×
27.06.2020
220.018.2c35

Биоактивный композиционный материал

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области получения биологически активных фармацевтических и медицинских материалов. Предложен биоактивный композиционный материал на основе гидроксиапатита, в котором диспергирован монооксид титана. Материал содержит в качестве монооксида титана сверхстехиометрический монооксид титана TiO при следующем соотношении компонентов, мас.%: гидроксиапатит – 77-79, монооксид титана TiO– 21-23. Предложенный биоактивный композиционный материал обладает дезинфицирующей способностью наряду с высокой микротвердостью и может применяться для реконструкции и замещения участков костной ткани, протезирования фрагментов опорно-двигательного аппарата. 1 табл., 2 пр., 2 ил.
Реферат Свернуть Развернуть

Изобретение относится к области получения биологически активных фармацевтических и медицинских материалов, которые могут применяться для реконструкции и замещения участков костной ткани, протезирования фрагментов опорно-двигательного аппарата.

Известен композиционный материал, имеющий структуру ядро-оболочка, в котором в качестве оболочки использован гидроксиапатит, а в качестве ядра – наностержни диоксида титана, при этом в оболочку дополнительно диспергирована платина. Известный материал используют для утилизации углекислого газа за счет его фотокаталитических свойств (Appl.CN108543533; МПК B01J 23/42, B01J 35/00, B01D 53/62, B01D 52/86; 2018 год).

Однако известный материал не может быть использован в медицине для восполнения недостатка костной ткани, поскольку не обладает однородной микротвердостью по объему вследствие особенностей его структуры.

Известен биоактивный материал на основе гидроксиапатита, допированного диоксидом титана, с размером частиц 76-150 мкм, полученный путем погружения и выдержки гидроксиапатита в гидрозоль диоксида титана. Материал обладает хорошей биосовместимостью и бактерицидным эффектом и может быть использован в качестве материала для восстановления биологической ткани (Pat.CN106139252; МПК A61L 27/42, C01B 25/32, C01G 23/053, C04B 35/44; 2019 год).

Однако, во-первых, крупный размер частиц снижает биологическую активность известного материала, во- вторых, способ получения известного материала обусловливает неравномерное распределение частиц диоксида титана в матрице гидроксиапатита, что в свою очередь приводит к неравномерному распределению микротвердости по объему.

Известен нанокомпозиционный материал на основе гидроксиапатита с замещением части ионов кальция на титан и с диспергированным в нем диоксидом титана, который предлагается использовать в качестве дезинфицирующего покрытия биологических тканей (Pat. CN 1701844, МПК B01J 20/06, 2005 год).

Недостатком известного материала является невозможность его использования в качестве объемного заменителя биологической ткани в случае устранения костных дефектов вследствие недостаточно высоких прочностных характеристик.

Наиболее близким по технической сущности к предлагаемому является композиционный материал на основе пористого гидроксиапатита с распределенным на его поверхности и в порах диоксидом титана, обеспечивающий дезинфицирующий эффект за счет фотокаталитического разложения органических соединений (Appl. JP 2018020310; МПК B01J 27/18, B01J 35/02, B01J 35/08, B01J 37/04, C01B 25/32; 2018 год)(прототип).

Однако недостатком известного материала является невозможность его использования в качестве объемного заменителя костной ткани вследствие, во-первых, его технического исполнения в виде гранул, во-вторых, низкой микротвердости за счет высокой пористости матрицы и неравномерного распределения диокида титана в объеме гидроксиапатита.

Таким образом, перед авторами стояла задача разработать биоактивный композиционный материал, обладающий наряду с дезинфицирующей способностью повышенной микротвердостью.

Поставленная задача решена в предлагаемом биоактивном композиционном материале на основе гидроксиапатита, в котором диспергирован монооксид титана, отличающийся тем, что он содержит в качестве монооксида титана сверхстехиометрический монооксид титана TiO1,22 при следующем соотношении компонентов, мас.%:

гидроксиапатит - 77-79
монооксид титана - 21-23.

В настоящее время из патентной и научно-технической литературы не известен биоактивный композиционный материал на основе гидроксиапатита, в котором диспергирован сверхстехиометрический монооксид титана TiO1,22 в заявленном массовом соотношении компонентов.

