×
29.04.2020
220.018.1a5d

Результат интеллектуальной деятельности: Оптический сенсор с плазмонной структурой для определения химических веществ низких концентраций и способ его получения

Вид РИД

Изобретение

Аннотация: Изобретение относится к оптике. Способ получения оптического сенсора включает создание многослойной плазмонной структуры, содержащей слой наночастиц. На квадратное, размером 1×1 см, химически очищенное кварцевое стекло (марки КУ-1) наносят, а затем термически высушивают при температуре 60-100°С в течение 5 минут гидрозоль наночастиц серебра размером 44 нм в количестве 20 мкл. Технический результат заключается в создании простой и эффективной конструкции для регистрации сигнала усиленного комбинационного рассеяния (до порядков 10) электромагнитным полем плазмонов, генерируемых под действием когерентного лазерного излучения на его поверхности, конструкции, позволяющей определять малые (до 10 М) концентрации химических органических веществ.

Изобретение относится к области физики, а именно к оптике, и представляет собой устройство - оптический сенсор, основанный на эффекте усиления комбинационного рассеяния (до порядков 103) электромагнитным полем плазмонов, генерируемых под действием когерентного лазерного излучения на его поверхности. Изобретение может быть использовано в физике, химической промышленности, экологическом мониторинге, криминалистике.

Известны работы, являющиеся предпосылками заявляемого изобретения. Нижеприведенные примеры составляют часть предпосылок заявляемого изобретения и/или раскрывают методики, которые можно применять к некоторым аспектам заявляемого изобретения.

В частности, в работе (Dasary S. S. R. et al. Gold nanoparticle based label-free SERS probe for ultrasensitive and selective detection of trinitrotoluene // Journal of the American Chemical Society. - 2009. - T. 131. - №.38. - C. 13806-13812) предложен метод обнаружения ряда взрывчатых веществ в низких концентрациях. Проблема детектирования заключается в недостаточной степени повторяемости сигнала ГКР, а также в подборе рабочей концентрации вещества, т.к. следы аналита могут быть как рассеяны в воздухе в малой концентрации, так и содержаться в больших концентрациях и не давать разрешенного спектра. Некоторые из наиболее часто встречаемых взрывчатых веществ, таких как тринитротолуол, гексоген и пентаэритриттетранитрат, имеют очень низкое давление паров, и, как следствие, низкий предел обнаружения. Интенсивные исследования тринитротолуола показали, что данное вещество дает низкий уровень спектрального сигнала и демонстрирует высокую чувствительность к средствам усиления сигнала ГКР. В частности, в работе [Bertone J.F., Spencer K.M., Sylvia J.M. Fingerprinting CBRNE materials using surface-enhanced Raman scattering //Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing IX. - International Society for Optics and Photonics, 2008. - T. 6954. - C. 69540J] приведена методология применения гидроксида натрия для обработки средств усиления спектрального сигнала, созданных на основе золота. Однако в данном способе используется источник лазерного излучения - 100 Вт, что очень высоким значением мощности, которое может нести угрозу повреждения образца. Указанные изобретения применяются для исследования сложных, обладающих низкой интенсивностью рассеяния соединений, таких как бактериальная клетка. Как уже было отмечено, главной особенностью спектроскопии ГКР является присутствие НЧ металла (например, золото и серебро) в контакте с аналитом, в том числе помещение НЧ и аналита на полученную литографическим методом поверхность для возбуждения поверхностного плазмонного-поляритонного резонанса при лазерном воздействии в целях усиления сигнала КР анализируемой молекулы. Применение спектроскопии ГКР обеспечивает быструю и надежную идентификацию соединений в области «отпечатка пальца»; в перспективе спектроскопия ГКР может выступать мощным аналитическим инструментом для точного, специфичного и повторяемого анализа структуры молекул [Tripp R.A., Dluhy R.A., Zhao Y. Novel nanostructures for SERS biosensing // Nano Today. - 2008. - T. 3. - №.3. - C. 31-37]. Спектроскопия ГКР применяется для безметочного молекулярного анализа и может быть использована для определения широкого спектра соединений. Так, эффект ГКР может применяться для анализа ДНК [Kneipp K. et al. Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS) // Physical Review E. - 1998. - T. 57. - №.6. - C. R6281], лекарственных препаратов [Stokes R.J. et al. Surface-enhanced Raman scattering spectroscopy as a sensitive and selective technique for the detection of folic acid in water and human serum // Applied spectroscopy. - 2008. - T. 62. - №.4. - C. 371-376], пищевых добавок [Lin M. et al. Detection of melamine in gluten, chicken feed, and processed foods using surface enhanced Raman spectroscopy and HPLC // Journal of food science. - 2008. - T. 73. - №.8], клеток и спор [Alexander Т.A., Le D.M. Characterization of a commercialized SERS-active substrate and its application to the identification of intact Bacillus endospores // Applied optics. - 2007. - T. 46. - №.18. - C. 3878-3890]. Основными проблемами вышеобозначенных работ являются низкая повторяемость регистрируемого сигнала гигантского комбинационного рассеяния, а также технологическая сложность изготовления подобных структур.

