×
29.05.2020
220.018.2183

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКОВ ПОРИСТОГО КРЕМНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области получения нанопорошков кремния и может быть использовано в стоматологии и биомедицине для получения фотолюминесцентных меток. Способ получения нанопорошков пористого кремния, включает травление подкисленным концентрированной серной кислотой до значения рН 4 водным раствором фторида аммония NHF исходного монокристаллического кремния в ячейке электрохимического анодного травления с контрэлектродом из нержавеющей стали, промывку полученного пористого материала в дистиллированной воде, механическое отделение от кристаллической подложки, измельчение, сушку полученного порошка в естественных условиях, при этом водный раствор фторида аммония NHF используют концентрацией, равной 40%. Технический результат заключается в получении нанопорошка пористого кремния, демонстрирующего высокоинтенсивную фотолюминесценцию при возбуждении источником с длиной волны от 337 нм и выше с использованием менее токсичного водного раствора фторида аммония при сохранении высокой производительности процесса. 5 ил.

Изобретение относится к области получения наноматериалов, а именно нанопорошков кремния, и может быть использовано в стоматологии и биомедицине для получения фотолюминесцентных меток.

Известен способ получения нанокристаллического кремния, обладающего яркой устойчивой фотолюминесценцией (РФ 2411613, МПК H01L 33/02, В82В 3/00, опубл. 10.02.2011), согласно которому проводят реакцию спекания при температуре ~800 К тонкоизмельченного силицида магния и аэросила с последующим растворением и вымыванием оксида магния в подкисленном водном растворе, с последующей очисткой порошка нанокристаллического кремния осаждением этанолом и растворением в трихлорметане.

Изобретение обеспечивает получение порошка нанокристаллического кремния с устойчивой яркой фотолюминесценцией, максимум интенсивности которой возможно сдвигать в области от 750 нм до 550 нм, а также позволяет получать частицы нанокристаллического кремния, сохраняющие люминесцентные свойства при высоких до ~650 К температурах в массовых количествах без использования дорогих и легковоспламеняющихся веществ.

К недостаткам относится энергозатратность способа (высокие температуры получения), использование нагретой концентрированной плавиковой кислоты в процессе постобработки, которая является высокотоксичным реагентом.

Также известен и способ получения фотолюминесцирующего пористого кремния (РФ 2316077, МПК H01L 33/00, опубл. 27.01.2008), согласно которому пористый кремний получают из монокристаллического кремния, подвергая его электролитическому травлению в двухэлектродной ячейке с использованием электролита, содержащего воду, этанол и плавиковую кислоту. Травление выполняют в два этапа. На первом этапе травление исходного кремния выполняют при постоянном токе при приложении к кремниевой пластине положительного потенциала. На втором этапе травления изменяют полярность напряжения, прикладываемого к ячейке травления, без изменения его величины. При этом к кремниевой пластине прикладывают отрицательный потенциал и травят материал в течение 10-60 мин.

Недостатком данного способа является относительно быстрая деградация люминесцентных свойств материала вследствие постепенного окисления поверхности наночастиц пористого кремния при образовании устойчивых группировок кремний-кислород (Si-O). Такие группировки сначала образуются на поверхности наночастицы и затем мигрируют в несколько первых приповерхностных слоев, что приводит к полному затуханию люминесценции. Производительность данного способа получения по сравнению с предлагаемым способом получения крайне низка. Кроме того, полученные наночастицы пористого кремния не удается перевести в коллоидный раствор, что затрудняет их дальнейшее использование, например, в качестве люминесцирующих оптических меток.

Известен также способ получения порошков пористого кремния (патент РФ 2652259, МПК С01В 33/021, С25В 1/00, опубл. 2018.04.25), выбранный за прототип, включающий травление исходного монокристаллического кремния в ячейке электрохимического анодного травления с контрэлектродом из нержавеющей стали, промывку полученного пористого материала в дистиллированной воде, механическое отделение от кристаллической подложки, измельчение, сушку полученного порошка в естественных условиях, отличающийся тем, что в качестве электролита используют раствор по объему 1:1 плавиковой кислоты в изопропиловом спирте с добавкой 20% по объему перекиси водорода (30%).

Достоинством порошков пористого кремния, полученных по данной методике, является наличие яркой фотолюминесценцией с относительно широкой полосой (~300 нм) и максимумом в области 650-700 нм. При этом образец люминесцирует при возбуждении источником из ультрафиолетового и видимого диапазонов с длиной волны от 337 нм и выше.

Однако при этом существенным недостатком таких образцов является использование при электрохимическом (или иногда химическом) травлении пластин монокристаллического Si раствора травления на основе плавиковой кислоты HF. Плавиковая кислота является сильно действующим токсичным веществом, которое может причинить серьезный вред здоровью человека и нанести вред окружающей среде.

