×
03.07.2019
219.017.a408

Результат интеллектуальной деятельности: Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8

Вид РИД

Изобретение

Аннотация: Цель изобретения: обеспечение электромагнитной совместимости системы связи с РЭС, линиями электропередачи, кабельными линиями связи, инженерными сооружениями и создание условий экологической безопасности в районе размещения антенной системы радиостанции. Сущность: система связи сверхнизкочастотного и крайненизкочастотного диапазонов с глубокопогруженными и удаленными объектами - 8 содержит передающую систему, состоящую из центральной ветви и дополнительных пяти ветвей, последовательно соединенных с центральной ветвью через коммутатор ветвей, информационный блок системы управления передающей СНЧ-КНЧ антенной, содержащий пять каналов передачи данных, причем в каждом канале передачи данных два генератора, настроенные на две частоты, таким образом, передача информации осуществляется двухчастотным методом: в первом канале передачи два генератора работают один на частоте ƒ, второй - ƒ; во втором канале на ƒ и ƒ; в третьем канале на ƒ, и ƒ; в четвертом канале на ƒ и ƒ; в пятом канале на ƒ и ƒ; десять модуляторов и формирователь спектра, коммутатор ветвей содержит преобразователь на пять каналов и пять пятиконтактных включателей: Вк.1, Вк.2, Вк.3, Вк.4 и Вк.5; преобразователь на пять каналов, содержащий 4 - последнюю секцию антенной системы центральной ветви, источник электрической энергии, информационный трансформатор, усилитель, блок узкополосных фильтров, формирователь информационных каналов; формирователи спектра пяти каналов: первого, второго, третьего, четвертого и пятого; предварительные усилители пяти каналов: первого, второго, третьего, четвертого и пятого; усилители мощности пяти каналов: первого, второго, третьего, четвертого и пятого; регулятор мощности на входе усилителя мощности; силовые трансформаторы в пяти каналах: первого, второго, третьего, четвертого и пятого; токовый трансформатор; I - ток в N секции 4 центральной ветви антенны длиной 20 км; - ток в первой секции 4÷4 любого участка из дополнительных пяти ветвей антенны длиной по 20 км; - разность токов между током в последней секции 4 центральной ветви и током в первой секции 44 любой дополнительной ветви антенной системы. Использование устройства позволит решить проблему по управлению передачей информации на заданные глубины погружения объектов и повысить скорость передачи данных на основе создания пяти двухчастотных каналов передачи данных передающей антенной для адресной передачи информации на погруженные и удаленные объекты. 13 з.п. ф-лы, 15 ил.

Изобретение относится к области электротехники и радиотехники, а именно к технике связи СНЧ-КНЧ-диапазона, и может быть использована для связи с глубокопогруженными и удаленными подводными объектами.

Известен «Способ сейсмической разведки» (патент №2029318 RU G01V 1/09, 1995) Этот способ сейсмической разведки заключается в возбуждении зондирующего сигнала и многоканального приема отраженных и дифрагированных волн от объекта, обработке с проведением селекции волн по направлениям прихода и отображением результатов в виде размеров параметров на платформе. Недостатком такого способа является то, что он использует приближенную интерполяцию данных, что приводит в ряде случаев к низкой достоверности результатов зондирования.

Известно устройство «Способ электромагнитного зондирования земной коры с использованием нормированных источников поля» (патент №2093863, RU G01V 3/12, 1997). Данное устройство содержит два генератора синусоидального тока, которые нагружены на протяженные, низко расположенные, горизонтально ориентированные и заземленные на концах антенны, регистрация же излучения, создаваемого СНЧ-радиоустановкой, осуществляется с помощью измерительного комплекса Объединенного Института Физики Земли (ОИФЗ) РАН типа «Борок». Однако данная установка не обеспечивает передачу информации с глубокопогруженными и удаленными подводными объектами, так как не имеет приемного комплекса в своем составе, а также обладает недостаточным уровнем СНЧ-КНЧ-сигналов на больших удалениях от источника.

