al с последующим облучением поверхности низкоэнергетическими сильноточными электронными пучками с плотностью энергии пучка электронов ES=25-35 Дж/см2, энергией электронов 17 кэВ, с длительностью импульса пучка электронов τ=140-160 мкс, количеством импульсов N=3.

Комплексная обработка проводится следующим образом. На первом этапе композитное покрытие Y2O3-Al наносится методом электровзрывного легирования. Для повышения интенсивности теплового воздействия на поверхность материала до ее оплавления и обеспечения этим условия напыления применяется торцевая схема взрыва. Технология напыления заключается в следующем: алюминиевая фольга зажималась между коаксиальными электродами, на которые через вакуумный разрядник подавалось регулируемое напряжение. При разряде емкостного накопителя по взрываемому проводнику протекает электрический ток большой плотности, что приводит к его взрыву. Взрывные продукты устремляются в направлении обрабатываемого образца, увлекая за собой частицы порошковой навески, в качестве которой был использован порошок Y2O3.

В результате продукты электрического взрыва представляют собой многофазную систему, включающую как плазменный компонент (Al), так и конденсированные частицы различной дисперсности (Y2O3), которые осаждаются на поверхность обрабатываемого изделия, образуя при этом многокомпонентное покрытие.

Второй этап обработки заключается в воздействии интенсивным импульсным электронным пучком на получившееся многокомпонентное покрытие.

Технический результат, получаемый при использовании заявляемого способа, заключается в комбинированной обработке поверхности, путем формирования композиционного покрытия алюминий - оксид иттрия, подвергнутого дополнительной обработке низкоэнергетическими сильноточными электронными пучками, обладающего высокой микротвердостью и износостойкостью, по сравнению с одноступенчатой обработкой.

Предлагаемый способ поясняется представленными изображениями:

На фиг. 1 - Изображение структуры поверхности силумина, подвергнутой комплексной обработке по режиму 1 (режим электровзрывного напыления: масса порошка оксида иттрия 58,9 мг и плотности мощности 2,8 ГВт/м2. Режим облучения низкоэнергетическими сильноточными электронными пучками с плотностью энергии пучка электронов ES=25 Дж/см2, энергией электронов 17 кэВ, с длительностью импульса пучка электронов τ=150 мкс, количеством импульсов N=3). Сканирующая электронная микроскопия.

На фиг. 2 - Изображение структуры поверхности силумина, подвергнутая комплексной обработке по режиму 2 (режим электровзрывного напыления: масса порошка оксида иттрия 88,3 мг и плотности мощности 2,6 ГВт/м2. Режим облучения низкоэнергетическими сильноточными электронными пучками с плотностью энергии пучка электронов ES=25 Дж/см2, энергией электронов 17 кэВ, с длительностью импульса пучка электронов τ=150 мкс, количеством импульсов N=3) Сканирующая электронная микроскопия.

На фиг. 3 - Значения микротвердости на поверхности силумина, полученные на исходном образце и после проведения электровзрывного напыления, электронно-пучковой обработки и комбинированного метода модификации поверхности.

На фиг. 4 - Коэффициент трения и параметр износа k силумина, полученные после проведения электронно-пучковой обработки и комбинированного метода модификации поверхности.

На фиг. 1 (режим электровзрывного напыления масса порошка оксида иттрия 58,9 мг и плотности мощности 2,8 ГВт/м2) стрелки указывают на частицы капельной фракции (фиг. 1В).

Видно, что комплексная обработка образует рельеф поверхности с большим количеством микрократеров (фиг. 1А). Образующийся поверхностный слой разделен на участки размером менее 1 мкм (фиг. 1С). Области имеют поликристаллическую структуру; размер кристалла варьируется от 60 до 100 нм (вставка на фиг. 1С).

На фиг. 2 (режим электровзрывного напыления масса порошка оксида иттрия 88,3 мг и плотности мощности 2,6 ГВт/м2) стрелки указывают на тонкопленочные образования (фиг. 2А) и частицы круглой капельной фракции (фиг. 2В).

Сравнивая результаты, представленные на фиг. 1 и 2, можно сделать вывод, что увеличение массы порошка Y2O3 на 50% и уменьшение напряжения разряда на 7%, приводит к значительному уменьшению количества микрократеров на модифицированной поверхности, образуя фрагментарные тонкопленочные включения на поверхности (обозначены стрелками на фиг. 2А) и участки с субмикрокристаллической структурой со средним размером кристаллитов 0,83 м в поверхностном слое (фиг. 2С).

