×
24.06.2020
220.018.29dd

Способ определения оптической ширины запрещенной зоны наноразмерных пленок

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Использование: для определения ширины запрещенной зоны наноразмерных полупроводниковых и диэлектрических пленок. Сущность изобретения заключается в том, что способ определения оптической ширины запрещенной зоны наноразмерных пленок включает определение спектров эллипсометрического параметра подложки с наноразмерной пленкой, нанесенной вакуумным напылением на подложку из неорганического материала, и подложки без пленки в зависимости от длины волны в видимом и ближнем УФ диапазоне, при этом определяют разность –, где – эллипсометрический параметр подложки, – эллипсометрический параметр подложки с нанесенной пленкой, в диапазоне исследуемого спектра волн излучения, строят график зависимости ((-)h) от h (эВ), где h – энергия фотонов, и путем экстраполяции прямой в высокоэнергетической части спектра находят точку пересечения с осью абсцисс. Технический результат: обеспечение возможности упрощения способа для определения ширины запрещенной зоны наноразмерных полупроводниковых и диэлектрических пленок. 8 ил.
Реферат Свернуть Развернуть

Изобретение относится к области оптико-физических измерений, основанных на эллипсометрии, и предназначено для определения ширины запрещенной зоны наноразмерных полупроводниковых и диэлектрических пленок.

Известен способ определения оптической ширины запрещенной зоны (Eg) наноразмерных пленок, заключающийся в измерении способом эллипсометрии спектров истинного коэффициента поглощения α от энергии фотонов h с последующим определением Eg из зависимости (αh)2 от h. В известном способе определяли ширину запрещенной зоны пленок CdS, полученных магнетронным распылением на кремниевые и стеклянные подложки. Получение дисперсионных зависимостей k1 (коэффициент поглощения пленки) и α от h осуществлялось следующим образом. Сначала измерялись спектры эллипсометрических углов Δ и ψ в диапазоне от 1 до 5 эВ. Далее, составляли оптическую модель (пленка/подложка), содержащую оптические параметры, такие как n1, n2 -показатели преломления пленки и подложки, k1, k2 – коэффициенты поглощения пленки и подложки, d - толщина исследуемой пленки. С помощью выбранной оптической модели путем решения основного уравнения эллипсометрии, (где Rp и Rs – коэффициенты отражения Френеля) рассчитывались теоретические спектры Δ и ψ образца, максимально совпадающие с экспериментально измеренными, а также соответствующие им спектры n1 и k1. Затем рассчитывали ширину запрещенной зоны (оптической энергетической щели) полупроводниковых материалов с использованием известного соотношения Тауца:

(αhυ)2=A (hυ-Eg); (1)

где α=4k/λ – истинный коэффициент поглощения, hυ – энергия фотонов, Eg- ширина запрещенной зоны, A – константа. При построении зависимости (αhυ)2 от hυ (эВ) значение Eg получают путем экстраполяции прямой в высокоэнергетической части спектра, точка пересечения этой прямой с осью абсцисс при этом соответствует оптической ширине запрещенной зоны. (N.S. Das, P.K.Ghosh, M.K.Mitra, K.K.Chattopadhyay. Effect of film thickness on the energy band gap of nanocrystalline CdS thin films analyzed by spectroscopic ellipsometry// Physica E (2010) 2097–2102)

Основным недостатком известного способа является необходимость большого количества математических расчетов, в частности, расчетов теоретических спектров, что представляет собой трудоемкую задачу, требует громоздких вычислений с подбором соответствующих моделей с необходимыми оптическими параметрами.

Таким образом, перед авторами стояла задача упрощения способа определения оптической ширины запрещенной зоны наноразмерных пленок.

Поставленная задача решена в предлагаемом способе определения оптической ширины запрещенной зоны наноразмерных пленок, включающем определение спектров эллипсометрического параметра подложки с наноразмерной пленкой, нанесенной вакуумным напылением на подложку из неорганического материала, и подложки без пленки в зависимости от длины волны в видимом и ближнем УФ диапазоне, в котором определяют разность , где – эллипсометрический параметр подложки, – эллипсометрический параметр подложки с нанесенной пленкой, в диапазоне исследуемого спектра волн излучения, строят график зависимости ((-)hυ)2 от hυ (эВ), где hυ – энергия фотонов, и путем экстраполяции прямой в высокоэнергетической части спектра находят точку пересечения с осью абсцисс.