Известно устройство «Унифицированный генераторно-измерительный комплекс СНЧ-КНЧ-излучения для геофизических исследований». Патент №2188439 RU от 27.08.02 G01V 3/12. Комплекс состоит из задающего генератора, N генераторов синусоидального тока, нагруженных на протяженные, низко расположенные горизонтально ориентированные передающие антенны с заземлителями на концах, причем регистрация излучения, создаваемого СНЧ-КНЧ-генераторами, осуществляется с помощью измерительного комплекса, при этом все N генераторов подключены к единому задающему генератору. Задающий генератор представляет собой однофазный мостовой инвертор, выполненный на мощных полупроводниковых управляемых вентилях-тиристорах. Недостатками устройства «Унифицированный генераторно-измерительный …» - известного генераторно-измерительного комплекса - является малый уровень излучения СНЧ-КНЧ-сигналов и их регистрация на больших удалениях от источника, так номинальная активная мощность при испытаниях на активную нагрузку составляет не более 30 кВт, а также низкая надежность работы комплекса в условиях наведенных помех (с глубоким подавлением гармоник промышленной частоты). Кроме того, в связи с высокими требованиями, предъявляемыми теорией электромагнитного поля к распространению радиосигналов в Мировом океане, для связи с удаленными и глубокопогруженными объектами необходимо иметь специальную антенну, малошумящий антенный усилитель и аналого-цифровой приемник, которые в прототипе отсутствуют.

Известна «Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами» (патент №2350020 RU). Радиоволны большей части электромагнитного диапазона не проникают в морскую воду. Глубина проникновения электромагнитной энергии определяется следующей формулой: , где π=3,14; ƒ - частота электромагнитной волны, от 3 до 300 Гц; μ=4⋅π⋅10-7, Гн/м; σ - проводимость морской воды от 1 до 4 сименс на метр. Используя самые низкие частоты от 3 до 300 Гц (КНЧ и СНЧ) можно получить глубину подводного радиоприема больше 100 метров. Поэтому для связи с удаленными глубокопогруженными подводными объектами (подводные лодки, подводные аппараты, батискафы, подводные дома и т.п.) предложена система связи СНЧ-КНЧ-диапазона. Электромагнитные волны этого диапазона являются пригодными для решения указанной задачи вследствие их способности проникать в толщу морской воды на значительную глубину. Кроме того, по сравнению с электромагнитными волнами других диапазонов распространение СНЧ-КНЧ-сигналов в волноводе «земля-ионосфера» отличается высокой стабильностью даже при возникновении различных возмущений в ионосфере.

«Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами» (патент №2350020 RU) содержит «n» генераторов синусоидального тока, нагруженных на протяженные низко расположенные горизонтально ориентированные передающие антенны с заземлителями на концах, причем прием и регистрация излучения, создаваемого СНЧ-КНЧ-генераторами, осуществляются с помощью буксируемой кабельной антенны, антенного усилителя и приемника СНЧ-КНЧ-диапазона, находящихся на борту подводного объекта, при этом задающий генератор состоит из системы управления, защиты и автоматизации (СУРЗА), тиристорного выпрямителя, первого устройства защиты, автономного инвертора напряжения, второго устройства защиты, согласующего устройства, устройства питания и двух входных переключателей, при этом входные переключатели выполнены трехпозиционными и последовательно тремя входами соединены с тиристорным выпрямителем, причем на соединительных линиях установлены датчика тока (ДТ) и датчики напряжения (ДН), которые соединены с системой управления, регулирования и автоматики, а выпрямитель через устройство защиты двумя выходами соединен с автономным инвертором, который в свою очередь через устройство защиты соединен с согласующим устройством, при этом согласующее устройство соединено с антенной, причем СУРЗА соединено с выносным постом управления и понижающим выпрямителем, который своим входом соединен с третьим входом высоковольтного устройства питания генератора, а тот в свою очередь первым входом соединен с входным переключателем, а вторым входом с понижающими блоками питания, при этом на глубокопогруженном и удаленном объекте установлена буксируемая кабельная антенна, которая через антенный усилитель соединена с приемником СНЧ-КНЧ-диапазона.