Исследования морфологии и фазового строения поверхности силумина, модифицированного системой Y2O3-Al и электронными пучками, показали, что в целом модифицированная поверхность является низкопористой с однородным содержанием легирующих элементов. Структура модифицированного слоя содержит наноразмерные элементы.

Анализ диаграммы изменения микротвердости (фиг. 3) дает основание сказать, что независимо от параметров модификации, увеличение микротвердости составляет 97% (0,71 ГПа). Комплексная обработка, независимо от режима, приводит к увеличению микротвердости в 3,2 раза (2,34 ГПа по сравнению со средним значением 0,73 ГПа в исходном состоянии), что соответствует данным трибологических тестов.

Трибологические свойства модифицированного силумина характеризовали коэффициентом износа и коэффициентом трения. По сравнению с исходным силумином износостойкость увеличивается в 18-20 раз, а коэффициент трения уменьшается в ≈1,5 раза. Сравнивая значения коэффициента трения и износостойкости силумина, облученного интенсивным импульсным электронным пучком, и подвергнутого обработке комплексным методом, можно заметить, что после комплексной модификации износостойкость возрастает в 2,6-2,8 раза, а коэффициент трения уменьшается в ≈1,3 раза (фиг. 4).

Примеры конкретного использования способа.

Пример 1.

Обработке подвергали поверхность силумина марки АК10М2Н. Образцы силумина имели размеры 20×20×10 мм3. Обработка проводилась на поверхности с размерами 20×20 мм2. Композитное покрытие Al-Y2O3 нанесено методом электровзрывного напыления. Был использован композиционный электрически взрываемый проводник, состоящий из двухслойной плоской алюминиевой оболочки в виде алюминиевой фольги массой 58,9 мг, и сердечника из порошка оксида иттрия массой 58,9 мг. Поверхность оплавляли при зарядном напряжении 2,8 кВ и формировали на ней композиционное электровзрывное покрытие системы Y2O3-Al. В результате продукты электрического взрыва представляли собой многофазную систему, включающую как плазменный компонент (Al) и конденсированные частицы разного размера (Y2O3), которые осаждается на поверхности образца, образуя, таким образом, многокомпонентное покрытие. На втором этапе поверхность подвергали обработке низкоэнергетическими сильноточными электронными пучками. Поверхность модифицирована по режиму с энергией электронов 17 кэВ, количеством импульсов N=3 имп., с длительностью импульса пучка электронов τ=140-160 мкс, с плотностью энергии пучка электронов ES=25-35 Дж/см2. [Structure and properties changes of Al-Si alloy treated by pulsed electron beam / D.V. Zagulyaev,, S.V. Konovalov, V.E. Gromov, A.M. Glezer, Y.F. Ivanov, R.V. Sundeev // Materials Letters. -2018. - V. 229. - P. 377-380 (Изменения структуры и свойств сплава Al-Si, обработанного импульсным электронным пучком / Д.В. Загуляев, С.В. Коновалов В.Е. Громов A.M. Глезер, Ю.Ф. Иванов, Р.В. Сундеев // Materials Letters. - 2018. - Т. 229. - С. 377-380.)].

Полученное покрытие имеет значение микротвердости 2003 МПа, коэффициента трения μ=0,35 и параметра износа κ=4•10-4 мм3/Н*м [Microstructure and mechanical properties of doped and electron-beam treated surface of hypereutectic Al-11.1% Si alloy/ D.V. Zagulyaev,, S.V. Konovalov, Y. F. Ivanov, V.E. Gromov, E. Petrikova // Journal of Materials Research and Technology. - 2019. - V. 8, Iss. 5. - P. 3835-3842 Микроструктура и механические свойства поверхности сплава Al-11,1% Si, подвергнутой комплексной модификации/ Д.В. Загуляев, С. В. Коновалов, Ю.Ф. Иванов, В.Е. Громов, Е. Петрикова //. Journal of Materials Research and Technology -2019. - T. 8, вып.5. - С. 3835-3842.].

Пример 2.

