×
27.06.2020
220.018.2bf4

Результат интеллектуальной деятельности: Способ получения монохлорацетатов замещенных 5-,6-,7-аминоиндолов, обладающих противомикробным действием

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу получения монохлорацетатов замещенных 5-,6-,7-аминоиндолов, который включает взаимодействие соответствующих замещенных 5-,6-,7-аминоиндолов в нагретом до кипения бензоле с монохлоруксусной кислотой. Полученные новые соли, такие как монохлорацетат 2,3-диметил-1Н-индол-5-аммония, монохлорацетат 1,2,3-триметил-1Н-индол-5-аммония, монохлорацетат 2,3-диметил-5-метокси-1Н-индол-6-аммония, монохлорацетат 5-метокси-1,2,3-триметил-1Н-индол-6-аммония, монохлорацетат 2,3-диметил-1Н-индол-7-аммония и монохлорацетат 1,2,3-триметил-1Н-индол-5-аммония, могут найти применение в качестве водорастворимых синтетических противомикробных препаратов. 6 пр.

Изобретение относится к химии солей монохлоруксусной кислоты и аминоиндолов, а именно к монохлорацетату 2,3-диметил-1Н-индол-5-аммония, монохлорацетату 1,2,3-триметил-1Н-индол-5-аммония, монохлорацетату 2,3-диметил-5-метокси-1Н-индол-6-аммония, монохлорацетату 5-метокси-1,2,3-триметил-1Н-индол-6-аммония, монохлорацетату 2,3-диметил-1Н-индол-7-аммония, монохлорацетату 1,2,3-триметил-1Н-индол-5-аммония, которые могут быть использованы в медицинской практике в качестве средств, обладающих противомикробным действием.

Распространение антимикробной резистентности является одной из самых острых проблем современности, несущей биологические и экономические угрозы для всех стран. Антимикробная резистентность снижает эффективность мероприятий по профилактике и лечению инфекционных и паразитарных болезней человека, животных и растений, приводя к увеличению тяжести и длительности течения этих заболеваний, что способствует повышению смертности и ухудшению показателей здоровья среди населения, гибели животных и растений. Проблема микробной резистентности приобрела особую актуальность в странах с развитой системой здравоохранения и определяет государственную политику по предупреждению и ограничению распространения устойчивости микроорганизмов к противомикробным препаратам, химическим и биологическим средствам в Российской Федерации [1].

Устойчивость к противомикробным препаратам стала важной проблемой в борьбе со многими заболеваниями и, несомненно, заслуживает научного вмешательства для принятия некоторых мер контроля [2, 3].

Микробы известны своей универсальностью в отношении лекарств, однако они имеют ограниченное число механизмов приобретенной противомикробной резистентности [4-7]. Главным механизмом выживания, находящейся под угрозой гибели микробной популяции, является генетическая мутация, экспрессия скрытых генов резистентности и приобретение генов с резистентными детерминантами [8-9]. Микробиологические патогены развили генетические и биохимические способы противодействия противомикробным агентам. Патогенные микробы могут иметь врожденную или приобретенную резистентность к одному или нескольким классам противомикробных агентов [10-11].

Разработка новых противомикробных препаратов по-прежнему является одной из задач в борьбе с инфекционными болезнями, и может считаться одним из главных направлений в преодолении устойчивости к ним микроорганизмов [1].

Замещенные аминоиндолы с аминогруппой в бензольном кольце известны как исходные соединения для получения трифторметилзамещенных индолиламидов. Многие из полученных продуктов показывают различного рода биологическую активность. Так у амидов, на основе 4,7-аминоиндолов и трифторацетоуксусного эфира, на основе 7-аминоиндолов и этилового эфира трифторуксусной кислоты обнаружена достаточно высокая противомикробная активность [12-13]. В связи с этим представлялось интересным получение растворимых в воде производных аминоиндолов, содержащих в молекуле хлорметильную группу, из 5-амино-2,3-диметил-, 5-амино-1,2,3-триметил-, 6-амино-2,3-дииметил-5-метокси-, 6-амино-5-метокси-1,2,3-триметил-, 7-амино-2,3-диметил-, 7-амино-1,2,3-триметилиндолов и монхлоруксусной кислоты и их лабораторное исследование на противомикробную активность.

Наиболее близким техническим решением к заявленному изобретению является способ получения галогенсодержащих производных аминоиндолов ацилированием этиловым эфиром трифторуксусной кислоты 2,3-диметил- и 1,2,3-триметил-7-аминоиндолов [13].

Недостатком известного способа является то, что полученные индолиламиды не растворимы в воде, что является недостатком при использовании противомикробных лекарственных препаратов.