Недостатками патента №2350020 RU являются:

- большие мощности «n» генераторов не менее 100 кВт;

- «n» антенных устройств с «2n» плоскостными заземлителями, (у каждой низкорасположенной антенны два заземлителя по концам антенны) следовательно, большая площадь земной поверхности поражена обратными токами антенны и размещение электронных средств на данной площади невозможно;

- не защищена подземная кабельная магистраль управления и связи от токов растекания заземлителя передающей системы;

- электромагнитное поле, создаваемое «n» антенными устройствами поражает все системы на значительных расстояниях;

- экологическая опасность превышения норм ПДУ СНЧ-КНЧ (предельно-допустимые нормы облучения личного состава обслуживающего СНЧ-КНЧ станции и жителей близлежащих районов, а также растения, животные и вся среда обитания). Например, на антенне, выполненной в виде ЛЭП (линий электропередачи) подается напряжение 30кВ, а высота подвеса антенны из-за неровностей поверхности земли достигает из-за провеса 5 метров. Следовательно, напряженность поля вдоль антенны определится Е=(30⋅кВ)/(5⋅м)=6⋅кВ. Как видно вдоль антенны напряженность поля 6 кВ, что превышает в три раза нормы ПДУ. Хотя нормы ПДУ рекомендуют пребывание не более 8 часов в зонах, где напряженность поля электрической составляющей достигает 2 кВ. Причем длина антенн зависит от скин-слоя, например, на частоте 3 Гц скин-слой для σ=10-4⋅См/м, будет равен , при двух заземлителях, чтобы не было поверхностных токов замыкания длина антенны должна превышать 20 км. А учитывая, что для создания заданного магнитного момента необходимо «n» антенных устройств с «2n» плоскостными заземлителями, общая площадь пораженная мощными электромагнитными полями недопустимо огромна даже для России.

Таким образом, компоновка на ограниченной территории антенной системы, состоящей из «n» антенных устройств с «2n» плоскостными заземлителями с подключенными к ним 100 кВт генераторами является опасной для данного региона, и решить проблему электромагнитной совместимости с РЭС, ЛЭП, кабельными магистралями и экологической безопасности не представляется возможным.

Аналогами являются также патенты: №2567181 от 10.07.2015 г. RU; №2608072 от 13.01.17 г. RU; №2611603 от 28.02.2017 г. RU и №2626070 от 21.07.2017 г. RU.