Обработке подвергали поверхность силумина марки АК10М2Н. Образцы силумина имели размеры 20 х 20 х 10 мм3. Обработка проводилась на поверхности с размерами 20×20 мм2. Композитное покрытие Al-Y2O3 нанесено методом электровзрывного напыления. Был использован композиционный электрически взрываемый проводник, состоящий из двухслойной плоской алюминиевой оболочки в виде алюминиевой фольги массой 58,9 мг, и сердечника из порошка оксида иттрия массой 88,3 мг. Поверхность оплавляли при зарядном напряжении 2,6 кВ и формировали на ней композиционное электровзрывное покрытие системы Y2O3-Al. В результате продукты электрического взрыва представляли собой многофазную систему, включающую как плазменный компонент (Al) и конденсированные частицы разного размера (Y2O3), которые осаждаются на поверхности образца, образуя, таким образом, многокомпонентное покрытие. На втором этапе поверхность подвергали обработке низкоэнергетическими сильноточными электронными пучками по режиму с энергией электронов 17 кэВ, количеством импульсов N=3 имп., с длительностью импульса пучка электронов τ=140-160 мкс, с плотностью энергии пучка электронов ES=25-35 Дж/см2. [Structure and properties changes of Al-Si alloy treated by pulsed electron beam / D.V. Zagulyaev,, S.V. Konovalov, V.E. Gromov, A.M. Glezer, Y. F. Ivanov, R.V. Sundeev // Materials Letters. - 2018. - V. 229. - P. 377-380. (Изменения структуры и свойств сплава Al-Si, обработанного импульсным электронным пучком / Д.В. Загуляев, С.В. Коновалов В.Е. Громов A.M. Глезер, Ю.Ф. Иванов, Р.В. Сундеев // Materials Letters. - 2018. - Т. 229. - С. 377-380.)].

Полученное покрытие имеет значение микротвердости 2003 МПа, коэффициента трения μ=0,36 и параметра износа κ=5•10-4 мм3/Н*м [Microstructure and mechanical properties of doped and electron-beam treated surface of hypereutectic Al-11.1% Si alloy/ D.V. Zagulyaev,, S.V. Konovalov, Y.F. Ivanov, V.E. Gromov, E. Petrikova // Journal of Materials Research and Technology. - 2019. - V. 8, Iss. 5. - P. 3835-3842. (Микроструктура и механические свойства поверхности сплава Al-11,1% Si, подвергнутой комплексной модификации/ Д.В. Загуляев, С.В. Коновалов, Ю.Ф. Иванов, В.Е. Громов, Е. Петрикова // Journal of Materials Research and Technology. - 2019. - T. 8, вып. 5. - С. 3835-3842.)].

Таким образом, комбинированная обработка силумина эвтектического состава частицами порошка оксида иттрия с последующим облучением электронным пучком сопровождается формированием поверхностного слоя, механические (микротвердость) и трибологические (износостойкость и коэффициент трения) свойства которого многократно превышают соответствующие характеристики силумина в литом состоянии и в состоянии после однокомпонентной обработки. Способ может быть использован в автомобильной, авиационной промышленности, в производстве электроаппаратуры и железнодорожного оборудования.

Способ нанесения износостойких покрытий на основе алюминия и оксида иттрия на силумин, включающий электрический взрыв композиционного электрически взрываемого проводника, состоящего из двухслойной плоской алюминиевой оболочки массой до 60 мг и сердечника в виде порошка оксида иттрия массой 58-89 мг, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности силумина при поглощаемой плотности мощности 2,6-2,8 ГВт/м, осаждение на поверхность продуктов взрыва и формирование на ней композиционного покрытия системы YO-Al с последующим облучением поверхности низкоэнергетическими сильноточными электронными пучками с энергией электронов 17 кэВ тремя импульсами, с длительностью импульса пучка электронов τ=140-160 мкс и плотностью энергии пучка электронов E=25-35 Дж/см.
Источник поступления информации: Роспатент

Показаны записи 1-9 из 9.
03.10.2018
№218.016.8d99

Механизм для вычерчивания пространственных кривых

Механизм для вычерчивания пространственных кривых относится к механизмам, применяемым в технике для получения заданного движения выходного звена, и может быть использован при обработке внутренних поверхностей различной кривизны, лазерной резки, воспроизведении пространственных кривых сложной...
Тип: Изобретение
Номер охранного документа: 0002668414
Дата охранного документа: 28.09.2018
03.04.2019
№219.016.fa7c