Заявляемые соединения, их противомикробные свойства и способ получения из уровня техники неизвестны.

Технический результат заключается в получения новых водорастворимых хлорметилсодержаших в молекуле соединений индольного ряда, обладающих эффективной противомикробной активностью.

Указанный технический результат достигается за счет использования в качестве хлорсодержащего агента в реакции более доступного соединения – монохлоруксусной кислоты, что также позволяет получить целевые соединения монохлорацетатов индол-5-, 6-, 7-аммония с более высоким выходом.

Сущность изобретения заключается в том, что в способе получения монохлорацетатов замещенных 5-,6-,7-аминоиндолов, обладающих противомикробным действием, общей формулы (1):

, (1)

где R=H, CH3, R1=Н, 5-ОCH3, R2=5-(H3N+ -OOCCH2Cl), 6-(H3N+ -OOCCH2Cl), 7-(H3N+ -OOCCH2Cl), с целью получения водорастворимых хлорметилзамещенных производных аминоиндолов, соединения общей формулы (2):

, (2)

где R, R1 имеют указанные значения, R2=5-NH2, 6-NH2, 7-NH2 в нагретом до кипения бензоле подвергают взаимодействию с монохлоруксусной кислотой общей формулы (3):

(3)

Полученные соединения монохлорацетаты 2,3-диметил-1Н-индол-5-аммония, 1,2,3-триметил-1Н-индол-5-аммония, 2,3-диметил-5-метокси-1Н-индол-6-аммония, 5-метокси-1,2,3-триметил-1Н-индол-6-аммония, 2,3-диметил-1Н-индол-7-аммония, 1,2,3-триметил-1Н-индол-5-аммония могут найти применение в качестве водорастворимых синтетических противомикробных препаратов.

Сведения, подтверждающие достижение технического результата, представлены в нижеследующих примерах.

Пример 1. Монохлорацетат 2,3-диметил-1Н-индол-7-аммония (Т-12)

К 0,15 г (0,94 ммоль) 7-амино-2,3-диметилиндола полностью растворенного в 60 мл нагретого до кипения бензола добавляют 30 мл бензольного раствора 0,09 г (0,95 ммоль) хлоруксусной кислоты и кипятят в течение 5 мин. Реакционную смесь концентрируют отгонкой бензола, охлаждают, выпавший осадок отфильтровывают и промывают нагретым гексаном. Выход: 0,15 г (62,86 %).Т пл. 122 – 124 ºС, Rf=0,55. Найдено, %: C 56,29; Н 5,66. C12H15N2ClO2. Вычислено, %: C 56,59; Н 5,94. УФ спектр (этанол) λmax (lg ε): 210пл(4,18), 228(4,40), 277(3,80), спектр ЯМР1Н (ДМСО-d6): 2,09(3Н, с, 3-СН3), 2,29(3Н, с, 2-СН3), 4,26(2Н, с, Сl-CH2-CO), 6,26(1Н, д, J=8гц, Н-4), 6,67(2Н, д, т, J=8гц, Н-6,5),10,12(1Н, с, Н-1) м.д. Масс-спектр Jm/z (% к Jmax): 161(11,01), 160(100,00), 159(72,57), 145(31,63), 51(7,81), 50(24,82), 49(10,51), 45(9,91).

Пример 2. Монохлорацетат 1,2,3-триметил-1Н-индол-7-аммония (Т-13)

Получают аналогично из 0,15 г (0,86 ммоль) 7-амино-1,2,3-триметилиндола и 0,084 г (0,88 ммоль) хлоруксусной кислоты. Выход: 0,11 г (47,6 %). Т пл. 119 – 120 ºС, Rf=0,70. Найдено, %: C 57,99; Н 6,16. C13H17N2ClO2. Вычислено, %: C 58,10; Н 6,38. УФ спектр (этанол) λmax (lg ε): 215пл(4,50), 231(4,58), 282(3,84), спектр ЯМР1Н (ДМСО-d6): 2,09(3Н, с, 3-СН3), 2,24(3Н, с, 2-СН3), 3,88(3Н, с, 1-СН3), 4,25(2Н, с, Сl-CH2-CO), 6,35(1Н, д, J=8гц, Н-4), 6,66(1Н, т, J=8гц, Н-5), 6,70(1Н, д, J=8гц, Н-6) м.д. Масс-спектр Jm/z (% к Jmax): 175(12,31), 174(100,00), 159(36,14), 158(16,32), 51(8,11), 50(37,84), 49(14,91), 45(11,61).