Прототипом является «Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами» (патент №2626070 от 21.07.2017 г. RU), в которой прием и регистрация излучения, создаваемого СНЧ-КНЧ-генераторами передающей антенной системой, осуществляются с помощью буксируемой кабельной антенны, антенного усилителя и приемника СНЧ-КНЧ-диапазона, находящихся на борту подводного объекта, а передающая антенная система содержит задающий генератор, модулятор, систему управления, защиты и автоматизации, усилитель мощности, согласующее устройство, индикатор тока антенны и источник тока, защита подземной кабельной магистрали системы управления передающей СНЧ-КНЧ антенной осуществлена путем повышения защитного действия грозозащитного троса на основе его заземления и секционирования, а также уменьшением электрической длины кабеля включением необслуживаемых защитных пунктов НЗП; передающая антенна, состоящая из центральной, правой и левой токовых ветвей, образующих две рамочные антенны, обеспечивающие расширение диаграммы направленности передающей антенны за счет сложения двух диаграмм направленности в направлении расчетной направленности; клемма соединения «а» является электрическим контактом всех трех ветвей, причем левая токовая ветвь и правая токовая ветвь передающей антенны является продолжением центральной токовой ветви через клемму соединения «а», обе ветви являются одной топологической линией; топологическая линия центральной токовой ветви передающей антенны перпендикулярна топологической линии левой и правой токовых ветвей передающей антенны и соединена к клемме «а» в центре длины топологической линии левой и правой ветвей тока передающей антенны, так как длина левой ветви равна длине правой ветви (или ); ток антенны правой ветви равен току антенны левой ветви (или ); ток антенны центральной ветви IA, подходящей к клемме «а» равен сумме токов отходящих от клеммы «а» к антенне правой ветви и антенне левой ветви (или ); ток антенны правой ветви равен обратному току в земле на глубине h равной скин-слою земной среды; ток антенны левой ветви равен обратному току в земле на глубине h равной скин-слою земной среды; причем центральная токовая ветвь передающей антенны длиной содержит: систему управления передающей СНЧ-КНЧ антенной состоящую: из задающего генератора, модулятора, системы управления, защиты и автоматизации, усилителя мощности, согласующего устройства, индикатора тока антенны, и источника тока; N преобразователей, с первого преобразователя по N, в центральной ветви тока, N заземлителей антенны, с первого заземлителя по N, в центральной ветви тока, N излучающих секций, с первой секции по N, подземного неэкранированного кабеля передающей антенны длиной центральной ветви тока, при этом первый вход системы управления передающей СНЧ-КНЧ антенны соединен с первым входом модулятора, а второй вход модулятора соединен с выходом задающего генератора, выход модулятора соединен с первым входом усилителя мощности, выход системы управления, защиты и автоматизации соединен параллельно со вторым входом усилителя мощности, с входом задающего генератора и со вторым входом согласующего устройства; третий вход усилителя мощности соединен с первым заземлителем передающей антенны через второй вход системы управления передающей СНЧ-КНЧ антенной, через первый выход индикатора тока антенны; выход усилителя мощности соединен через первый вход согласующего устройства, через первый выход согласующего устройства с выходом системы управления передающей СНЧ-КНЧ антенной, второй выход согласующего устройства соединен с первым входом системы управления, защиты и автоматизации, второй вход системы управления, защиты и автоматизации соединен с выходом индикатора тока антенны, источник тока соединен параллельно с входами всех блоков системы управления передающей СНЧ-КНЧ антенной через их систему электроснабжения; выход системы управления передающей СНЧ-КНЧ антенной соединен через первую излучающую секцию подземного кабеля передающей антенны с входом первого преобразователя, первый выход первого преобразователя соединен с помощью второй излучающей секции подземного кабеля передающей антенны с входом второго преобразователя, а второй выход первого преобразователя соединен со вторым заземлителем передающей антенны; выход второго преобразователя соединен через третью излучающую секцию подземного кабеля передающей антенны с входом третьего преобразователя, а второй выход второго преобразователя соединен с третьим заземлителем передающей антенны; выход третьего преобразователя соединен через четвертую излучающую секцию подземного кабеля передающей антенны с входом четвертого преобразователя, а второй выход третьего преобразователя соединен с четвертым заземлителем передающей антенны; выход четвертого преобразователя соединен через пятую излучающую секцию подземного кабеля передающей антенны с входом пятого преобразователя, а второй выход четвертого преобразователя соединен с пятым заземлителем передающей антенны; выход пятого преобразователя соединен через шестую излучающую секцию подземного кабеля антенной системы с входом шестого преобразователя, а второй выход пятого преобразователя соединен с шестым заземлителем передающей антенны; таким образом обеспечивается соединение последующих преобразователей с последующими излучающими секциями подземного кабеля передающей антенны; выход N-1 преобразователя соединен через N излучающую секцию подземного кабеля передающей антенны с входом N преобразователя, а второй выход N-1 преобразователя соединен с N-1 заземлителем передающей антенны; первый выход N преобразователя соединен с клеммой «а», а второй выход N преобразователя соединен с N заземлителем передающей антенны; левая ветвь тока передающей антенны СНЧ-КНЧ длиной содержит: N преобразователей, с первого по N преобразователь левой токовой ветви, N заземлителей, с первого по N заземлитель левой токовой ветви, N излучающих секций, с первой по N излучающую секцию подземного кабеля левой токовой ветви, при этом клемма «а» соединена через первую излучающую секцию подземного кабеля передающей антенны с входом первого преобразователя левой токовой ветви передающей антенны, первый выход первого преобразователя левой токовой ветви через вторую излучающую секцию подземного кабеля левой токовой ветви соединен с входом второго преобразователя, второй выход первого преобразователя соединен с первым заземлителем левой токовой ветви передающей антенны; первый выход второго преобразователя через третью излучающую секцию подземного кабеля левой токовой ветви соединен с входом четвертого преобразователя, второй выход второго преобразователя соединен со вторым заземлителем левой ветви тока передающей антенны; таким образом обеспечивается соединение последующих преобразователей с последующими излучающими секциями подземного кабеля левой токовой ветви передающей антенны; первый выход N-1 преобразователя через N излучающую секцию подземного кабеля соединен с входом N преобразователя левой токовой ветви, выход N преобразователя соединен с N заземлителем левой ветви тока передающей антенны; правая токовая ветвь передающей антенны СНЧ-КНЧ длиной содержит: N преобразователей правая токовая ветвь, с первого по N преобразователь, N заземлителей правая токовая ветвь, с первого по N заземлитель, N излучающих секций, с первой по N излучающую секцию подземного кабеля правой токовой ветви, при этом клемма «а» соединена через первую излучающую секцию подземного кабеля правой токовой ветви передающей антенны с входом первого преобразователя правой ветви тока передающей антенны, первый выход первого преобразователя через вторую излучающую секцию подземного кабеля правой токовой ветви соединен с входом второго преобразователя, второй выход первого преобразователя соединен с первым заземлителем правой ветви тока передающей антенны; первый выход второго преобразователя через третью излучающую секцию подземного кабеля правой токовой ветви соединен с входом четвертого преобразователя, второй выход второго преобразователя соединен со вторым заземлителем правой ветви тока передающей антенны; таким образом, обеспечивается соединение последующих преобразователей с последующими излучающими секциями подземного кабеля и заземлителями правой токовой ветви передающей антенны; первый выход N-1 преобразователя через N излучающую секцию подземного кабеля правой токовой ветви соединен с входом N преобразователя, выход N преобразователя соединен с N заземлителем правой токовой ветви передающей антенны.

