×
10.05.2018
218.016.4cb9

СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКОВ ПОРИСТОГО КРЕМНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области получения наноматериалов, а именно нанопорошков кремния, и может быть использовано в стоматологии и биомедицине для получения фотолюминесцентных меток. Нанопорошки пористого кремния получают путем травления исходного монокристаллического кремния в ячейке электрохимического анодного травления с контрэлектродом из нержавеющей стали, промывкой полученного пористого материала в дистиллированной воде, механическим отделением от кристаллической подложки, измельчением, сушкой полученного порошка в естественных условиях, причем в качестве электролита используют раствор по объему 1:1 плавиковой кислоты в изопропиловом спирте с добавкой 20% по объему перекиси водорода (30%). Технический результат заключается в получении нанопорошка пористого кремния, демонстрирующего высокоинтенсивную фотолюминесценцию (в 10-15 раз больше прототипа) при возбуждении источником с длиной волны от 337 нм и выше, при сохранении высокой производительности метода. 5 ил.
Реферат Свернуть Развернуть

Изобретение относится к области получения наноматериалов, а именно нанопорошков кремния, и может быть использовано в стоматологии и биомедицине для получения фотолюминесцентных меток.

Известен способ получения нанокристаллического кремния, обладающего яркой устойчивой фотолюминесценцией (РФ 2411613, МПК H01L 33/02, B82B 3/00, опубл. 10.02.2011), согласно которому проводят реакцию спекания при температуре ~800 К тонкоизмельченного силицида магния и аэросила с последующим растворением и вымыванием оксида магния в подкисленном водном растворе, с последующей очисткой порошка нанокристаллического кремния осаждением этанолом и растворением в трихлорметане.

Изобретение обеспечивает получение порошка нанокристаллического кремния с устойчивой яркой фотолюминесценцией, максимум интенсивности которой возможно сдвигать в области от 750 нм до 550 нм, а также позволяет получать частицы нанокристаллического кремния, сохраняющие люминесцентные свойства при высоких до ~650 К температурах в массовых количествах без использования дорогих и легковоспламеняющихся веществ.

К недостаткам относится энергозатратность способа (высокие температуры получения), использование нагретой концентрированной плавиковой кислоты в процессе постобработки, которая является высокотоксичным реагентом.

Также известен и способ получения фотолюминесцирующего пористого кремния (РФ 2316077, МПК H01L 33/00, опубл. 27.01.2008), согласно которому пористый кремний получают из монокристаллического кремния, подвергая его электролитическому травлению в двухэлектродной ячейке с использованием электролита, содержащего воду, этанол и плавиковую кислоту. Травление выполняют в два этапа. На первом этапе травление исходного кремния выполняют при постоянном токе при приложении к кремниевой пластине положительного потенциала. На втором этапе травления изменяют полярность напряжения, прикладываемого к ячейке травления, без изменения его величины. При этом к кремниевой пластине прикладывают отрицательный потенциал и травят материал в течение 10-60 мин.

Недостатком данного способа является относительно быстрая деградация люминесцентных свойств материала вследствие постепенного окисления поверхности наночастиц пористого кремния при образовании устойчивых группировок кремний-кислород (Si-O). Такие группировки сначала образуются на поверхности наночастицы и затем мигрируют в несколько первых приповерхностных слоев, что приводит к полному затуханию люминесценции. Производительность данного способа получения по сравнению с предлагаемым способом получения крайне низка. Кроме того, полученные наночастицы пористого кремния не удается перевести в коллоидный раствор, что затрудняет их дальнейшее использование, например, в качестве люминесцирующих оптических меток.

Известен также способ получения порошков пористого кремния (патент РФ 2572128, МПК C01B 33/021, B82B 3/00, опубл. 27.12.2015), выбранный за прототип, включающий анодное электрохимическое травление в электролите исходного монокристаллического кремния в ячейке электрохимического травления, отличающийся тем, что травление производят в ячейке электрохимического анодного травления с контрэлектродом U-образной формы из нержавеющей стали с последующим механическим отделением пористого слоя от подложки, его измельчением в изопропиловом спирте в ультразвуковой ванне и сушкой в естественных условиях, при этом в качестве электролита используют раствор диметилформамида с добавлением плавиковой кислоты и 20 об. % 30%-ной перекиси водорода. Достоинством порошков пористого кремния, полученных по данной методике, является достаточно высокая стабильность их физико-химических свойств при хранении в естественных условиях.