Пример 3. Монохлорацетат 2,3-диметил-5-метокси-1Н-индол-6-аммония (Т-8)

Получают аналогично из 0,25 г (1,32 ммоль) 6-амино-2,3-диметил-5-метоксииндола и 0,126 г (1,33 ммоль) хлоруксусной кислоты. Выход: 0,33 г (88,3 %). Т пл. 133 – 134 ºС, Rf=0,18. Найдено, %: C 54,69; Н 5,86. C13H17N2ClO3. Вычислено, %: C 54,84; Н 6,02. УФ спектр (этанол) λmax (lg ε): 210(4,33), 230(4,30), 292пл(3,75), 313(3,88), спектр ЯМР1Н (ДМСО-d6): 2,06(3Н, с, 3-СН3), 2,21(3Н, с, 2-СН3), 3,77(3Н, с, 5-ОСН3), 4,24(2Н, с, Сl-CH2-CO), 5,75(3Н, суш, 6-+NH3), 6,58(1Н, с, Н-4), 6,74(1Н, с, Н-7), 9,92(1Н, с, Н-1) м.д. Масс-спектр Jm/z (% к Jmax): 191(12,61), 190(100,00), 175(79,48), 147(69,67), 51(20,31), 50(33,93), 49(14,91), 45(11,11).

Пример 4. Монохлорацетат 5-метокси-1,2,3-триметил-1Н-индол-6-аммония (Т-9)

Получают аналогично из 0,27 г (1,32 ммоль) 6-амино-1,2,3-триметил-5-метоксииндола и 0,125 г (1,32 ммоль) хлоруксусной кислоты. Выход: 0,25 г (63,3 %). Т пл. 147 – 148 ºС, Rf=0,27. Найдено, %: C 56,07; Н 6,26. C14H19N2ClO3. Вычислено, %: C 56,28; Н 6,41. УФ спектр (этанол) λmax (lg ε): 214(4,57), 228(4,55), 290пл(3,91), 307(4,03), спектр ЯМР1Н (ДМСО-d6): 2,10(3Н, с, 3-СН3), 2,23(3Н, с, 2-СН3), 3,46(3Н, с, Н-1), 3,78(3Н, с, 5-ОСН3), 4,24(2Н, с, Сl-CH2-CO), 5,57(3Н, суш, 6-+NH3), 6,59(1Н, с, Н-4), 6,79(1Н, с, Н-7) м.д. Масс-спектр Jm/z (% к Jmax): 191(12,61), 190(100,00), 175(79,48), 147(69,67), 51(20,31), 50(33,93), 49(14,91), 45(11,11).

Пример 5. Монохлорацетат 2,3-диметил-1Н-индол-5-аммония (Т-10).

Получают аналогично из 0,22 г (1,38 ммоль) 5-амино-2,3-диметилиндола и 0,13 г (1,38 ммоль) хлоруксусной кислоты. Выход: 0,34 г (97,42 %). Т пл. 137 – 138 ºС, Rf=0,08. Найдено, %: C 56,39; Н 5,76. C12H15N2ClO2. Вычислено, %: C 56,59; Н 5,94. УФ-спектр (этанол) λmax (lg ε): 212пл(4,29), 233(4,48), 287 (3,84), спектр ЯМР1Н (ДМСО-d6): 2,06(3Н, с, 3-СН3), 2,24(3Н, с, 2-СН3), 4,19(2Н, с, Сl-CH2-CO), 6,17(3Н, суш, 5-+NH3), 6,47(1Н, д, J=8,6 гц, Н-7), 6,68(1Н, с, Н-4), 6,98(1Н, д, J=8,6 гц, Н-6), 10,21(1Н, с, Н-1) м.д. Масс-спектр Jm/z (% к Jmax): 161(11,21), 159(81,18), 145(30,13), 51(7,31), 50(23,22), 49(11,61), 45(7,01).

Пример 6. Монохлорацетат 1,2,3-триметил-1Н-индол-5-аммония (Т-11)

Получают аналогично из 0,3 г (1,72 ммоль) 5-амино-1,2,3-триметилиндола и 0,16 г (1,72 ммоль) хлоруксусной кислоты. Выход: 0,3 г (64,8 %). Т пл. 128 – 129 ºС, Rf=0,10. Найдено, %: C 57,99; Н 6,16. C13H17N2ClO2. Вычислено, %: C 58,10; Н 6,38. УФ спектр (этанол) λmax (lg ε): 214(4,62), 234(4,57), 293(3,86), спектр ЯМР1Н (ДМСО-d6): 2,09(3Н, с, 3-СН3), 2,26(3Н, с, 2-СН3), 3,53(3Н, с, 1-СН3), 4,20(2Н, с, Сl-CH2-CO), 6,20(3Н, суш, 5-+NH3), 6,53(1Н, д, J=8,5 гц, Н-7), 6,69(1Н, с, Н-4), 7.08(1Н, д, J=8,5 гц, Н-6) м.д. Масс-спектр Jm/z (% к Jmax): 175(12,31), 174(100,00), 173(81,28), 159(28,23), 50(14,61), 49(7,11), 45(5,71).