В настоящее время в патентной и научно-технической литературе не известен способ определения оптической ширины запрещенной зоны наноразмерных пленок с использованием графика в координатах ((-)hυ)2 от hυ (эВ), где разность - определяется на основе экспериментально измеренных значений (подложки) и (подложки с пленкой).

В ходе проведенных авторами исследований было обнаружено, что для малых толщин (наноразмерные пленки), с возрастанием коэффициента поглощения k пленки характерно уменьшение эллипсометрического параметра . Это хорошо видно при построении номограммы ψ для слабопоглощающей пленки на металлической подложке (Фиг.1, λ=6526 Å, угол падения φ=72°, n2=1.82, k2=3.11, n1=2.4, k1=0-1.0, d=100Å). На Фиг.2 показано, что с увеличением коэффициента поглощения k1 возрастает разность -. (ψч- эллипсометрический угол чистой подложки, а -подложки с пленкой). При этом спектр -ψ подобен спектру k1 пленки (Фиг.3). Таким образом, экспериментально измеренные значения , позволяют определить характер изменения коэффициента поглощения k1 наноразмерных пленок от длины волны без каких-либо дополнительных расчетов и подбора отражающей модели. В частности, при построении зависимости ((-)hυ)2 от hυ (эВ) экстраполяция прямой в высокоэнергетической части спектра на ось абсцисс дает значение оптической ширины запрещенной зоны.

Предлагаемый способ заключается в следующем. На подложку из неорганического материала наносят путем вакуумного напыления наноразмерную пленку из полупроводникового или диэлектрического материала. Измеряют спектры эллипсометрического параметра ψι подложки с наноразмерной пленкой и подложки без пленки в зависимости от длины волны в видимом и ближнем УФ диапазоне, затем определяют разность , где – эллипсометрический параметр подложки, ψι – эллипсометрический параметр подложки с нанесенной пленкой, в диапазоне исследуемого спектра волн излучения, строят график зависимости ((-)hυ)2 от hυ (эВ), где hυ – энергия фотонов, и путем экстраполяции прямой в высокоэнергетической части спектра находят точку пересечения с осью абсцисс.

Предлагаемый способ иллюстрируется следующим примерами.

Пример 1.

Способом спектральной эллипсометрии определялись эллипсометрические параметры Δ и ψ пленки линейно-цепочечного углерода, нанесенного на предварительно полированную поверхность массивного образца из стали 09Г2С. Пленка линейно–цепочечного углерода была получена с использованием ионно-плазменного напыления. Получена экспериментальная зависимость -, где - эллипсометрический параметр подложки, – эллипсометрический параметр подложки с нанесенной пленкой, от длины волны λ (Фиг.3). Угол падения - 72°. Как видно из приведенного графика - возрастает с уменьшением длины волны. Из измеренных эллипсометрических углов Δ и ψ путем решения основного уравнения эллипсометрии, для каждой длины волны определяем оптические постоянные подложки, n2, k2 и пленки n1, k1, а также толщину пленки d. В использованном диапазоне спектра величина коэффициента поглощения пленки k1 изменяется от нуля до 1.02, при этом толщина пленки равна d=92±2Å, пленка является наноразмерной. На фиг. 3 также приведена зависимость коэффициента поглощения пленки k1 от длины волны. Видно, что спектр коэффициента поглощения k1 исследуемой пленки подобен спектру разности -. Для сравнения, построим зависимость ((-)hυ)2 от hυ (эВ) (фиг. 4), а также кривую (αhυ)2 от hυ (эВ) (фиг. 5), полученную из спектров оптических постоянных. Как видно из этих графиков, точка пересечения с осью абсцисс, отвечающая оптической ширине запрещенной зоны, на обеих зависимостях находится около 4эВ. Из зависимости ((-)hυ)2 от hυ получается Eg=4.1 эВ, а из (αhυ)2 от hυ находим, что Eg=3.94эВ. Для сравнения, кристаллический алмаз имеет ширину запрещенной зоны Eg = 5.5 эВ.