Исследования, проведенные авторами, выявили наличие фотокаталитических свойств предлагаемого биоактивного композиционного материала, содержащего сверхстехиометрический монооксид титана состава TiO1,22, уровень которых соответствует уровню фотокаталитических свойств коммерчески используемого диоксида титана TiO2. На основании полученных данных авторами был разработан биоактивный композиционный материал на основе гидроксиапатита, в котором диспергирован сверхстехиометрический монооксид титана TiO1,22, обладающий дезинфицирующим эффектом за счет возможности разложения вредных органических соединений, обусловленной фотокаталитическими свойствами композиционного материала. Кроме того, использование состава предлагаемого материала позволяет получить плотную керамику, характеризующуюся высокими значениями микротвердости по всему объему, за счет нанокристаллической структуры материала и высокой степени прессуемости вследствие хорошего контакта между частицами гидроксиапатита и монооксида титана TiO1,22. При этом существенным является количественное соотношение компонентов. Так при содержании гидроксиапатита менее чем 77 мас.% наблюдается нежелательное изменение динамики биорезобируемости. Так при содержании гидроксиапатита более чем 79 масс.% наблюдается снижение микротвердости конечного продукта. Совокупность таких характеристик, как высокая микротвердость, с одной стороны, и получение стерильного материала за счет дезинфицирующего эффекта, с другой стороны, позволяют использовать предлагаемый материал в качестве биологически активных костных имплантатов.

Предлагаемый биоактивный композиционный материал может быть получен следующим образом. Смесь металлического титана Ti и диоксида титана TiO2 прессуют в таблетки и подвергают спеканию в вакууме 10-3 Па при температуре 1470 – 1485oC в течение 68 - 72 часов с промежуточным перетиранием продуктов спекания через каждые 22-24 час. Далее проводят отжиг таблеток в вакуумированных кварцевых ампулах (10-4 Па) в течение 180-200 мин при температуре 1020 -1030oC. После чего ампулу с образцами сбрасывают в воду для закалки. Полученный продукт состава TiO1,22 подвергают фрагментации в планетарной шаровой мельнице в течение 480-500 минут с реверсом направления через каждые 30 минут и скоростью вращения 480-520 об/мин в среде изопропилового спирта. Затем добавляют порошок гидроксиапатитата (ГАП) стехиометрического состава Ca10(PO4)6(OH)2, в количестве 77 – 79 мас.% от общего состава, полученный в соответствие с патентом RU2104924, и осуществляют повторную фрагментацию в тех же условиях. После чего порошок просушивают, прессуют в таблетки и отжигают в вакуумированных кварцевых ампулах при температуре 400-420оС в течение 240- 280 мин.

Полученный продукт был исследован с использованием рентгеновского фазового анализа (РФА), растровой электронной микроскопии (РЭМ), метода Брунауэра, Эммета и Теллера (БЭТ), пикнометрии, измерения микротвердости.

Дезинфицирующий эффект, обусловленный способностью разложения органических соединений за счет фотокаталитической активности полученного материала исследовали в тестовой реакции окисления паров ацетона в установке, предназначенной для измерения стационарных параметров окисления органических молекул на образцах фотокатализаторов в проточных условиях под действием видимого излучения. Образцом сравнения являлись коммерческие порошки диоксида титана TiO2 Hombifine N (обозначение HF) фирмы Sachtleben Chemie GmbH, Германия (100% анатаз, SБЭТ ~ 350 м2/г), P25 (обозначение P25) фирмы Evonik Ind., Германия (70% анатаза и 30% рутила, SБЭТ ~ 50 м2/г). Образцы равномерно распределялись на стеклянной подложке площадью 9.1 см2. Основными контролируемыми параметрами при работе установки являются температура проведения реакции, объемная скорость потока реакционной смеси, концентрация реагента и влажность в потоке. Изучение кинетики окисления паров ацетона проводили при следующих значениях рабочих параметров: объемная скорость потока – 0.065±0.001 л/мин, относительная влажность – 19 ± 1 %, температура реактора – 40 ± 0.1°С, давление паров ацетона в КРС – 600 ± 50 млн. д. атм. В качестве источника видимого излучения использовался мощный светодиод, интенсивность которого составляла 420 мВт/см2 с максимумом при λmax ~ 450 нм. Концентрацию СО2 анализировали по изменению площади полосы поглощения, соответствующей данному веществу, на ИК спектрах. Мерой фотокаталитической активности образцов являлась стационарная скорость образования CO2, которую рассчитывали по следующей формуле:

где – скорость образования СО2 (мкмоль/мин),– разность концентраций СО2 в КРС и ИРС (мкмоль/л), U – объемная скорость (л/мин).

Итоговое значение стационарной скорости образования СО2 для всех образцов усредняли по 4 значениям и рассчитывали доверительный интервал с использованием коэффициента Стьюдента:

.

Как показали исследования, скорость разложения ацетона под действием видимого излучения сравнима со скоростью разложения коммерческим катализатором P25 и превышает таковую для HF (см. табл.)

Таблица.