Целью изобретения является:

- повышение скорости передачи информации на подводные объекты на основе построения многоканальной инфотелекоммуникационной системы;

- управление частотным спектром с учетом глубины погружения подводных объектов и необходимой скорости передачи информации для избранной диаграммы направленности на подводные объекты на просторах океанических зон;

- возможность пространственного разнесения информационных каналов передачи данных на подводные объекты с выделением частот передачи для океанических зон или непрерывной смены частот и зон для предупреждения противодействия преднамеренным помехам.

Поставленная цель достигается за счет использования по две частоты передачи на один канал при передачи на одно из направлений диаграммы направленности передающей антенны, при этом использование десяти частот для передачи информации по пяти каналам для пяти ветвей тока передающей антенны «Системы связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами», при этом использование, как совместно, так и разнородно, пяти токовых ветвей, работающих рамочных антенн, на пяти двухчастотах каналах одновременно или в разнообразном их наборе, для «n» маломощных КНЧ-СНЧ генераторов при их пространственном распределении, «n» заземлителей, «n» усилителей, «n» блоков системы управления для одной длинной в несколько десятков сотен километров передающей антенны с током в ней, позволяющим обеспечить заданный магнитный момент для обеспечения связи с глубокопогруженными и удаленными объектами и не оказывать влияние на электромагнитную совместимость с радиоэлектронными средствами, ЛЭП и защита кабельной магистралями управления и связи передающей системы СНЧ-КНЧ антенны, а также создание условий экологической безопасности для человека и окружающей среды, и создание широкой диаграммы направленности СНЧ-КНЧ передающей антенны для освещения больших океанских просторов при действии в них подводных объектов.