Пример 2.

Способом спектральной эллипсометрии определялись эллипсометрические параметры Δ и ψ пленки оксида ванадия V2O5, нанесенного на предварительно полированную поверхность поликристаллического алюминия. Пленка оксида ванадия была получена с использованием вакуумного термического испарения. Получена экспериментальная зависимость - от длины волны λ, где ψч - эллипсометрический параметр подложки (алюминия), ψ – эллипсометрический параметр подложки с пленкой (Фиг.6). Угол падения - 70°. Как видно из приведенного графика - возрастает с увеличением длины волны. Из измеренных эллипсометрических углов Δ и ψ путем решения основного уравнения эллипсометрии, для каждой длины волны определяем оптические постоянные подложки, n2, k2 и пленки n1, k1, а также толщину пленки d. В использованном диапазоне спектра коэффициент поглощения k1 изменяется от нуля до 1.5, при этом толщина пленки равна d=100Å, пленка является наноразмерной. На фиг. 6 также приведена зависимость коэффициента поглощения пленки k1 от длины волны. Видно, что спектр коэффициента поглощения k1 исследуемой пленки подобен спектру разности -. Для сравнения, построим зависимость ((-)hυ)2 от hυ (эВ) (фиг. 7), а также кривую (αhυ)2 от hυ (эВ) (фиг. 8), полученную из спектров оптических постоянных. Как видно из этих графиков, точка пересечения прямой в области 2.7-3 эВ с осью абсцисс, отвечающая оптической ширине запрещенной зоны, на обеих зависимостях находится около 2,6 эВ. Из зависимости ((-)hυ)2 от hυ получается Eg=2.65 эВ, а из (αhυ)2 от hυ находим, что Eg=2.64эВ.

Таким образом, предлагаемый авторами способ по определению оптической ширины запрещенной зоны наноразмерных полупроводниковых и диэлектрических пленок с использованием эллипсометрии значительно упрощен.

Способ определения оптической ширины запрещенной зоны наноразмерных пленок, включающий определение спектров эллипсометрического параметра подложки с наноразмерной пленкой, нанесенной вакуумным напылением на подложку из неорганического материала, и подложки без пленки в зависимости от длины волны в видимом и ближнем УФ диапазоне, отличающийся тем, что определяют разность –, где – эллипсометрический параметр подложки, – эллипсометрический параметр подложки с нанесенной пленкой, в диапазоне исследуемого спектра волн излучения, строят график зависимости ((-)h) от h (эВ), где h – энергия фотонов, и путем экстраполяции прямой в высокоэнергетической части спектра находят точку пересечения с осью абсцисс.
Способ определения оптической ширины запрещенной зоны наноразмерных пленок
Способ определения оптической ширины запрещенной зоны наноразмерных пленок
Способ определения оптической ширины запрещенной зоны наноразмерных пленок
Способ определения оптической ширины запрещенной зоны наноразмерных пленок
Способ определения оптической ширины запрещенной зоны наноразмерных пленок
Способ определения оптической ширины запрещенной зоны наноразмерных пленок
Способ определения оптической ширины запрещенной зоны наноразмерных пленок
Способ определения оптической ширины запрещенной зоны наноразмерных пленок
Способ определения оптической ширины запрещенной зоны наноразмерных пленок
Способ определения оптической ширины запрещенной зоны наноразмерных пленок
Способ определения оптической ширины запрещенной зоны наноразмерных пленок
Способ определения оптической ширины запрещенной зоны наноразмерных пленок
Способ определения оптической ширины запрещенной зоны наноразмерных пленок
Способ определения оптической ширины запрещенной зоны наноразмерных пленок
Способ определения оптической ширины запрещенной зоны наноразмерных пленок
Способ определения оптической ширины запрещенной зоны наноразмерных пленок
Способ определения оптической ширины запрещенной зоны наноразмерных пленок
Способ определения оптической ширины запрещенной зоны наноразмерных пленок
Способ определения оптической ширины запрещенной зоны наноразмерных пленок
Способ определения оптической ширины запрещенной зоны наноразмерных пленок
Способ определения оптической ширины запрещенной зоны наноразмерных пленок
Способ определения оптической ширины запрещенной зоны наноразмерных пленок
Способ определения оптической ширины запрещенной зоны наноразмерных пленок
Источник поступления информации: Роспатент