Однако при этом существенным недостатком таких образцов является ограниченный диапазон длин волн источников возбуждения фотолюминесценции, которая появляется лишь при использовании источника с длиной волны, лежащей в видимом диапазоне от 500 нм и выше. Это накладывает существенное ограничение на применимость таких порошков пористого кремния в тех областях медицинской диагностики, где в качестве источника возбуждения фотолюминесценции используется ультрафиолетовое излучение.

Задача заключается в устранении недостатков аналога и прототипа.

Технический результат заключается в получении нанопорошка пористого кремния, демонстрирующего высокоинтенсивную фотолюминесценцию при возбуждении источником с длиной волны от 337 нм и выше при сохранении высокой производительности метода.

Технический результат достигается тем, что в способе получения нанопорошков пористого кремния, включающем травление исходного монокристаллического кремния в ячейке электрохимического анодного травления особой конфигурации с контрэлектродом из нержавеющей стали, промывку полученного пористого материала в дистиллированной воде, механическое отделение от кристаллической подложки, измельчение, сушку полученного порошка в естественных условиях, согласно изобретению в качестве электролита используют раствор по объему 1:1 плавиковой кислоты в изопропиловом спирте с добавкой 20% по объему перекиси водорода (30%).

Использование такого раствора электрохимического травления приводит к изменению состава поверхности порошков пористого кремния по сравнению с прототипом и ведет к улучшению фотолюминесцентных свойств материала.

На фиг. 1 приведена фотолюминесценция нанопорошка пористого кремния (1), прототипа (2). Длина волны возбуждающего излучения 337 нм.

На фиг. 2 (а) приведена фотолюминесценция нанопорошка пористого кремния, полученного по новой технологии, на фиг. 2 (b) - полученного по технологии прототипа. Длина волны возбуждающего излучения 532 нм. Фиг. 1 и 2 демонстрируют, что полученные по указанной методике нанопорошки пористого кремния имеют более высокую интенсивность фотолюминесценцию по сравнению с прототипом.

На фиг. 3 приведены ИК-спектры пропускания нанопорошка пористого кремния, полученного по технологии прототипа (1), нанопорошка пористого кремния по новой технологии (2), демонстрирующие существенные различия в составе нанопорошков пористого кремния.

Предлагаемый способ проиллюстрирован чертежами, где на фиг. 4 изображена схема ячейки электрохимического травления, а на фиг. 5 показано изображение порошка, полученное с помощью просвечивающего электронного микроскопа, и электронограмма порошка.

Способ получения порошков пористого кремния осуществляют следующим образом.

Для реализации способа используется оригинальная ячейка электрохимического анодного травления (фиг. 4), состоящая из фторопластовой ванны (1), в которой находится раствор электролита (2), U-образного контрэлектрода из нержавеющей стали (3), который в процессе электрохимического травления является катодом, и исходной пластины кристаллического кремния (4), которая в процессе электрохимического травления является анодом и на которой получается слой пористого кремния, а также системы контроля и установки тока (5), состоящей из источника постоянного тока со встроенным мультиметром.

Порошок получается анодным электрохимическим травлением монокристаллического кремния n-типа проводимости, легированного фосфором, с удельным сопротивлением от 0.1 Ом⋅см. до 1.0 Ом⋅см.

Пластина прямоугольной формы размером 2 см×1 см помещается в раствор электролита следующего состава: 2 об. части концентрированной плавиковой кислоты + 2 об. части изопропилового спирта + 1 об. часть перекиси водорода (30%). Малое удельное сопротивление исходной кремниевой пластины обеспечивает равномерное распределение анодного потенциала по всей площади пластины, погруженной в раствор электролита при латеральном расположении электрода над поверхностью электролита.

Таким образом, травление производят в ячейке электрохимического анодного травления с контрэлектродом U-образной формы из нержавеющей стали, с последующим механическим отделением пористого слоя от подложки, его измельчением в изопропиловом спирте в ультразвуковой ванне и сушкой в естественных условиях, при этом в качестве электролита используют раствор плавиковой кислоты в изопропиловом спирте с добавкой 20% по объему перекиси водорода (30%).

Это позволяет избежать проблем, характерных для стандартного расположения кремниевой пластины в донной части кюветы, связанных с уплотнением пластины кремния, во избежание протечек электролита, содержащего агрессивную плавиковую кислоту. Травление проводится в режиме постоянного тока при плотности 15-20 мА/см2. Время травления можно варьировать от 10 до 60 мин, что позволяет изменять толщину пористого слоя в пределах от 10 до 80 мкм.