Спектры ЯМР 1Н записаны на мультиядерном спектрометре ядерного магнитного резонанса «Joel JNM-ECX400» (400 МГц) в ДМСО-d6. Электронные спектры получены на приборе «LEKI SS2109UV» в этаноле. Масс-спектры зарегистрированы на масс-спектрометре «Finnigan MAT INCOS-50» с прямым вводом образца в ионный источник при энергии ионизации 70 эВ. Элементный анализ проводился на элементном анализаторе vario MICRO cube. Названия аминам, амидам даны по правилам компьютерной программы ACD/LABS IUPAC Name Generator. Структурные формулы соединений нарисованы в компьютерной программе ISIS Draw 2,4. Контроль за чистотой полученных соединений, определение Rf осуществляли с помощью ТСХ на пластинках Silufol UV-254 в системе бензол-этилацетат-метанол 1:1.

Проведено исследование противомикробной активности монохлорацетата 2,3-диметил-1Н-индол-7-аммония, монохлорацетата 1,2,3-триметил-1Н-индол-7-аммония, монохлорацетата 2,3-диметил-5-метокси-1Н-индол-6-аммония, монохлорацетата 5-метокси-1,2,3-триметил-1Н-индол-6-аммония, монохлорацетата 2,3-диметил-1Н-индол-5-аммония; монохлорацетата 1,2,3-триметил-1Н-индол-5-аммония.

При проведении микробиологического эксперимента исследуемые соединения использовали в виде раствора (в качестве растворителя применяли стерильную воду для инъекций). В качестве тест-микроорганизмов при изучении противомикробной активности полученных соединений использовали музейные штаммы: Staphylococcus aureus 6538-Р АТСС, Staphylococcus aureus 43300 АТСС (МRSА), Escherichia coli 25922 АТСС, Pseudomonas aeruginosa 27853 АТСС, Streptococcus pyogenes 19615 АТСС. Музейные штаммы, используемые в работе, получены из коллекции музея живых культур ФГБУ «НЦЭСМП» Минздрава России, Becton Dickinson France S.A.S. Определение антимикробной активности полученных соединений проводили методом серийных разведений в бульоне (макрометодом «пробирочным») [14-16]. В качестве препарата сравнения использовался противомикробный препарат диоксидин (производное ди-N-оксихиноксалина) (производство «Биосинтез», раствор для местного применения, эндотрахеального и внутривенного введения, 10 мг/мл), широко применяемый в лечебной практике. Этот препарат обладает высокой химиотерапевтической активностью in vivo на модельных инфекциях, близких по патогенезу к патологическим процессам у человека (гнойные менингиты, пиелонефриты, септикопиемии) и вызванных штаммами анаэробных бактерий, устойчивых (в том, числе полирезистентных) к препаратам других классов, включая штаммы синегнойной палочки и метициллинустойчивых стафилококков. Диоксидин характеризуется широким антибактериальным спектром с бактерицидным действием, активен также в отношении грамположительных и грамотрицательных аэробных условно-патогенных бактерий. Показана активность диоксидина в отношении микобактерий туберкулеза. Для препарата сравнения диоксидина МПК относительно штаммов Staphylococcus spp. составляет 125,0-1000,0 мкг/мл, Escherichia coli 8,0-250,0 мкг/мл, Pseudomonas spp. 125,0-1000,0 мкг/мл, Streptococcus spp. 64,0-1000,0 мкг/мл [17].

Для оценки чувствительности микроорганизмов использовали Мюллер-Хинтон бульон (МХБ), разрешенный к применению в Российской Федерации в установленном порядке и по своим характеристикам удовлетворяющий требованиям. Внутрилабораторный контроль качества среды проводили при использовании всех сред, разрешенных к применению в Российской Федерации в установленном порядке. Концентрация суспензии исследуемого микроорганизма составляла 1,5x108 КОЕ/мл. Оптическая плотность бактериальной суспензии с концентрацией 1,5x108 КОЕ/мл при визуальном контроле соответствовала стандарту мутности 0,5 по Мак-Фарланду. В работе использовали коммерческий стандарт мутности. Бактериальную суспензию готовили из агаровых культур. Для приготовления инокулюма использовали чистую суточную культуру микроорганизмов, выросших на плотных питательных средах. Отбирали несколько однотипных, четко изолированных колоний, выросших на неселективных плотных питательных средах. Петлей переносили незначительное количество материала с верхушек колоний в пробирку со стерильным физиологическим раствором, доводя плотность инокулюма точно до 0,5 по стандарту Мак-Фарланда. Инокулюм использовали в течение 15 мин после приготовления.