Имея пять ветвей тока, одновременно работающих на десяти частотах в пяти каналах или на двух частотах в каждом канале передачи данных в каждой ветви тока, например, на частотах: 3 Гц, 10 Гц, 20 Гц, 30 Гц, 40 Гц, 70 Гц, 75, 90 Гц, 95 Гц и 100 Гц. Скорость передачи одной буквы от 3 до 5 минут на глубину 100 метров на одной частоте. Передача по каналу предающей антенны на подводный объект на десяти частотах увеличивает скорость в десять раз. Причем передача пяти каналов передачи данных возможна на основе коммутатора по различным передающим ветвям или антенным рамкам в зависимости от требуемой глубины и скорость передачи в заданном направлении. Возможные глубины радиоприема или скин-слой, т.е. глубины проникновения электромагнитных волн в морскую среду с проводимостью σ=1 См/м:

- на частоте 3 Гц -

- на частоте 20 Гц -

- на частоте 30 Гц -

- на частоте 70 Гц -

- на частоте 100 Гц -

Действительно, резонансная частота ƒ0 сферического резонатора Земля - ионосфера определяется как длина по экватору в 40000 км деленная на скорость света (3⋅108 м/с) или ƒ0=(40000000⋅м)/(3⋅108 м/с)=7⋅Гц. Резонатор Земля - ионосфера резонирует на частоте 7 Гц. Следовательно, частоты от 3 до 300 Гц могут возбуждать данный резонатор при условии, что энергия возбуждения будет достаточной. А возбужденный резонатор имеет практически одинаковую напряженность поля в любой точке земного шара. В прототипе возбуждение производится «n» генераторами мощностью 100 кВт каждый, которые создают ток в «n» рамочных антеннах. Рамка образуется током антенны, в виде ЛЭП 30 кВ, и обратным током в земле, протекаемым между заземлителями. Известно, что для возбуждения резонатора магнитный момент антенны должен быть не менее или М≥108⋅[А⋅м2]. Магнитный момент рамочной антенны определяется

где IA - ток в антенне в Амперах; h - глубина протекания тока в земле, определяется следующей формулой: (π=3,14; ƒ - частота электромагнитной волны 3-300 Гц; μ=4⋅π⋅10-7, Гн/м; σ - проводимость земли в районе размещения антенны выбирается от 10-4 до 10-5 См/м); - длина антенны в метрах.

Расчет показывает, что если ток принять равным IA=1 ампер, глубину протекания обратного тока принять равной h=10 км, то длина антенны должна быть около =1000 км. Следовательно, чтобы исключить влияние тока на окружающие антенну радиоэлектронные средства (РЭС), высоковольтные линии электропередачи и кабельные магистрали антенна должна иметь малый ток, но большую длину. Например, влияние частот 3 герц очень сильно сказывается, учитывая большую глубину проникновения через экранирующие оболочки кабелей и возбуждает кондуктивные помехи через корпуса радиоэлектронных средств.

Таким образом, антенна СНЧ-КНЧ должна иметь большую длину для достижения заданного магнитного момента и малый ток для обеспечения ее экологической безопасности при эксплуатации, а также обеспечения электромагнитной совместимости с РЭС, кабельной магистралью управления и связи передающей системы антенны, высоковольтными линиями электропередачи и инженерными сооружениями, обеспечение возможности действия подводных объектов на широких океанических просторах путем управления диаграммой направленности СНЧ-КНЧ передающей антенной системы.

На Фиг. 1 представлена многоканальная передающая антенна с широкой диаграммы направленности, «Системы связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами», где:

-1 - система управления передающей СНЧ-КНЧ антенной в центральной ветви;

- IA - ток центральной ветви передающей антенны;

- - токи в первой, второй, третьей, четвертой и пятой ветвях передающей антенне;

- - земляной или обратный ток в первой ветви тока передающей антенны, протекаемый между первым заземлителем З1 центральной ветви и последним N заземлителем первой ветви З1N;

- - обратный ток во второй ветви тока передающей антенны, протекаемый между первым заземлителем З1 центральной ветви и последним N заземлителем второй ветви З2N;

- - обратный ток в третьей ветви тока передающей антенны, протекаемый между первым заземлителем З1 центральной ветви и последним N заземлителем третьей ветви З3N;

- - обратный ток в четвертой ветви тока передающей антенны, протекаемый между первым заземлителем З1 центральной ветви и последним N заземлителем четвертой ветви З4N;