При увеличении времени травления свыше 60 минут резко падает плотность тока через пластину, и эффективность травления существенно снижается. После завершения процесса травления пластина со слоем пористого кремния, образовавшегося с двух сторон пластины, промывается в дистиллированной воде и в изопропиловом спирте, затем пористый слой механически отделяется от пластины с помощью скребка и получившийся порошок помещается в ультразвуковую ванну, заполненную изопропиловым спиртом, в которой производится дробление частиц порошка до размера 5-50 нм в течение 20 минут. На фиг. 5 приведены изображение порошка пористого кремния, полученное методом просвечивающей электронной микроскопии, и его электронограмма.

После этого частицы порошка извлекаются из спирта выпариванием и высушиваются на воздухе в естественных условиях. За один сеанс удается получить от 10 до 30 мг порошка. Полученный порошок контролировали методом просвечивающей электронной микроскопии и дифракции электронов. Наличие достаточно четких колец на электронограммах подтверждает, что кремний в частицах находится в кристаллическом состоянии. Порошок нанопористого кремния обладает яркой фотолюминесценцией с относительно широкой полосой (~300 нм) и максимумом фотолюминесценции в области 650-700 нм. При этом образец люминесцирует при возбуждении источником из ультрафиолетового и видимого диапазонов с длиной волны от 337 нм и выше.

Способ получения нанопорошков пористого кремния, включающий травление исходного монокристаллического кремния в ячейке электрохимического анодного травления с контрэлектродом из нержавеющей стали, промывку полученного пористого материала в дистиллированной воде, механическое отделение от кристаллической подложки, измельчение, сушку полученного порошка в естественных условиях, отличающийся тем, что в качестве электролита используют раствор по объему 1:1 плавиковой кислоты в изопропиловом спирте с добавкой 20% по объему перекиси водорода (30%).
СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКОВ ПОРИСТОГО КРЕМНИЯ
СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКОВ ПОРИСТОГО КРЕМНИЯ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 86.
25.08.2017
№217.015.c3fe

Способ одновременной оценки потенциала доннана в восьми электромембранных системах

Изобретение относится к области потенциометрических методов анализа и мембранных технологий и может быть использовано для совместного определения органических и неорганических ионов в многокомпонентных водных средах. Способ одновременной оценки потенциала Доннана в восьми электромембранных...
Тип: Изобретение
Номер охранного документа: 0002617347
Дата охранного документа: 24.04.2017
29.12.2017
№217.015.f3f3

Устройство для кардиореспираторного анализа и способ оценки кардиореспираторного состояния

Изобретения относятся к медицине. Устройство для кардиореспираторного анализа содержит корпус с закрепленными на нем блоком управления и инфракрасным пульсоксиметрическим датчиком для измерения частоты пульса и оксигенации крови. Корпус выполнен в виде снабженной рукоятью телескопической...
Тип: Изобретение
Номер охранного документа: 0002637917
Дата охранного документа: 07.12.2017
19.01.2018
№218.016.098f

Устройство формирования фазоманипулированного сигнала с плавным изменением фазы между элементарными импульсами

Изобретение относится к области радиотехники и может быть использовано в системах радиосвязи и радиолокации. Устройство формирования фазоманипулированного семиэлементным кодом Баркера сигнала содержит генератор синхроимпульсов, многоотводную линию задержки, сумматор, а также линию задержки на...
Тип: Изобретение
Номер охранного документа: 0002631899
Дата охранного документа: 29.09.2017
17.02.2018
№218.016.2c48

Способ количественного определения таурина и аллантоина при совместном присутствии методом вэжх

Изобретение относится к способу количественного определения методом ВЭЖХ таурина и аллантоина при их совместном присутствии в различных лекарственных препаратах, биологически активных добавках, косметической и пищевой продукции. Способ включает растворение навески исследуемого вещества в...
Тип: Изобретение
Номер охранного документа: 0002643312
Дата охранного документа: 31.01.2018
17.02.2018
№218.016.2c63

Способ удаления фоторезистивных пленок с поверхности оптических стекол

Изобретение относится к технологии изготовления изделий оптической техники, конкретно к способу удаления фоторезистивных пленок с поверхности оптических стекол, служащих в качестве основной маски при формировании микроэлементов на их поверхности. Технический результат изобретения заключается в...
Тип: Изобретение
Номер охранного документа: 0002643172
Дата охранного документа: 31.01.2018
17.02.2018
№218.016.2d4a

Генератор сверхкоротких импульсов с электронным управлением длительностью

Изобретение относится к импульсной СВЧ технике, а именно к устройствам формирования импульсных сигналов сверхмалой длительности с функцией управления длительностью. Техническим результатом является реализация управления длительности формируемого сверхкороткого импульса за счет использования...
Тип: Изобретение
Номер охранного документа: 0002643616
Дата охранного документа: 02.02.2018
10.05.2018
№218.016.4938