Известно изобретение «Подложка для биочипа и способ ее изготовления» (патент RU №2411180, 2011 г., G01N 33/48), содержащее сходный с используемым в заявленном способе принцип выбора и конструирования устройства, состоящего из поверхности и наночастиц благородных металлов (Ag, Au, Pt).

Недостатком данного изобретения является как сложность изготовления конструкции, так и использование фотохромного или фототерморефрактивного стекла. Известно, что стекло, в отличие от кварца (КУ-1) дает существенно больший паразитный сигнал флуоресценции и рассеяния, наличие которого сильно затрудняет выделение эффективного сигнала аналита. Такая конструкция крайне неудобна для использования с наночастицами платины, имеющими пик плазменного поглощения в области 200-240 нм, в то время как стекло, в отличие от кварца не является оптически прозрачным в ультрафиолетовой области.

За прототип выбрано изобретение «Оптический датчик с многослойной плазмонной структурой для усовершенствованного обнаружения химических групп посредством SERS. (Патент RU №2361193 С2). Изобретение включает в себя оптический сенсор для использования с лазерным пучком возбуждения в видимом или ближнем инфракрасном диапазоне и детектор на основе спектроскопии комбинационного рассеяния, для обнаружения наличия химических групп в аналите, нанесенном на датчик. Датчик располагается на подложке в виде плазмон-резонансного зеркала, сформированного на чувствительной поверхности подложки. На подложку нанесен слой плазмон-резонансных частиц. Над слоем частиц размещен слой оптически прозрачного диэлектрика толщиной до 40 нм, разделяющий зеркало и слой частиц. Слой частиц обладает следующими характеристиками: А) периодической матрицей плазмон-резонансных частиц, имеющих покрытие, способное связывать молекулы аналита. Б) однородные размеры и формы частиц в выбранном диапазоне размеров 50-200 нм. В) регулярное периодическое расстояние между частицами, меньшее длины волны лазерного пучка возбуждения. Форма частиц может быть варьируема: сфероиды, стержни, цилиндры, нанопроволоки, трубки, тороиды или другие формы, которые, в случае однородности, могут располагаться с регулярной периодичностью. Данное устройство способно обнаруживать аналит с коэффициентом усиления считываемого сигнала комбинационного рассеяния до 1012-1014. Подложка данного изобретения выполнена на основе серебра, золота или алюминия и имеет толщину слоя 30-500 нм. Нанесенные частицы имеют размер в пределах 50-150 нм и могут быть сформированы из серебра, золота или алюминия целиком или в виде частиц, имеющих оболочку, сформированную из этих металлов.

Изобретение включает в себя способ обнаружения химических групп в аналите с коэффициентом усиления 1010-1012. При осуществлении способа на практике, молекулы аналита связываются с плазмон-резонансными частицами в слое частиц оптического датчика вышеописанного типа, чувствительная поверхность облучается лазерным пучком в видимом или ближнем инфракрасном диапазоне, и спектр комбинационного рассеяния, обусловленный облучением, регистрируется. Способ может быть полезен для обеспечения коэффициента усиления, по меньшей мере, 1012, и, таким образом, позволяет обнаруживать химические группы в одной или малом количестве молекул аналита. Способ позволяет анализировать спектр комбинационного рассеяния при мощности облучающего пучка 1-100 мкВт.