Метод серийных разведений в бульоне – макрометод (пробирочный)

Тестирование проводили в объеме 1 мл каждого разведения исследуемого соединения с конечной концентрацией исследуемого микроорганизма примерно 5х105 КОЕ/мл. МХБ для определения чувствительности разливали по 0,5 мл в каждую пробирку. Количество пробирок составило девять штук плюс одна для постановки «отрицательного» контроля, то есть десять. Рабочий раствор исследуемого соединения готовили из основного раствора с использованием жидкой питательной среды – МХБ. Затем рабочий раствор в количестве 0,5 мл при помощи микропипетки со стерильным наконечником вносили в первую пробирку, содержащую 0,5 мл бульона. Тщательно перемешивали и новым стерильным наконечником переносили 0,5 мл раствора исследуемого соединения в бульоне во вторую пробирку, содержавшую первоначально 0,5 мл бульона. Эту процедуру повторяли, пока не был приготовлен весь необходимый ряд разведений. Из последней пробирки 0,5 мл бульона удаляли. Таким образом, получали ряд пробирок с растворами исследуемого соединения, концентрации которых отличались в соседних пробирках в 2 раза. Для инокуляции использовали стандартную микробную взвесь эквивалентную 0,5 по стандарту Мак-Фарланда, разведенную в 100 раз на МХБ, после чего концентрация микроорганизма в ней составляла примерно 106 КОЕ/мл. По 0,5 мл инокулюма вносили в каждую пробирку, содержащую по 0,5 мл соответствующего разведения исследуемого соединения, и в одну пробирку с 0,5 мл МХБ без антибиотика («отрицательный» контроль). Конечная концентрация микроорганизма в каждой пробирке составила примерно 5x105 КОЕ/мл. Инокулюм вносили в пробирки с разведениями исследуемого соединения не позднее 15-30 мин с момента приготовления. Пробирки закрывали стерильными ватно-марлевыми пробками и все, кроме пробирки «отрицательный» контроль, инкубировали в обычной атмосфере при температуре 37 °С в течение 16-20 или 20-24 ч (в зависимости от вида тестируемого микроорганизма). Пробирку «отрицательный» контроль помещали в холодильник при температуре 4 °С, где хранили до учета результатов. Для определения наличия роста микроорганизма пробирки с посевами просматривали в проходящем свете. Рост культуры в присутствии исследуемого соединения сравнивали с референтной пробиркой («отрицательный» контроль), содержащей исходный инокулюм и хранившейся в холодильнике. Минимальную подавляющую концентрацию (МПК) определяли по наименьшей концентрации исследуемого соединения, которая подавляет видимый рост микроорганизма.

Относительно тест-штаммов микроорганизмов монохлорацетат 2,3-диметил-1Н-индол-7-аммония (Т-12) проявляет следующую активность: для S.aureus 6538-Р АТСС МПК исследуемого соединения составила 62,5 мкг/мл; Staphylococcus aureus 43300 АТСС (МRSА) 62,5 мкг/мл; E.coli 25922 АТСС – 0,98 мкг/мл; P.aeruginosa 27853 АТСС – 3,9 мкг/мл; S.pyogenes 19615 АТСС – 0,98 мкг/мл; монохлорацетат 1,2,3-триметил-1Н-индол-7-аммония (Т-13): для S.aureus 6538-Р АТСС МПК исследуемого соединения составили 62,5 мкг/мл; Staphylococcus aureus 43300 АТСС (МRSА) 62,5 мкг/мл; E.coli 25922 АТСС – 3,9 мкг/мл; P.aeruginosa 27853 АТСС – 0,98 мкг/мл; S.pyogenes 19615 АТСС – 0,98 мкг/мл; монохлорацетат 2,3-диметил-5-метокси-1Н-индол-6-аммония (Т-8): для S.aureus 6538-Р АТСС МПК исследуемого соединения составили 0,98 мкг/мл; Staphylococcus aureus 43300 АТСС (МRSА) 0,98 мкг/мл; E.coli 25922 АТСС – 0,98 мкг/мл; P.aeruginosa 27853 АТСС – 0,98 мкг/мл; S.pyogenes 19615 АТСС – 125 мкг/мл; монохлорацетат 5-метокси-1,2,3-триметил-1Н-индол-6-аммония (Т-9): для S.aureus 6538-Р АТСС МПК исследуемого соединения составили 250 мкг/мл; Staphylococcus aureus 43300 АТСС (МRSА) 125 мкг/мл; E.coli 25922 АТСС – 250 мкг/мл; P.aeruginosa 27853 АТСС – 250 мкг/мл; S.pyogenes 19615 АТСС – 62,5 мкг/мл; монохлорацетат 2,3-диметил-1Н-индол-5-аммония (Т-10): для S.aureus 6538-Р АТСС МПК исследуемого соединения составили 250 мкг/мл; Staphylococcus aureus 43300 АТСС (МRSА) 250 мкг/мл; E.coli 25922 АТСС – 250 мкг/мл; P.aeruginosa 27853 АТСС – 0,98 мкг/мл; S.pyogenes 19615 АТСС – 250 мкг/мл; монохлорацетат 1,2,3-триметил-1Н-индол-5-аммония (Т-11): для S.aureus 6538-Р АТСС МПК исследуемого соединения составили 31,3 мкг/мл; Staphylococcus aureus 43300 АТСС (МRSА) 31,3 мкг/мл; E.coli 25922 АТСС – 250 мкг/мл; P.aeruginosa 27853 АТСС – 250 мкг/мл; S.pyogenes 19615 АТСС – 250 мкг/мл, что сравнимо с противомикробной активностью препарата сравнения – диоксидин, а в случае с монохлорацетатом 2,3-диметил-1Н-индол-7-аммония, монохлорацетатом 1,2,3-триметил-1Н-индол-7-аммония и монохлорацетатом 2,3-диметил-5-метокси-1Н-индол-6-аммония превышает ее.

