Вид РИД
Изобретение
Изобретение относится к области машиностроения и может быть использовано в конструкциях газотурбинных двигателей (ГТД), в частности в конструкциях опор, в которых требуется снизить осевую нагрузку на радиальные, радиально-упорные или упорные подшипники.
Известны конструкции гидродинамических упорных сегментных подшипников скольжения («Судовые паровые и газовые турбины и их эксплуатация» авторы Слободняк Л.И., Поляков В.И., Учебник. - Л.: Судостроение, 1983 г., рис. 7.13, стр. 243. Патент РФ №2459984 МПК F16C 17/06, опубл. 27.08.2012), которые способны воспринимать осевую нагрузку от ротора.
Недостатком таких конструкций является то, что они имеют сложную конструкцию, значительные габаритные размеры, большую массу, кроме этого к деталям подшипника скольжения предъявляются высокие требования к точности изготовления, обеспечению форм рабочих поверхностей сегментов и опорной поверхности диска ротора, обеспечению расчетной величины рабочего зазора между сегментом и диском, особенно при повышенных температурах жидкости (для исключения сухого и пограничного трения-скольжения в контакте сегментов с диском ротора), увеличенный расход жидкости через подшипник для снятия высоких тепловыделений, возникающих в подшипнике, а также они трудоемки в изготовлении и не применялись в авиации.
Наиболее близкой к техническому решению является конструкция разгрузочного гидравлического устройства, содержащего корпус с осевым упором, при этом корпус с осевым упором расположен в корпусе опоры, содержащей подшипник, а цапфа ротора снабжена упорным выступом («Николаевские газотурбинные двигатели и установки. История создания»; Под общ. ред. докт. техн. наук В.И. Романова. - Николаев: Изд-во «Юг-Информ», 2005 г., стр. 121). К недостаткам данной конструкции можно отнести ее большие габаритные размеры и массу, а также сложность конструкции, что приводит к усложнению регулировки осевых нагрузок, и повышению трудоемкости ее изготовления.
Техническим результатом, на достижение которого направлено данное техническое решение, является упрощение конструкции опоры и повышение ее надежности, за счет снижения и регулирования осевых нагрузок, приходящих на подшипники от ротора, для обеспечения их работоспособности и снижения осевых вибраций от ротора.
Технический результат достигается тем, что в разгрузочном гидравлическом устройстве, которое содержит корпус с осевым упором, при этом корпус с осевым упором расположен в корпусе опоры, содержащей подшипник, а цапфа ротора снабжена упорным выступом, в отличие от известного между стенками осевого упора и упорного выступа цапфы образована рабочая гидравлическая полость повышенного давления, которая обеспечивает регулирование осевой силы, направленной в противоположную сторону осевой силы, действующей на ротор. При этом рабочая гидравлическая полость снабжена уплотнениями и может быть расположена вне корпуса опоры, содержащей подшипник.
Заявленное решение поясняется рисунком, на котором изображен вид опоры с разгрузочным гидравлическим устройством с кольцевой полостью разгружения.
Разгрузочное гидравлическое устройство (фиг.) содержит корпус с осевым упором 1. Он контактирует с корпусом опоры 2, в котором размещено наружное кольцо 3 подшипника. Внутреннее кольцо 4 подшипника установлено на цапфе 5 ротора 6, снабженной упорным выступом 7. Между стенками осевого упора 1 опоры (статор) и упорного выступа 7 цапфы 5 (ротор) расположена рабочая гидравлическая полость 8 повышенного давления (нагнетания и циркулирования жидкости). Рабочая гидравлическая полость 8 обеспечивает регулирование осевой силы, направленной в противоположную сторону осевой силы, действующей на ротор, вследствие чего выполняется разгружение подшипника, удерживающего ротор 6 в осевом направлении. На торцевых частях рабочей полости 8 размещены уплотнения 9.
В рабочую гидравлическую полость 8 подается жидкость, например масло, давлением настроенной величины. Полость 8 может иметь кольцевую или другую форму. Удержание жидкости в рабочей полости 8 обеспечивается за счет применения уплотнений 9, ограничивающих ее расход в полости 10 и 11.
Например, в качестве уплотнений могут быть применены торцевые графитовые контактные уплотнения (возможно секторные, применяемые для минимизации утечек масла в авиационных двигателях), которые смазываются маслом и работоспособны при следующих условиях в месте контакта рабочих поверхностей: скоростях скольжения [V]≤100 м/с, допустимом параметре давления на скорости скольжения [PV]≤50 МПа×м/с и температуре не более [t]≤350°С (ограничиваются свойствами применяемых жидкостей и материалов контактных пар трения-скольжения).
Настройка требуемого давления жидкости в рабочей гидравлической полости 8 может выполняться клапанами, которые могут устанавливаться в трубопроводе нагнетания. Например на режимах взлетный, набор высоты и крейсерский, когда давление жидкости в трубопроводе нагнетания достигнет установленной величины нижней границы назначенного диапазона, открывается первый клапан (обратный) и масло поступает в рабочую гидравлическую полость 8. При дальнейшем повышении давления, до верхней границы назначенного диапазона, открывается второй клапан (редукционный) и избыточное давление сбрасывается. Вследствие чего может обеспечиваться требуемый диапазон давления жидкости в полости 8 гидравлического устройства.
Под действием повышенного давления масла в рабочей гидравлической полости 8 и подобранной величине рабочей торцевой площади (Sp) осевого упора 1, создается осевая сила, направленная в противоположную сторону осевой силы, действующей от ротора (Fa), вследствие чего снижается осевая нагрузка, приходящая на подшипник. Охлаждение гидравлического устройства при необходимости может обеспечиваться за счет циркуляции жидкости с расходом (Gм), т.е. может отводиться нагретая жидкость и поступать охлажденная.
В результате гидравлическое устройство этого типа может:
- обеспечить значительное снижение величины осевой нагрузки, приходящей на подшипник от ротора, вследствие чего обеспечивается его работоспособность и надежность конструкции;
- обеспечить демпфирование осевых колебаний ротора, вследствие чего также снизятся нагрузки, приходящие на подшипник, и увеличится его ресурс. Демпфирование осевых колебаний ротора положительно скажется и на ресурсе других деталей конструкции;
- минимизировать детали опоры, снизить ее массу и изделия в целом;
- упростить конструкцию опоры и изделия в целом, включая регулирование давлений в полостях от газовой среды, снизить требование по точности изготовления деталей, снизить тепловыделения в опоре и прокачку жидкости через нее, вследствие чего снизятся трудоемкость изготовления и стоимость изделия в целом.
Таким образом, в конструкции опоры применено гидравлическое устройство расчетных габаритных размеров, обеспечивающее требуемый диапазон осевой нагрузки, приходящей на подшипник от ротора и осуществляющее демпфирование осевых вибраций ротора, упрощена ее конструкция, уменьшены ее габаритные размеры, снижена масса и трудоемкость изготовления, применена широко используемая конструкция уплотнений (контактные графитовые уплотнения), вследствие чего обеспечивается работоспособность подшипника и надежность конструкции.