Несовершенство данного изобретения заключается в технологической сложности изготовления подобного сенсора, что также обуславливает его высокую стоимость. Другим недостатком сенсора является низкая повторяемость сигнала гигантского комбинационного рассеяния, обусловленная расположением зон усиления электромагнитного поля («горячих зон») для частиц несферических форм, используемых в данном решении. Третьим недостатком является низкий диапазон мощности облучающего пучка, поскольку для детекции рамановского рассеяния от аналита, при использовании мощностей такого порядка, необходим детектор исследовательского класса на основе CCD-матрицы. Это ограничивает применение данного изобретения в портативных решениях и полевых условиях.

Задачей заявляемого изобретения является создание простой и эффективной конструкции для регистрации сигнала усиленного комбинационного рассеяния (до порядков 103) электромагнитным полем плазмонов, генерируемых под действием когерентного лазерного излучения на его поверхности, конструкции позволяющей определять малые (до 10-5 М) концентрации химических органических веществ.

Поставленная задача решается тем, что оптический сенсор с плазмонной структурой для определения низких концентраций химических веществ является многослойной плазмонной структурой содержащей слой наночастиц, согласно изобретению, включает в себя химически очищенное кварцевое стекло (марки КУ-1), на поверхности которого находиться слой наночастиц серебра размером 44 нм.

Поставленная задача решается тем, что в способе получения оптического сенсора с плазмонной структурой для определения низких концентраций химических веществ, при котором, создают многослойную плазмонную структуру, содержащую слой наночастиц, согласно изобретению, на слой, представляющий из себя химически очищенное квадратное, размером 1 на 1 см кварцевое стекло (марки КУ-1) наносят, а затем термически высушивают при температуре 60-100°C в течение 5 минут гидрозоль наночастиц серебра размером 44 нм в количестве 20 мкл.

Созданный заявляемым способом оптический сенсор с плазмонной структурой позволяет получать повторяемый сигнал гигантского комбинационного рассеяния от аналита, произведя, таким образом, его детекцию и последующее определение химического состава.

Заявленный способ основан на создании структуры с использованием эффекта поверхностного плазмонного резонанса и последующей чувствительной детекции аналита, которое начинается с создания НЧ серебра методом химического восстановления по Туркевичу, используемого для химического синтеза серебра и золота. В 500 мл дистиллированной воды было растворено 25 мг соли нитрата серебра AgNO3. Раствор доводился до кипения, при этом интенсивно перемешивался, после чего в него добавлялось 9 мл раствора водного цитрата натрия Na3C6H5O7 концентрацией 1%. После тщательного перемешивания раствор менял окраску с прозрачной на желто-зеленую.

Процесс химического восстановления серебра соответствовал следующему уравнению:

Таким образом, НЧ серебра были восстановлены из соли нитрата серебра. Раствор отстаивали сутки в темном месте для выпадения крупных агрегаций наночастиц в осадок, после чего раствор фильтровали фильтром с размером пор 200 нм. Наличие максимумов плазмонного поглощения контролировалось с помощью спектрофотометра с ожидаемым максимумом на длине волны равной 420 нм. Размер частиц контролировался с помощью фотон-корреляционной спектроскопии и составлял 44 нм. Далее, полученный гидрозоль серебра быстро, в количестве 20 мкл с помощью автоматической пипетки наносили на предварительно химически очищенное кварцевое стекло и немедленно помещали в сушильный шкаф для сушки при температуре 60-100°C в течение 5 минут. По окончании сушки, на полученную конструкцию, состоящую из кварцевого стекла и слоя гидрозоля серебра, остывшую до комнатной температуры, наносили раствор красителя родамина 6Ж, концентрацией 10-5 М. После чего давали раствору высохнуть и получали, при облучении лазерным излучением и последующей детекцией, сигнал гигантского комбинационого рассеяния. Контроль снимали на химически очищенном кварцевом стекле с нанесением раствора родамина 6ж без наночастиц.

Затем рассчитывали коэффициент усиления гигантского комбинационного рассеяния (ГКР) по формуле:

где ISERS, IRS - интенсивность ГКР и КР на выбранной частоте соответственно, CSERS и CRS - концентрация веществ в эксперименте с ГКР и КР соответственно. Коэффициент усиления повторяемого сигнала с использованием заявленной конструкции составлял порядка 103 раз.

По результатам детекции и записи сигнала гигантского комбинационного рассеяния с помощью заявленного изобретения проводилась последующая идентификация химического соединения - родамина 6Ж с помощью спектральных библиотек. Предложенное устройство, посредством индуцирования эффекта плазмонного резонанса и усиления сигнала комбинационного рассеяния аналита вследствие этого, позволило успешно идентифицировать химическую структуру вещества.