Таким образом, соединения в заявленном изобретении обладают противомикробной активностью, сравнимой или превышающей активность препарата сравнения – диоксидин.

Источники информации

1. Распоряжение Правительства Российской Федерации от 25 сентября 2017 г. N 2045-р «О стратегии предупреждения распространения антимикробной резистентности в Российской Федерации на период до 2030 г.».

2. Soyege A.O. Vancomycin and Oxacillin Co-Resistance of Commensal Staphylococci / A.O. Soyege [et al.] // Jundishapur Journal of Microbiology. – 2014. – Vol. 7. – Issue 4. – P. e9310.

3. Козлов Р.С. Цефтазидим-авибактам: новые «правила игры» против полирезистентных грамотрицательных бактерий / Р.С. Козлов, О.У. Стецюк, И.В. Андреев // Клиническая микробиология и антимикробная химиотерапия. – 2018. – Т. 20. – № 1. – С. 24-32.

4. Jacoby G. A. New Mechanisms of Bacterial Resistance to Antimicrobial Agents [Text] / G.A. Jacoby, G.L. Archer // The New England Journal of Medicine. – 1991. – Vol. 324. – Issue 9. – P. 60-612.

5. Poole K. Overcoming Antimicrobial Resistance by Targeting Resistance Mechanisms / K. Poole // Journal of Pharmacy and Pharmacology. – 2001. – Vol. 53. – Issue 3. – P. 283-94.

6. Mollenkopf D.F. Variable within- and between-herd diversity of CTX-M cephalosporinase-bearing Escherichia coli isolates from dairy cattle / D. F. Mollenkopf [et al.] // Applied and Environmental Microbiology. – 2012. – Vol. 78. – Issue 13. – P. 4552-4560.

7. Shahsavan, S. Investigation of Efflux-Mediated Tetracycline Resistance in Shigella Isolates Using the Inhibitor and Real Time Polymerase Chain Reaction Method / S. Shahsavan [et al.] // Iranian Journal of Pathology. – 2017. – Vol. 12. – Issue 1. – P. 53-61.

8. Conly J. Antimicrobial Resistance in Canada / J. Conly // Canadian Medical Association Journal. – 2002. – Vol. 167. – Issue 8. – P. 885-891.

9. Finley R. Declines in Outpatient Antimicrobial Use in Canada (1995-2010) / R. Finley [et al.] // PLoS One. – 2013. – Vol. 8. – Issue 10. – P. e76398.

10. Giedraitien A. Antibiotic Resistance Mechanisms of Clinically Important Bacteria / A. Giedraitien, A. Vitkauskien, R. Naginien, A. Pavilonis // Medicina (Kaunas). – 2011. – Vol. 47. – Issue 3. – P. 137-146.

11. Kapoor G. Аction and Resistance Мechanisms of Аntibiotics: A guide for Сlinicians / G. Kapoor, S. Saigal, A. Elongavan // Journal of Anaesthesiology Clinical Pharmacology. – 2017. – Vol. 33. – Issue 3. – P. 300-305.