Машина для контактной стыковой сварки

Изобретение относится к области контактной стыковой сварки изделий. Машина содержит корпус, установленные на нем подвижный и неподвижный зажимы, соединенные с устройствами зажатия свариваемых деталей, закрепленными на основаниях зажимов, электромеханический привод оплавления и осадки,...
Тип: Изобретение
Номер охранного документа: 0002683668
Дата охранного документа: 01.04.2019
16.05.2019
№219.017.5254

Винторычажный смесительный механизм

Изобретение относится к перемешивающим устройствам, применяемым в пищевой, медицинской, химической и строительной отраслях промышленности, а также в сельском хозяйстве с целью смешивания различных материалов, приготовления однородных сред и выравнивания концентрации перемешиваемых веществ по...
Тип: Изобретение
Номер охранного документа: 0002687407
Дата охранного документа: 13.05.2019
02.10.2019
№219.017.cae7

Способ получения сырьевой смеси для декоративной строительной керамики

Изобретение относится к производству строительных материалов и может быть использовано в технологии производства изделий строительной керамики, в частности декоративного керамического кирпича. Техническим результатом изобретения является упрощение способа за счет снижения количества сырьевых...
Тип: Изобретение
Номер охранного документа: 0002701657
Дата охранного документа: 30.09.2019
10.07.2020
№220.018.3118

Режущая пластина бурового резца

Изобретение относится к угольной промышленности, а точнее к режущему инструменту бурильных машин, оснащенному механически закрепленными твердосплавными пластинами. Режущая пластина бурового резца состоит из тела пластины, задней грани и лезвия с постоянным углом заострения. Задняя грань...
Тип: Изобретение
Номер охранного документа: 0002726017
Дата охранного документа: 08.07.2020
12.07.2020
№220.018.323e

Порошковая проволока

Изобретение относится к сварочным материалам и может быть использовано при наплавке без использования флюса для восстановления изношенных деталей и получения износостойкого защитного покрытия на детали горнорудного оборудования, работающих в условиях абразивного износа. Порошковая проволока...
Тип: Изобретение
Номер охранного документа: 0002726230
Дата охранного документа: 10.07.2020
12.04.2023
№223.018.4680

Способ очистки газов от пыли

Изобретение относится к технологии очистки газов от пыли в теплоэнергетике, черной и цветной металлургии. Способ очистки газов от пыли включает ввод в циклон очищаемого газа через подводящий патрубок, очистку газа от пыли в цилиндрическом корпусе за счет действия центробежных сил при...
Тип: Изобретение
Номер охранного документа: 0002779452
Дата охранного документа: 07.09.2022
21.04.2023
№223.018.4f41

Способ нанесения биоинертных покрытий на основе титана, ниобия, циркония и азота на титановые имплантаты

Изобретение направлено на формирование на титановых имплантатах покрытий на основе титана, ниобия, циркония и азота, которые могут быть использованы в медицинской технике, травматологии и ортопедии как биоинертные покрытия с антибактериальным эффектом. Осуществляют электрический взрыв...
Тип: Изобретение
Номер охранного документа: 0002792909
Дата охранного документа: 28.03.2023
01.06.2023
№223.018.74a7

Порошковая проволока

Изобретение относится к сварочным материалам и может быть использовано при наплавке без использования флюса для восстановления изношенных деталей и получения износостойкого защитного покрытия на деталях горнорудного оборудования, работающих в условиях абразивного износа. Порошковая проволока...
Тип: Изобретение
Номер охранного документа: 0002779557
Дата охранного документа: 09.09.2022
Показаны записи 11-20 из 20.
26.08.2017
№217.015.d927

Способ нанесения электроэрозионностойких покрытий на основе хрома, карбидов хрома и меди на медные электрические контакты

Изобретение относится к технологии нанесения покрытий на металлические поверхности с использованием концентрированных потоков энергии и может быть использовано в электротехнике. Способ нанесения электроэрозионного покрытия системы медь – хром, содержащего карбиды хрома, на медные электрические...
Тип: Изобретение
Номер охранного документа: 0002623548
Дата охранного документа: 27.06.2017
13.02.2018
№218.016.1f79