Образец Ст. скорость образования СО2, мкмоль/мин Доверительный интервал, мкмоль/мин
Видимый свет (450 нм)
Биоактивный композиционный материал по примеру 1. 0.023     0.002
Биоактивный композиционный материал по примеру 2. 0.023     0.002
HF 0.010 0.002
P25 0.028 0.003

На фиг. 1 представлено изображение фрагмента нанокомпозитного материала 23%TiO1,22+ГАП, полученное с помощью сканирующей электронной микроскопии.

На фиг. 2 представлено изменение активности нанокомпозитного материала при разложении органики под видимым светом при длительных испытаниях.

Предлагаемое техническое решение иллюстрируется следующими примерами.

Пример 1. Берут металлического титана Ti и диоксида титана TiO2 в количестве (зашихтовали смесь) 7.14 гр. и 17.86 гр., соответственно. Смесь прессуют в таблетки и подвергают спеканию в вакууме 10-3 Па при температуре 1470 oC в течение 68 часов с промежуточным перетиранием продуктов спекания через каждые 22 часа. Далее проводят отжиг таблеток в вакуумированных кварцевых ампулах (10-4 Па) в течение 180 мин. при температуре 1020oC. После чего ампулу сбрасывают в воду для закалки. Полученный порошок фрагментируют в планетарной шаровой мельнице в течение 480 минут с реверсом направления через каждые 30 минут и скоростью вращения 480 об/мин в среде изопропилового спирта, взятого в количестве 12 мл. После взвешивания промежуточного продукта добавляют 84 г гидроксиапатитата (ГАП) стехиометрического состава Ca10(PO4)6(OH)2,, полученный смешиванием гидроксида кальция и фосфорной кислоты, отстаиванием, фильтрованием и сушкой (патент RU 2104924), и повторяют фрагментацию смеси в шаровой мельнице в течение 480-500 минут с реверсом направления через каждые 30 минут и скоростью вращения 480-520 об/мин в среде изопропилового спирта, взятого в количестве 12 мл. Полученный порошок просушивают, прессуют в таблетки. После чего отжигают в вакуумированных кварцевых ампулах при температуре 400оС в течение 240 минут.

Получают композиционный материал состава, мас.%: гидроксиапатит Ca10(PO4)6(OH)2 – 77; монооксид титана TiO1,22 – 23; с размером зерен 20-40 нм; удельной поверхностью 10.0952±0.1770 м2/г; пористостью: площадь пор 0,5795 м2/г, объём пор 0,000491 см3/г; плотность 3.0253 ± 0.0048 г/см3; микротвердостью 159,23 MПа. Данные по разложению паров ацетона приведены в табл.

Пример 2. Берут металлического титана Ti и диоксида титана TiO2 в количестве (зашихтовали смесь) 7.14 гр. и 17.86 гр., соответственно. Смесь прессуют в таблетки и подвергают спеканию в вакууме 10-3 Па при температуре 1485oC в течение 72 часов с промежуточным перетиранием продуктов спекания через каждые 24 часа. Далее проводят отжиг таблеток в вакуумированных кварцевых ампулах (10-4 Па) в течение 200 мин при температуре 1030oC. После чего ампулу сбрасывают в воду для закалки. Полученный порошок фрагментируют в планетарной шаровой мельнице в течение 500 мин с реверсом направления через каждые 30 минут и скоростью вращения 520 об/мин в среде изопропилового спирта, взятого в количестве 15 мл. После взвешивания промежуточного продукта добавляют 94 г гидроксиапатита (ГАП) стехиометрического состава Ca10(PO4)6(OH)2, полученный смешиванием гидроксида кальция и фосфорной кислоты, отстаиванием, фильтрованием и сушкой (патент RU 2104924), и повторяют фрагментацию смеси в шаровой мельнице в течение 500 минут с реверсом направления через каждые 30 минут и скоростью вращения 520 об/мин в среде изопропилового спирта, взятого в количестве 15 мл. Полученный порошок просушивают, прессуют в таблетки. После чего отжигают в вакуумированных кварцевых ампулах при температуре 420оС в течение 280 мин.

Получают композиционный материал состава, мас.%: гидроксиапатит Ca10(PO4)6(OH)2 – 79; монооксид титана TiO1,22 – 21; с размером зерен 20-40 нм; удельной поверхностью 10.0952±0.1770 м2/г; пористостью: площадь пор 0,5795 м2/г, объём пор 0,000491 см3/г; плотность 3.0253 ± 0.0048 г/см3; микротвердостью 168,97 MПа. Данные по разложению паров ацетона приведены в табл.