12. Stepanenko I.S. A new group of compounds derived from 4-, 5-, 6- and 7-aminoindoles with antimicrobial activity / I.S. Stepanenko, S.A. Yamashkin, Y.A. Kostina, A.A. Batarsheva, M.A. Mironov (2018) // Research Results in Pharmacology 4(3); 17-26 UDC:615.331 DOI 10.3897/rrpharmacology.4.29905.

13. Пат. 2675806 Российская Федерация, МПК, C07D209/40, A61K1/404, A61P31/00. Способ получения N-(индолил)трифторацетамидов, обладающих противомикробным действием / И.С. Степаненко, С.А. Ямашкин; заявитель и патентообладатель федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский Мордовский государственный университет им. Н.П. Огарёва». – 2018121537; заявл. 20.07.2018, опубл. 25.12.2018, Бюл. № 36.

14. Определение чувствительности микроорганизмов к антибактериальным препаратам. Методические указания МУК 4.2.1890-04. Клиническая микробиология и антимикробная химиотерапия. 2004; 6 (4).

15. Миронов А.Н., Бунятян Н.Д., Васильев А.Н., Верстакова О.Л., Журавлева М.В., Лепахин В.К. и др. Руководство по проведению доклинических исследований лекарственных средств. М.: Гриф и К, 2012. – 944 с.

16. Козлов Р. С., Сухорукова М.В., Эйдельштейн М.В., Иванчик Н.В., Склеенова Е.Ю., Тимохова А.В. и др. Определение чувствительности микроорганизмов к антимикробным препаратам: клинические рекомендации. Смоленск: Межрегиональная ассоциация по клинической микробиологии и антимикробной химиотерапии, 2018. – 206 с.

17. Падейская Е.Н. Антибактериальный препарат диоксидин: особенности биологического действия и значение в терапии различных форм гнойной инфекции / Е.Н. Падейская // Инфекции и антимикробная терапия. – 2011. – Т.3 – № 5.– С.105-155.


Способ получения монохлорацетатов замещенных 5-,6-,7-аминоиндолов, обладающих противомикробным действием
Способ получения монохлорацетатов замещенных 5-,6-,7-аминоиндолов, обладающих противомикробным действием
Способ получения монохлорацетатов замещенных 5-,6-,7-аминоиндолов, обладающих противомикробным действием
Источник поступления информации: Роспатент

Показаны записи 41-50 из 87.
22.02.2019
№219.016.c5c3

Способ повышения точности навигации автономного необитаемого подводного аппарата с инерциальной навигационной системой и системой технического зрения

Изобретение относится к области навигации и может быть использовано для повышения точности оценивания местоположения автономных необитаемых подводных аппаратов с инерциальной навигационной системой и системой технического зрения. Способ повышения точности навигации автономного необитаемого...
Тип: Изобретение
Номер охранного документа: 0002680395
Дата охранного документа: 20.02.2019
26.02.2019
№219.016.c7f7

Способ ремонта нерегулируемых аксиально-поршневых гидромашин

Изобретение относится к областям машиностроения и ремонта деталей машин и может быть использовано на машиностроительных и ремонтно-технических предприятиях. Способ включает восстановление отверстий блока цилиндров глухой алмазной разверткой на станке, наплавку поршней электродом из легированной...
Тип: Изобретение
Номер охранного документа: 0002680631
Дата охранного документа: 25.02.2019
01.03.2019
№219.016.c8b3

Теплообменник

Изобретение относится к области теплоэнергетики и может быть использовано в конструкциях емкостных рекуперативных теплообменных аппаратов поверхностного типа – преимущественно водоводяных подогревателей в системах теплоснабжения и горячего водоснабжения. Теплообменник содержит кожух с...
Тип: Изобретение
Номер охранного документа: 0002680768
Дата охранного документа: 26.02.2019
08.03.2019
№219.016.d394

Штамм бактерии komagataeibacter hansenii - продуцент бактериальной целлюлозы

Изобретение относится к области биотехнологии. Предложен штамм Komagataeibacter hansenii ВКПМ В-12950 – продуцент бактериальной целлюлозы. Изобретение обеспечивает получение бактериальной целлюлозы в количестве 2,8 – 3,5 г/л со степенью кристалличности 62,45 – 72,5% при динамическом...
Тип: Изобретение
Номер охранного документа: 0002681281
Дата охранного документа: 05.03.2019
08.03.2019
№219.016.d413

Способ получения люминофора на основе титаната кальция

Изобретение относится к неорганической химии и может быть использовано при изготовлении дисплеев с полевой эмиссией электронов или фотолюминесцентных приборов. Люминофор на основе титаната кальция, активированный празеодимом (III), имеет общую формулу CaPrTiO, где 0,001≤х≤0,005. Для получения...
Тип: Изобретение
Номер охранного документа: 0002681188
Дата охранного документа: 04.03.2019
21.03.2019
№219.016.eb1f