Показаны записи 11-20 из 99.
20.02.2015
№216.013.2a33

Ионоселективный материал для определения ионов аммония и способ его получения

Изобретение может быть использовано в аналитической химии. Гидратированную оксидную ванадиевую бронзу аммония состава (NH)VO·0,5HO используют в качестве ионоселективного материала для селективного определения концентрации ионов аммония в растворах. Для получения гидратированной оксидной...
Тип: Изобретение
Номер охранного документа: 0002542260
Дата охранного документа: 20.02.2015
27.04.2015
№216.013.45fd

Способ получения наноигл оксидной ванадиевой бронзы натрия

Изобретение может быть использовано в производстве катодного материала химических источников тока, а также термисторов, резисторов, устройств для записи и хранения информации. Способ получения наноигл оксидной ванадиевой бронзы натрия состава α'-NaVO включает получение реакционной смеси,...
Тип: Изобретение
Номер охранного документа: 0002549421
Дата охранного документа: 27.04.2015
10.05.2015
№216.013.4994

Способ извлечения радионуклидов и микроэлементов

Изобретение относится к области сорбционной технологии извлечения радионуклидов и микроэлементов при переработке различных жидких и твердых объектов радиохимических производств. Заявленный способ включает контактирование с сорбентом на основе цианоферрата переходного металла, при этом...
Тип: Изобретение
Номер охранного документа: 0002550343
Дата охранного документа: 10.05.2015
10.06.2015
№216.013.5525

Способ получения галлия из щелочно-алюминатных растворов глиноземного производства

Изобретение относится к способу электрохимического выделения галлия из шелочно-алюминатных растворов глиноземного производства процесса Байера. Способ включает подготовку исходной смеси смешением маточного и оборотного растворов в соотношении, равном 1: (0,8÷0,9), при постоянном перемешивании и...
Тип: Изобретение
Номер охранного документа: 0002553318
Дата охранного документа: 10.06.2015
20.06.2015
№216.013.5738

Способ получения тонких пленок сульфида свинца

Изобретение относится к области получения тонких пленок сульфида свинца нанокристаллической структуры, активных в ближнем ИК-диапазоне. Предложен способ получения тонких пленок сульфида свинца, активных в ближнем инфракрасном диапазоне, включающий осаждение из водного раствора смеси ацетата...
Тип: Изобретение
Номер охранного документа: 0002553858
Дата охранного документа: 20.06.2015
20.08.2015
№216.013.6e94

Никель-алюминиевая шпинель в качестве катализатора парциального окисления метана и способ ее получения

Изобретение относится к катализатору парциального окисления метана, который представляет собой никель-алюминиевую шпинель. Данная шпинель имеет общую химическую формулу (Ni(МO))·γ-АlO, где М - Сr, Мn или Fe, 0,01≤x≤0,99, 0,01≤y≤1. Изобретение также относится к способу получения такого...
Тип: Изобретение
Номер охранного документа: 0002559878
Дата охранного документа: 20.08.2015
27.08.2015
№216.013.7492

Способ извлечения оксида алюминия из красного шлама

Изобретение относится к металлургии, а именно к переработке красного шлама - отхода глиноземного производства переработки бокситов щелочным способом Байера. Способ извлечения оксида алюминия из красного шлама включет автоклавное выщелачивании красного шлама при температуре 230-260°С и давлении...
Тип: Изобретение
Номер охранного документа: 0002561417
Дата охранного документа: 27.08.2015
10.11.2015
№216.013.8b87