Способ получения пленок сульфида кадмия на монокристаллическом кремнии

Изобретение относится к получению поликристаллических пленок сульфида и оксида кадмия на монокристаллическом кремнии с помощью техники пиролиза аэрозоля раствора на нагретой подложке при постоянной температуре в интервале 450-500°С. Согласно изобретению пиролиз аэрозоля проводят в два этапа: на...
Тип: Изобретение
Номер охранного документа: 0002651212
Дата охранного документа: 18.04.2018
10.05.2018
№218.016.4ce7

Способ получения эфиров полиглицерина из отходов производства растительных масел

Изобретение относится к области органической химии и химии поверхностно-активных веществ, а именно к способу получения сложных эфиров полиглицерина и жирных кислот из отходов производства растительных масел, которые проявляют свойства эмульгаторов и могут найти применение в средствах бытовой...
Тип: Изобретение
Номер охранного документа: 0002652378
Дата охранного документа: 26.04.2018
10.05.2018
№218.016.4d4a

Способ стимуляции роста микроклонов вейгелы цветущей "вариегата" низкими концентрациями хлорида натрия

Изобретение относится к растениеводству, лесному, лесопарковому и сельскому хозяйству, а именно к питомниководству. Способ стимулирования роста микроклонов включает культивирование микроклонов вейгелы цветущей «вариегата» на питательной среде 1/2 WPM (Woody Plant Medium), содержащей половинное...
Тип: Изобретение
Номер охранного документа: 0002652391
Дата охранного документа: 26.04.2018
10.05.2018
№218.016.4e0f

Способ количественного спектрофотометрического определения таурина и аллантоина при совместном присутствии в лекарственной форме гель

Изобретение относится к области медицины и фармации, а именно к количественному определению таурина и аллантоина при совместном присутствии в лекарственных формах и смесях методом спектрофотомерии. Способ количественного спектрофотометрического определения таурина и аллантоина при совместном...
Тип: Изобретение
Номер охранного документа: 0002652355
Дата охранного документа: 25.04.2018
Показаны записи 1-5 из 5.
27.12.2015
№216.013.9e32

Способ получения порошков пористого кремния

Изобретение относится к области нанотехнологий и наноматериалов и может быть использовано в стоматологии и биомедицине. Сущность способа заключается в том, что получение наноразмерного порошка кремния обеспечивают травлением монокристаллического кремния в ячейке электрохимического травления с...
Тип: Изобретение
Номер охранного документа: 0002572128
Дата охранного документа: 27.12.2015
27.12.2015
№216.013.9e38

Способ получения порошков пористого кремния

Изобретение относится к области нанотехнологий и наноматериалов. Наноразмерный порошок кремния получают травлением монокристаллического кремния в ячейке электрохимического травления с контрэлектродом U-образной формы из нержавеющей стали с последующим механическим отделением пористого слоя от...
Тип: Изобретение
Номер охранного документа: 0002572134
Дата охранного документа: 27.12.2015
20.01.2018
№218.016.129e

Способ получения нанопрофилированной ультратонкой пленки alo на поверхности пористого кремния

Использование: для роста наноразмерных пленок диэлектриков на поверхности монокристаллических полупроводников. Сущность изобретения заключается в том, что пленку AlO наносят ионно-плазменным распылением на слой пористого кремния с размером пор менее 3 нм, полученного электрохимическим...
Тип: Изобретение
Номер охранного документа: 0002634326
Дата охранного документа: 25.10.2017
18.05.2019
№219.017.5b74

Оптоволоконное устройство для регистрации флуоресценции

Изобретение относится к устройствам медицинской техники и может быть использовано для диагностики спектров флуоресценции локальных внутренних и поверхностных областей различных биологических сред. Устройство содержит призму для разделения пучка стимулирующего флуоресценцию излучения,...
Тип: Изобретение
Номер охранного документа: 0002464549
Дата охранного документа: 20.10.2012
29.05.2020
№220.018.2183

Способ получения нанопорошков пористого кремния

Изобретение относится к области получения нанопорошков кремния и может быть использовано в стоматологии и биомедицине для получения фотолюминесцентных меток. Способ получения нанопорошков пористого кремния, включает травление подкисленным концентрированной серной кислотой до значения рН 4...
Тип: Изобретение
Номер охранного документа: 0002722098
Дата охранного документа: 26.05.2020
+ добавить свой РИД