Способ электродуговой наплавки износостойкого покрытия на сталь hardox 400

Изобретение относится к области сварочного производства и может быть использовано при получении износостойких покрытий на деталях из углеродистых и низколегированных сталях, работающих в условиях абразивного износа. Способ включает электродуговую наплавку износостойкого покрытия на сталь Hardox...
Тип: Изобретение
Номер охранного документа: 0002641200
Дата охранного документа: 16.01.2018
18.05.2018
№218.016.50b7

Способ нанесения износостойких покрытий на основе карбида титана, crcи алюминия на штамповые стали

Изобретение относится к формированию на стальных поверхностях износостойких покрытий, которые могут быть использованы в штамповочном производстве. Способ включает электрический взрыв композиционного электрически взрываемого проводника, состоящего из двухслойной плоской алюминиевой оболочки...
Тип: Изобретение
Номер охранного документа: 0002653395
Дата охранного документа: 08.05.2018
04.07.2018
№218.016.6a36

Способ нанесения износостойких покрытий на основе карбида титана и никеля на штамповые стали

Изобретение относится к формированию на стальных поверхностях покрытий на основе карбида титана и никеля, которые могут быть использованы в штамповочном производстве и других отраслях промышленности. Способ включает электрический взрыв композиционного электрически взрываемого проводника,...
Тип: Изобретение
Номер охранного документа: 0002659560
Дата охранного документа: 02.07.2018
04.07.2018
№218.016.6a4a

Способ нанесения износостойких покрытий на основе диборида титана, титана и алюминия на штамповые стали

Изобретение относится к формированию на стальных поверхностях покрытий на основе диборида титана, титана и алюминия, которые могут быть использованы в штамповочном производстве и других отраслях промышленности. Способ включает электрический взрыв композиционного электрически взрываемого...
Тип: Изобретение
Номер охранного документа: 0002659561
Дата охранного документа: 02.07.2018
13.09.2018
№218.016.86e9

Способ модифицирования силуминов

Изобретение относится к цветной металлургии, в частности к способам обработки алюминиево-кремниевых сплавов (силуминов). Способ модифицирования силумина включает облучение интенсивным импульсным электронным пучком силумина марки АК12 с энергией электронов 18 кэВ, частотой следования импульсов...
Тип: Изобретение
Номер охранного документа: 0002666817
Дата охранного документа: 12.09.2018
27.12.2018
№218.016.ac15

Способ нанесения износостойких покрытий на основе алюминия и оксида иттрия на силумин

Изобретение относится к области поверхностного упрочнения алюминиевых сплавов электровзрывным напылением, в частности к поверхностному упрочнению силумина системой YO-Al, и может быть использовано при нанесении предлагаемым способом покрытий на детали и изделия, подверженные износу. Способ...
Тип: Изобретение
Номер охранного документа: 0002676122
Дата охранного документа: 26.12.2018
11.07.2019
№219.017.b254

Способ количественной оценки распределения дисперсных фаз листовых алюминиевых сплавов

Изобретение относится к области металлографических исследований и анализа материалов применительно к определению неоднородности распределения частиц дисперсных фаз в листовых металлах и сплавах. Способ включает получение металлографического шлифа, его травление для выявления фаз, затем с...
Тип: Изобретение
Номер охранного документа: 0002694212
Дата охранного документа: 09.07.2019
12.09.2019
№219.017.c9ef

Способ измерения и учета расхода электроэнергии на производстве и устройство для его осуществления

Изобретение относится к области электротехники, в частности к электроизмерительной технике, и может быть использовано для измерения условно-постоянных и условно-переменных расходов электроэнергии. В предлагаемом способе измерения и учета расхода электроэнергии на производстве цикл наблюдения...
Тип: Изобретение
Номер охранного документа: 0002699925
Дата охранного документа: 11.09.2019
06.02.2020
№220.017.ff7c

Способ формирования композиционного материала методом селективного лазерного плавления порошка жаропрочного никелевого сплава на подложке из титанового сплава

Изобретение относится к формированию композиционного материала в виде покрытия на поверхности изделия из титанового сплава. Способ включает нанесение на поверхность изделия порошковой композиции, содержащей следующие компоненты, вес.%: Аl - 3,91, Со - 15,6, Сr - 11,1, Fe - 0,06, Mo - 4,48, Nb -...
Тип: Изобретение
Номер охранного документа: 0002713255
Дата охранного документа: 04.02.2020
+ добавить свой РИД