Способ получения оптического сенсора с плазмонной структурой для определения низких концентраций химических веществ, при котором создают многослойную плазмонную структуру, содержащую слой наночастиц, отличающийся тем, что на слой, представляющий собой химически очищенное квадратное, размером 1×1 см, кварцевое стекло (марки КУ-1) наносят, а затем термически высушивают при температуре 60-100°C в течение 5 минут гидрозоль наночастиц серебра размером 44 нм в количестве 20 мкл.
Источник поступления информации: Роспатент

Показаны записи 21-30 из 48.
10.04.2019
№219.016.ff07

Решетка для очистки от механических примесей сточных вод

Изобретение относится к механической очистке сточных вод и может быть использовано для очистки бытовых и производственных стоков. Решетка 2 для очистки сточных вод от механических примесей выполнена из металлического стержня в форме навитого усеченного конуса и содержит осадкосборный подвижный...
Тип: Изобретение
Номер охранного документа: 0002684386
Дата охранного документа: 08.04.2019
20.04.2019
№219.017.3597

Плазменная шторка

Изобретение относится к области строительства и дизайна помещений. Плазменная шторка устанавливается между стеклами, например, оконного стеклоблока и выполнена в виде герметичного стеклоблока. Стеклоблок плазменной шторки содержит два стекла с токопроводящим слоем. В пространстве между стеклами...
Тип: Изобретение
Номер охранного документа: 0002685312
Дата охранного документа: 17.04.2019
16.05.2019
№219.017.5211

Способ кормления виноградной улитки

Изобретение относится к сельскому хозяйству, а именно к разведению виноградных улиток (Helix pomatia L.) в искусственных условиях. Способ включает природоподобный сбалансированный рацион, состоящий из овощей: огурец обыкновенный (Cucumis sativus L.) - 25%, кабачок (Cucurbita реро subsp. реро) –...
Тип: Изобретение
Номер охранного документа: 0002687529
Дата охранного документа: 14.05.2019
16.05.2019
№219.017.5220

Способ и устройство для бесконтактного определения удельного электросопротивления металлов в области высоких температур

Изобретение относится к области физики, а именно к анализу материалов путем бесконтактного определения удельного электросопротивления нагреваемого в индукторе высокочастотного индукционного генератора металлического образца цилиндрической формы в диапазоне температур 1000-2500 К. В...
Тип: Изобретение
Номер охранного документа: 0002687504
Дата охранного документа: 14.05.2019
16.05.2019
№219.017.5222

Способ ремонта трубопровода без вывода из эксплуатации

Изобретение относится к области строительства и ремонта металлических напорных трубопроводов без вывода из эксплуатации, а также может быть использовано при ремонте и реконструкции резервуаров, котлов и сосудов высокого давления. Цель изобретения - повышение качества ремонта за счет обеспечения...
Тип: Изобретение
Номер охранного документа: 0002687476
Дата охранного документа: 13.05.2019
02.07.2019
№219.017.a2ea

Система связи сверхнизкочастотного и крайненизкочастотного диапазонов с глубокопогруженными и удаленными объектами -7

Цель изобретения: управление диаграммой направленности или адресная передача информации на подводные объекты на основе построения пространственно распределенных нескольких узких диаграмм направленности, составляющих широкую диаграмму направленности передающей антенны; управление диаграммой...
Тип: Изобретение
Номер охранного документа: 0002692931
Дата охранного документа: 28.06.2019
03.07.2019
№219.017.a408

Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8

Цель изобретения: обеспечение электромагнитной совместимости системы связи с РЭС, линиями электропередачи, кабельными линиями связи, инженерными сооружениями и создание условий экологической безопасности в районе размещения антенной системы радиостанции. Сущность: система связи...
Тип: Изобретение
Номер охранного документа: 0002693060
Дата охранного документа: 01.07.2019
12.08.2019
№219.017.be25

Индивидуальный маломощный источник электрической энергии

Изобретение относится к области электрорадиотехники и может быть использовано для создания маломощного источника электрической энергии, возбуждаемого естественным электромагнитным полем Земли диапазона КНЧ (крайне низких частот или частоты от 3 до 30 Гц). Индивидуальный маломощный источник...
Тип: Изобретение
Номер охранного документа: 0002697026
Дата охранного документа: 08.08.2019
12.08.2019
№219.017.be39