Способ получения коллоидного раствора наночастиц сульфида свинца

Изобретение относится к способам получения коллоидных растворов, содержащих наночастицы полупроводникового соединения, и может быть использовано в оптоэлектронике и медицине. Предлагается способ получения коллоидного раствора наночастиц сульфида свинца, включающий смешивание исходного раствора...
Тип: Изобретение
Номер охранного документа: 0002567326
Дата охранного документа: 10.11.2015
27.11.2015
№216.013.9496

Сырьевая смесь для сульфатированного цемента

Изобретение относится к области строительных материалов и может быть использовано в производстве портландцементов. Технический результат заключается в повышении прочности на сжатие, ускорении сроков схватывания. Сырьевая смесь для сульфатированного цемента состоит из двуводного гипса,...
Тип: Изобретение
Номер охранного документа: 0002569657
Дата охранного документа: 27.11.2015
20.12.2015
№216.013.9a52

Сплав для получения водорода на основе алюминия

Изобретение относится к области химии и может быть использовано для получения водорода. Сплав для получения водорода на основе алюминия и добавки, разрушающей окисную пленку алюминия при взаимодействии с водой, содержит в качестве добавки лантан при следующем соотношении компонентов: лантан-...
Тип: Изобретение
Номер охранного документа: 0002571131
Дата охранного документа: 20.12.2015
Показаны записи 11-16 из 16.
29.05.2019
№219.017.6683

Технологическая крышка

Крышка предназначена для защиты солнечных батарей при наземной эксплуатации космических аппаратов различного назначения. Устройство (технологическая крышка), закрепленное на солнечной батарее космического аппарата содержит кожух с элементами крепления к каркасу солнечной батареи. Кожух...
Тип: Изобретение
Номер охранного документа: 0002375270
Дата охранного документа: 10.12.2009
02.10.2019
№219.017.cb40

Способ формирования племенного молочного стада крупного рогатого скота с использованием генетических факторов

Изобретение относится к области биотехнологии. Изобретение представляет собой способ формирования племенного молочного стада крупного рогатого скота с использованием генетических факторов, включающий использование быков-производителей наиболее распространенных линий в породе, подбор маток к...
Тип: Изобретение
Номер охранного документа: 0002701499
Дата охранного документа: 26.09.2019
09.10.2019
№219.017.d3a2

Способ получения формиата меди (ii)

Изобретение относится к получению солей меди с использованием органических кислот, в частности к получению формиатов двухвалентной меди, которые могут быть использованы для синтеза купратов щелочноземельных металлов и высокотемпературных сверхпроводников, получения медных порошков для...
Тип: Изобретение
Номер охранного документа: 0002702227
Дата охранного документа: 07.10.2019
01.12.2019
№219.017.e91f

Бессопловой ракетный двигатель твердого топлива

Изобретение относится к ракетной технике, в частности к ракетам с бессопловом двигателем твердого топлива. Бессопловой ракетный двигатель твердого топлива содержит корпус, имеющий переднее днище, цилиндрическую часть и задний торец, заряд твердого топлива, торец которого выполнен в виде...
Тип: Изобретение
Номер охранного документа: 0002707648
Дата охранного документа: 28.11.2019
04.05.2020
№220.018.1af5

Способ получения твердого электролита

Изобретение относится к способам получения твердого электролита с высокой ионной проводимостью при температурах окружающей среды и может быть использовано при изготовлении электрохимических источников тока, сенсоров, ионных источников и других устройств. Способ получения твердого электролита на...
Тип: Изобретение
Номер охранного документа: 0002720349
Дата охранного документа: 29.04.2020
23.05.2023
№223.018.6c03

Способ активации порошка алюминия

Изобретение относится к порошковой металлургии и предназначено для получения порошка активированного алюминия, используемого в качестве энергетической добавки в различных композициях. Способ активации порошка алюминия, включающий пропитку исходного порошка алюминия гелем, полученным путем...
Тип: Изобретение
Номер охранного документа: 0002737950
Дата охранного документа: 07.12.2020
+ добавить свой РИД