Задача заключается в устранении недостатков аналога и прототипа.

Технический результат заключается в получении нанопорошка пористого кремния, демонстрирующего высокоинтенсивную фотолюминесценцию при возбуждении источником с длиной волны от 337 нм и выше, на основе методики электрохимического травления кремния, в которой в отличии от прототипа вместо плавиковой кислоты используется водный раствор фторида аммония NH4F при сохранении высокой производительности метода получения порошков пористого кремния.

Технический результат достигается тем, что в способе получения нанопорошков пористого кремния, включающем травление, подкисленным концентрированной серной кислотой до значения рН=4, водным раствором фторида аммония NH4F, исходного монокристаллического кремния в ячейке электрохимического анодного травления с контрэлектродом из нержавеющей стали, промывку полученного пористого материала в дистиллированной воде, механическое отделение от кристаллической подложки, измельчение, сушку полученного порошка в естественных условиях, согласно изобретению, используют водный раствор фторида аммония NH4F при концентрации, равной 40%.

Использование такого раствора электрохимического травления, помимо меньшей токсичности методики, приводит к изменению состава поверхности порошков пористого кремния по сравнению с прототипом при этом

фотолюминесцентные свойства полученных порошков по сравнению с прототипом существенно не меняются.

На фиг. 1 приведена фотолюминесценция нанопорошка пористого кремния, 1) полученного по новой технологии и 2) прототипа. Длина волны возбуждающего излучения 337 нм.

Фиг. 1 демонстрирует, что полученные по указанной методике нанопорошки пористого кремния имеют сходную по интенсивности фотолюминесценцию по сравнению с прототипом.

На фиг. 2 приведены рентгеновские фотоэлектронные спектры XPS Si2p пропускания 1) нанопорошка пористого кремния по новой технологии, 2) нанопорошка пористого кремния, по технологии прототипа, демонстрирующие существенные различия в составе нанопорошков пористого кремния и подтверждающие факт влияния состава поверхности на свойства порошков кремния, полученных по новой технологии.

На фиг. 3 и 4 приведена тонкая структура спектров поглощения рентгеновских лучей (XANES) и данные ультрамягкой рентгеновской эмиссионной спектроскопии USXES для 1) нанопорошка пористого кремния, полученного по новой технологии, 2) нанопорошка пористого кремния, по технологии прототипа, демонстрирующие существенные различия в составе нанопорошков пористого кремния.

Предлагаемый способ проиллюстрирован чертежами, где на фиг. 5 изображена схема ячейки электрохимического травления.

Способ получения порошков пористого кремния осуществляют следующим образом.

Для реализации способа используется оригинальная ячейка электрохимического анодного травления (фиг. 5), состоящая из фторопластовой ванны (1), в которой находится раствор электролита (2), U-образного контрэлектрода из нержавеющей стали (3), который в процессе электрохимического травления является катодом, и исходной пластины кристаллического кремния (4), которая в процессе электрохимического травления является анодом и на которой получается слой пористого кремния, а также системы контроля и установки тока (5), состоящей из источника постоянного тока со встроенным мультиметром.

Порошок получается анодным электрохимическим травлением монокристаллического кремния n-типа проводимости, легированного фосфором, с удельным сопротивлением от 0.1 Ом⋅см. до 1.0 Ом⋅см.

Пластина прямоугольной формы размером 2 см ×1 см помещается в раствор электролита объемом 50 мл следующего состава: в качестве электролита 40% водный раствор фторида аммония NH4F, раствор дополнительно подкисляли концентрированной серной кислотой до значения рН=4. Малое удельное сопротивление исходной кремниевой пластины обеспечивает равномерное распределение анодного потенциала по всей площади пластины, погруженной в раствор электролита при латеральном расположении электрода над поверхностью электролита.

Таким образом, травление производят в ячейке электрохимического анодного травления с контрэлектродом U-образной формы из нержавеющей стали, с последующим механическим отделением пористого слоя от подложки, его измельчением в изопропиловом спирте в ультразвуковой ванне и сушкой в естественных условиях, при этом в качестве электролита используют 40% водный раствор фторида аммония NH4F, с добавлением концентрированной серной кислоты до значения рН=4.

Это позволяет избежать проблем, характерных для стандартного расположения кремниевой пластины в донной части кюветы, связанных с уплотнением пластины кремния, во избежание протечек электролита, содержащего агрессивную плавиковую кислоту.

Травление проводится в режиме постоянного тока при плотности 15-20 мА/см2. Время травления можно варьировать от 10 до 60 мин., что позволяет изменять толщину пористого слоя в пределах от 10 до 80 мкм.