Устройство обнаружения сигналов ядерного квадрупольного резонанса

Использование: для обнаружения сигналов ядерного квадрупольного резонанса. Сущность изобретения заключается в том, что в устройство обнаружения сигналов ядерного квадрупольного резонанса, содержащее генератор качающей частоты, усилитель мощности и согласующее устройство, дополнительно введены...
Тип: Изобретение
Номер охранного документа: 0002697023
Дата охранного документа: 08.08.2019
06.09.2019
№219.017.c819

Способ определения демпфирующих характеристик жидкостей и сыпучих материалов

Изобретение относится к метрологии, в частности к способам измерения коэффициента демпфирования. Способ определения демпфирующих характеристик жидкостей и сыпучих материалов, при котором испытуемое вещество помещают в герметичную емкость, которую размещают между двухкаскадной системой...
Тип: Изобретение
Номер охранного документа: 0002699311
Дата охранного документа: 04.09.2019
Показаны записи 1-6 из 6.
25.08.2017
№217.015.ca3c

Способ определения концентрации адсорбатов наночастиц серебра на поверхности нанопористого кремнезема

Изобретение относится к области нанотехнологий, а также может быть использовано в биологии, медицине, гетерогенном катализе. Способ определения концентрации адсорбатов наночастиц (НЧ) серебра на поверхности нанопористого кремнезема включает приготовление раствора исследуемого вещества,...
Тип: Изобретение
Номер охранного документа: 0002620169
Дата охранного документа: 23.05.2017
13.02.2018
№218.016.24cd

Флуоресцентный способ прогнозирования эффективности химиотерапии у детей, больных острым лимфобластным лейкозом, путем определения концентраций аденозинтрифосфата в митохондриях

Изобретение относится к медицине и касается флуоресцентного способа прогнозирования эффективности химиотерапии у детей, больных острым лимфобластным лейкозом, путем определения концентраций аденозинтрифосфата в митохондриях, при котором производят забор крови до и после химиотерапии, выделяют...
Тип: Изобретение
Номер охранного документа: 0002642589
Дата охранного документа: 25.01.2018
10.05.2018
№218.016.3c12

Флуоресцентный способ прогнозирования эффективности химиотерапии у детей, больных острым лимфобластным лейкозом

Изобретение относится к области биофизики, а именно к медицинской физики, и описывает способ прогнозирования эффективности химиотерапии у детей, больных острым лимфобластным лейкозом (ОЛЛ), в частности прогнозирования рисков возникновения лекарственной резистентности при проведении химиотерапии...
Тип: Изобретение
Номер охранного документа: 0002647834
Дата охранного документа: 19.03.2018
12.12.2019
№219.017.ec4e

Способ получения усиленного сигнала комбинационного рассеяния света от молекул сывороточного альбумина человека в капле жидкости

Изобретение относится к оптике и биофизике. Cпособ получения усиленного сигнала комбинационного рассеяния света от молекул сывороточного альбумина человека в капле жидкости с помощью плазмонного эффекта, индуцируемого на наночастицах серебра когерентным лазерным излучением, отличается тем, что...
Тип: Изобретение
Номер охранного документа: 0002708546
Дата охранного документа: 09.12.2019
12.04.2023
№223.018.47b8

Способ приготовления клеточных блоков на основе эксфолиативного материала шейки матки и цервикального канала

Изобретение относится к области биологии и медицины, в частности к гистологии и патологической анатомии. Для приготовления клеточных блоков из эксфолиативного материала шейки матки и цервикального канала накапливают клеточный осадок в центрифужной пробирке с помощью центрифугирования первичного...
Тип: Изобретение
Номер охранного документа: 0002740431
Дата охранного документа: 14.01.2021
21.05.2023
№223.018.698b

Оптический сенсор с плазмонной структурой для определения низких концентраций флуоресцентных аминокислот тромбоцита и способ его получения

Изобретение относится к области оптических сенсоров, основанных на эффекте усиления флуоресценции электромагнитным полем плазмонов. Способ получения оптического сенсора, состоящего из химически синтезированной платиновой плазмонной наночастицы, находящейся в состоянии коллоидного раствора из...
Тип: Изобретение
Номер охранного документа: 0002794993
Дата охранного документа: 27.04.2023
+ добавить свой РИД