Способ изготовления строительных плит

Изобретение относится к обработке растительного сырья, в частности к изготовлению прессованных строительных плит из соломы. Солому злаковых культур измельчают до размера частиц менее 200 мкм и сушат до влажности менее 5%. До начала горячего прессования в пресс-форме проводят подпрессовку...
Тип: Изобретение
Номер охранного документа: 0002682450
Дата охранного документа: 19.03.2019
29.03.2019
№219.016.ed8b

Полимерная композиция для антикоррозионного покрытия

Изобретение относится к полимерной промышленности и может быть использовано как покрытие для защиты от коррозии конструкций из бетона и железобетона, создания износоустойчивых наливных полов, в качестве герметизирующего материала, для декоративной отделки бетонных поверхностей. Композиция...
Тип: Изобретение
Номер охранного документа: 0002683079
Дата охранного документа: 26.03.2019
30.03.2019
№219.016.f90e

Способ прогнозирования течения репаративного процесса лапаротомной раны при остром перитоните

Изобретение относится к области медицины, а именно к хирургии, и предназначено для прогнозирования течения репаративного процесса лапаротомной раны при остром перитоните. У больного сразу же после операции и через одни сутки после нее определяют выраженность эндогенной интоксикации по уровню...
Тип: Изобретение
Номер охранного документа: 0002683312
Дата охранного документа: 28.03.2019
04.04.2019
№219.016.fb51

Способ получения липосомальной формы соли 2-этил-6-метил-3-гидроксипиридина с никотиновой кислотой, ее применение для улучшения микроциркуляции в коже

Группа изобретений относится к области медицины, а именно к получению липосомальной формы соли 2-этил-6-метил-3-гидроксипиридина с никотиновой кислотой. Для этого растворяют смесь лецитина и холестерина в соотношении 9:1 в хлороформе с последующим упариванием полученного раствора при...
Тип: Изобретение
Номер охранного документа: 0002683770
Дата охранного документа: 02.04.2019
23.04.2019
№219.017.36a5

Сферическая оболочка с покрытием

Изобретение относится к строительству, а именно к сферическим оболочкам. Технический результат изобретения заключается в повышении эксплуатационной надежности конструкции. Сферическая оболочка с покрытием выполнена путем разбиения граней большими окружностями по серединам ребер и граням...
Тип: Изобретение
Номер охранного документа: 0002685602
Дата охранного документа: 22.04.2019
Показаны записи 1-4 из 4.
10.07.2015
№216.013.6187

Противомикробное средство

Изобретение относится к области медицины и предназначено для лечения инфекционных процессов, вызванных чувствительными микроорганизмами. Соединение 2-(1′-гидрокси-4′-изопропенил-1′-метилциклогексил-2′-тио)-метилэтаноат, имеющее структурную формулу I: применяют в качестве противомикробного...
Тип: Изобретение
Номер охранного документа: 0002556509
Дата охранного документа: 10.07.2015
26.12.2018
№218.016.ab63

Способ получения n-(индолил)трифторацетамидов, обладающих противомикробным действием

Изобретение относится к области химии, а именно к способу получения N-(2,3-диметил-1Н-индол-7-ил)-2,2,2-трифторацетамида и N-(1,2,3-триметил-1Н-индол-7-ил)-2,2,2-трифторацетамида, которые могут найти применение для получения лекарственных препаратов, обладающих противомикробным действием....
Тип: Изобретение
Номер охранного документа: 0002675806
Дата охранного документа: 25.12.2018
14.05.2019
№219.017.51a9

Способ определения типа противомикробного действия соединения, обладающего антимикробной активностью

Изобретение относится к области медицины, а именно к медицинской микробиологии, и предназначено для определения типа противомикробного действия фармакологических веществ в процессе изучения их противомикробной активности. Для определения типа противомикробного действия соединения, обладающего...
Тип: Изобретение
Номер охранного документа: 0002687264
Дата охранного документа: 13.05.2019
23.05.2020
№220.018.2096

Способ получения трифторацетатов замещенных 6-аминоиндолов, обладающих противомикробным действием

Изобретение относится к способу получения трифторацетатов замещенных 6-аминоиндолов, в котором соответствующее замещенное 6-аминоиндола в нагретом до кипения бензоле подвергают взаимодействию с трифторуксусной кислотой. Полученные соединения, такие как трифторацетат...
Тип: Изобретение
Номер охранного документа: 0002721833
Дата охранного документа: 22.05.2020
+ добавить свой РИД