При увеличении времени травления свыше 60 минут резко падает плотность тока через пластину, и эффективность травления существенно снижается. После завершения процесса травления пластина со слоем пористого кремния, образовавшегося с двух сторон пластины, промывается в дистиллированной воде и в изопропиловом спирте, затем пористый слой механически отделяется от пластины с помощью скребка и получившийся порошок помещается в ультразвуковую ванну, заполненную изопропиловым спиртом, в которой производится дробление частиц порошка до размера 5-50 нм в течение 20 минут.

После этого частицы порошка извлекаются из спирта выпариванием и высушиваются на воздухе в естественных условиях. За один сеанс удается получить от 10 до 30 мг порошка. Полученный порошок контролировали методом просвечивающей электронной микроскопии и дифракции электронов. Наличие достаточно четких колец на электронограммах подтверждает, что кремний в частицах находится в кристаллическом состоянии. Порошок нанопористого кремния обладает яркой фотолюминесценцией с относительно широкой полосой (~300 нм) и максимумом фотолюминесценции в области 650-700 нм. При этом образец люминесцирует при возбуждении источником из ультрафиолетового и видимого диапазонов с длиной волны от 337 нм и выше.

Способ получения нанопорошков пористого кремния, включающий травление подкисленным концентрированной серной кислотой до значения рН 4 водным раствором фторида аммония NHF исходного монокристаллического кремния в ячейке электрохимического анодного травления с контрэлектродом из нержавеющей стали, промывку полученного пористого материала в дистиллированной воде, механическое отделение от кристаллической подложки, измельчение, сушку полученного порошка в естественных условиях, отличающийся тем, что используют водный раствор фторида аммония NHF при концентрации, равной 40%.
СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКОВ ПОРИСТОГО КРЕМНИЯ
СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКОВ ПОРИСТОГО КРЕМНИЯ
СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКОВ ПОРИСТОГО КРЕМНИЯ
Источник поступления информации: Роспатент

Показаны записи 71-80 из 86.
22.04.2020
№220.018.1732

Способ получения периклазошпинельной керамики

Изобретение относится к огнеупорной промышленности и может быть использовано для получения обожженных термостойких периклазошпинельных огнеупорных изделий. Способ получения периклазошпинельной керамики включает обжиг керамообразующей смеси карбоната магния (MgCO) и оксида алюминия (γ-AlO)....
Тип: Изобретение
Номер охранного документа: 0002719291
Дата охранного документа: 17.04.2020
04.06.2020
№220.018.240e

Устройство для спектрального анализа

Изобретение относится к области измерительной техники и касается устройства для спектрального анализа. Устройство содержит источник светового излучения, многоэлементный фотоприемник, подключенный к блоку регистрации и обработки информации, кювету для размещения исследуемого вещества, генератор...
Тип: Изобретение
Номер охранного документа: 0002722604
Дата охранного документа: 02.06.2020
05.06.2020
№220.018.2466

Способ определения тритерпеновых сапонинов группы β-амирина в растительном сырье и лекарственных препаратах на их основе

Изобретение относится к медицине, а именно к фармакологии, и может быть использовано для определения тритерпеновых сапонинов группы β-амирина в растительном сырье и лекарственных препаратах на их основе. Для этого по УФ-спектрам водных растворов сапонинов определяют оптическую плотность...
Тип: Изобретение
Номер охранного документа: 0002722746
Дата охранного документа: 03.06.2020
09.06.2020
№220.018.2594

Способ выявления разнокачественности семян гибридов и линий сахарной свеклы

Изобретение относится к сельскому хозяйству. Способ выявления разнокачественности семян гибридов и линий сахарной свеклы включает отбор, промывание, подсушивание, проращивание семян контрольной и опытной группы в пластиковых контейнерах на фильтровальной бумаге в четырех повторностях по 100 шт....
Тип: Изобретение
Номер охранного документа: 0002723086
Дата охранного документа: 08.06.2020
18.06.2020
№220.018.27c1

Способ диагностики предрасположенности к раку молочной железы в русской популяции на основе пцр-пдрф

Изобретение относится к области биотехнологии. Предложен способ диагностики предрасположенности к раку молочной железы человека из популяции центральной части России на основе ПЦР-ПДРФ. Способ включает выделение ДНК из предварительно отобранного биологического материала пациента, проведение...
Тип: Изобретение
Номер охранного документа: 0002723585
Дата охранного документа: 16.06.2020
21.06.2020
№220.018.2957