Таким образом, авторами предлагается биоактивный нанокомпозиционный материал, обладающий дезинфекционным эффектом наряду с высокой микротвердостью, который может применяться для реконструкции и замещения участков костной ткани, протезирования фрагментов опорно-двигательного аппарата.


Биоактивный композиционный материал
Биоактивный композиционный материал
Источник поступления информации: Роспатент

Показаны записи 1-9 из 9.
20.06.2015
№216.013.5738

Способ получения тонких пленок сульфида свинца

Изобретение относится к области получения тонких пленок сульфида свинца нанокристаллической структуры, активных в ближнем ИК-диапазоне. Предложен способ получения тонких пленок сульфида свинца, активных в ближнем инфракрасном диапазоне, включающий осаждение из водного раствора смеси ацетата...
Тип: Изобретение
Номер охранного документа: 0002553858
Дата охранного документа: 20.06.2015
10.11.2015
№216.013.8b87

Способ получения коллоидного раствора наночастиц сульфида свинца

Изобретение относится к способам получения коллоидных растворов, содержащих наночастицы полупроводникового соединения, и может быть использовано в оптоэлектронике и медицине. Предлагается способ получения коллоидного раствора наночастиц сульфида свинца, включающий смешивание исходного раствора...
Тип: Изобретение
Номер охранного документа: 0002567326
Дата охранного документа: 10.11.2015
10.01.2016
№216.013.9f50

Способ получения нанокристаллического порошка сульфида серебра

Изобретение относится к технологии получения порошкового материала, содержащего наночастицы полупроводникового соединения, и может быть использовано в оптоэлектронике и медицине. Нанокристаллический порошок сульфида серебра получают осаждение из водного раствора смеси нитрата серебра и сульфида...
Тип: Изобретение
Номер охранного документа: 0002572421
Дата охранного документа: 10.01.2016
20.06.2016
№217.015.0496

Способ получения ультрадисперсного порошка серебра и ультрадисперсный порошок серебра, полученный этим способом

Изобретение относится к способам получения порошкового материала, содержащего микрочастицы, и может быть использовано в медицине в качестве материала с бактерицидным действием; в химии для очистки питьевой воды; в производстве катализаторов; в химической промышленности для защитного покрытия...
Тип: Изобретение
Номер охранного документа: 0002587446
Дата охранного документа: 20.06.2016
13.01.2017
№217.015.7d3a

Способ получения водного коллоидного раствора наночастиц сульфида серебра

Изобретение может быть использовано в оптоэлектронике и медицине при получении источников излучения и флуоресцентных меток. Способ получения водного коллоидного раствора наночастиц сульфида серебра включает получение смеси водных растворов нитрата серебра, сульфида натрия и стабилизатора. К...
Тип: Изобретение
Номер охранного документа: 0002600761
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.87ee

Наночастицы сульфида серебра в лигандной органической оболочке и способ их получения

Изобретение может быть использовано в медицине, фотонике, гетерогенном катализе. Наночастицы сульфида серебра имеют лигандную оболочку, состоящую из цитратных групп. Толщина оболочки от 1 до 10 нм. Способ получения указанных наночастиц сульфида серебра включает получение исходного раствора...
Тип: Изобретение
Номер охранного документа: 0002603666
Дата охранного документа: 27.11.2016
10.05.2018
№218.016.4d86

Биорезорбируемый материал и способ его получения

Группа изобретений относится к медицине. Описан биорезорбируемый материал, включающий гидроксиапатит и монооксид титана состава TiOx, где х = 0.99, 1.09, 1.23, в количестве 10 – 20 мас.% от общего. Описан способ получения биорезорбируемого материала, включающий получение исходной смеси...
Тип: Изобретение
Номер охранного документа: 0002652429
Дата охранного документа: 26.04.2018
12.04.2023
№223.018.4478

Способ получения фотокатализатора на основе нанотубулярного диоксида титана

Изобретение относится к технологии получения нанотубулярного диоксида титана (TiO-НТ) с повышенной фотокаталитической активностью анодированием. Способ получения фотокатализатора на основе нанотубулярного диоксида титана включает процесс анодирования титана во фторсодержащем растворе...
Тип: Изобретение
Номер охранного документа: 0002732130
Дата охранного документа: 11.09.2020
16.06.2023
№223.018.7aab

Способ получения монокристалла оксида ниобия

Изобретение относится к области технологии материалов, которые могут применяться в электронике в качестве контактов для конденсаторов. Cпособ получения монокристалла оксида ниобия включает бестигельную зонную плавку в оптической системе с использованием в качестве исходного материала...
Тип: Изобретение
Номер охранного документа: 0002734936
Дата охранного документа: 26.10.2020
+ добавить свой РИД