Многоканальный конфокальный спектроанализатор изображений

Изобретение относится к области спектроскопических исследований и касается многоканального конфокального спектроанализатора изображений. Спектроанализатор включает в себя диодный лазер, цилиндрическую оптику, конфокальную диафрагму, объектив, видеокамеру, систему сканирования и систему...
Тип: Изобретение
Номер охранного документа: 0002723890
Дата охранного документа: 18.06.2020
27.06.2020
№220.018.2ba6

Способ лазерного разделения изотопов кислорода

Изобретение относится к способу лазерного разделения изотопов кислорода и может быть использовано для получения изотопически обогащенного кислорода, а также для последующего синтеза изотопа фтора F, важного в медицинской диагностике. Способ включает облучение кислорода резонансным инфракрасным...
Тип: Изобретение
Номер охранного документа: 0002724748
Дата охранного документа: 25.06.2020
12.07.2020
№220.018.3200

Применение препарата "зерокс®" (врк) в качестве стимулятора роста сахарной свеклы

Изобретение относится к сельскому хозяйству, в частности к новым стимулирующим рост растений препаратам. В качестве стимулятора роста для сахарной свёклы применяют препарат «Зерокс®» (ВКР), при этом при этом обработку недражированных семян проводят замачиванием в водном растворе концентрацией...
Тип: Изобретение
Номер охранного документа: 0002726251
Дата охранного документа: 10.07.2020
31.07.2020
№220.018.3a17

Способ защиты шмелей от токсического действия митохондриально-направленных пестицидов

Изобретение относится к области сельского хозяйства и может быть использовано для защиты шмелей от токсического действия митохондриально-направленных пестицидов как в лабораторных, так и в полевых условиях. Способ защиты шмелей от токсического действия митохондриально-направленных пестицидов...
Тип: Изобретение
Номер охранного документа: 0002728447
Дата охранного документа: 29.07.2020
11.05.2023
№223.018.53f6

Способ получения гибридного препарата папаина и карбоксиметилцеллюлозы в виде густого раствора

Изобретение относится к биотехнологии. Способ получения гибридного препарата папаина и карбоксиметилцеллюлозы в виде густого раствора характеризуется тем, что включает иммобилизацию папаина, которую проводят путем комплексообразования папаина и натриевой соли карбоксиметилцеллюлозы, которую...
Тип: Изобретение
Номер охранного документа: 0002795425
Дата охранного документа: 03.05.2023
Показаны записи 1-5 из 5.
27.12.2015
№216.013.9e32

Способ получения порошков пористого кремния

Изобретение относится к области нанотехнологий и наноматериалов и может быть использовано в стоматологии и биомедицине. Сущность способа заключается в том, что получение наноразмерного порошка кремния обеспечивают травлением монокристаллического кремния в ячейке электрохимического травления с...
Тип: Изобретение
Номер охранного документа: 0002572128
Дата охранного документа: 27.12.2015
27.12.2015
№216.013.9e38

Способ получения порошков пористого кремния

Изобретение относится к области нанотехнологий и наноматериалов. Наноразмерный порошок кремния получают травлением монокристаллического кремния в ячейке электрохимического травления с контрэлектродом U-образной формы из нержавеющей стали с последующим механическим отделением пористого слоя от...
Тип: Изобретение
Номер охранного документа: 0002572134
Дата охранного документа: 27.12.2015
20.01.2018
№218.016.129e

Способ получения нанопрофилированной ультратонкой пленки alo на поверхности пористого кремния

Использование: для роста наноразмерных пленок диэлектриков на поверхности монокристаллических полупроводников. Сущность изобретения заключается в том, что пленку AlO наносят ионно-плазменным распылением на слой пористого кремния с размером пор менее 3 нм, полученного электрохимическим...
Тип: Изобретение
Номер охранного документа: 0002634326
Дата охранного документа: 25.10.2017
10.05.2018
№218.016.4cb9

Способ получения нанопорошков пористого кремния

Изобретение относится к области получения наноматериалов, а именно нанопорошков кремния, и может быть использовано в стоматологии и биомедицине для получения фотолюминесцентных меток. Нанопорошки пористого кремния получают путем травления исходного монокристаллического кремния в ячейке...
Тип: Изобретение
Номер охранного документа: 0002652259
Дата охранного документа: 25.04.2018
18.05.2019
№219.017.5b74

Оптоволоконное устройство для регистрации флуоресценции

Изобретение относится к устройствам медицинской техники и может быть использовано для диагностики спектров флуоресценции локальных внутренних и поверхностных областей различных биологических сред. Устройство содержит призму для разделения пучка стимулирующего флуоресценцию излучения,...
Тип: Изобретение
Номер охранного документа: 0002464549
Дата охранного документа: 20.10.2012
+ добавить свой РИД