- - обратный ток в пятой токовой ветви передающей антенны, протекаемый между первым заземлителем З1 центральной ветви и последним N заземлителем пятой ветви З5N;

- - ток антенны IA центральной ветви передающей антенны переключателем 5 представляется суммой токов: как током первой антенны длиной , током второй антенны длиной , током третьей антенны длиной , током четвертой антенны длиной , и током пятой антенны длиной (ток центральной ветви есть сумма токов пяти ветвей, как пяти составных частей передающей антенны, причем токи могут быть разных частот из пяти, либо любой вариант: одной, двух, трех и т.д. частот из пяти);

- 31, 32, 33, …, 3N-1, 3N - первый, второй третий, …, N-1 и N заземлители центральной ветви для тока передающей антенны;

- 21, 22, …, 2N-1, 2N - первый, второй, …, N-1 и N преобразователи центральной ветви передающей антенны;

- 41, 42, 43, 4N-1, …, 4N - одна из N излучающих секций центральной ветви передающей антенны длиной , включенная между 21, 22, …, 2N-1, 2N преобразователями (как изолированный проводник длиной не более 20 км, находящийся в земле на глубине hК или называемый подземным или подводным неэкранированным кабелем);

- 211, …, 21N - первый, …, и N преобразователи первой ветви передающей антенны;

- 221, …, 22N - первый, …, и N преобразователи второй ветви передающей антенны;

- 231, …, 23N - первый, …, и N преобразователи третьей ветви передающей антенны;

- 241, …, 24N - первый, …, и N преобразователи четвертой ветви передающей антенны;

- 251, …, 25N - первый, …, и N преобразователи пятой ветви передающей антенны;

- 311, …, 31N - первый, …, и N заземлители первой ветви тока передающей антенны;

- 321, …, 32N - первый, …, и N заземлители второй ветви тока передающей антенны;

- 331, …, 33N - первый, …, и N заземлители третьей ветви тока передающей антенны;

- 341, …, 34N - первый, …, и N заземлители четвертой ветви тока передающей антенны;

- 351, …, 35N - первый, …, и N заземлители пятой ветви тока передающей антенны;

- 411, …, 41N - одна из N излучающих секций первой ветви передающей антенны длиной , включенная между 211, …, 21N преобразователями;

- 421, …, 42N - одна из N излучающих секций второй ветви передающей антенны длиной , включенная между 221, …, 22N преобразователями;

- 431, …, 43N - одна из N излучающих секций третьей ветви передающей антенны длиной , включенная между 231, …, 23N преобразователями;

- 441, …, 44N - одна из N излучающих секций четвертой ветви передающей антенны длиной , включенная между 241, …, 24N преобразователями;

- 451, …, 45N - одна из N излучающих секций пятой ветви передающей антенны длиной , включенная между 251, …, 25N преобразователями;

- 5 - коммутатор ветвей, определяет рабочие частоты и направление излучения из пяти дополнительных ветвей тока;

_ - длина первой, второй, третьей, четвертой и пятой ветвей передающей антенны, соответствующих длине обратного тока в каждой ветви;

- - длина центральной ветви передающей антенны;

- ЗК - защищенная подземная кабельная магистраль управления и связи передающей системы.

На Фиг. 2 представлены конструктивные особенности многочастотной передающей антенны с управляемой диаграммой направленности и защищенной кабельной магистралью управления и связи «Системы связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами», где:

- 1 - система управления передающей СНЧ-КНЧ антенной в центральной ветви, содержащая информационный блок 1-1, управляемый через второй вход по пяти рабочим частотам и модуляции этих частот по информационным каналам через защищенную кабельную магистралью ЗК, через предварительный усилитель 1-2, систему управления, защиты и автоматизации 1-3, усилитель мощности 1-4, согласующее устройство 1-5, индикатор тока антенной системы 1-6, источник электрической энергии 1-7 питания передающей системы 1;

- 21, 22, 23, 24, 25, …, 2N - первый, второй, третий, четвертый, пятый, и N преобразователи центральной ветви;

- 31, 32, 33, 34, 35, 36, …, 3N - первый, второй третий, четвертый, пятый, шестой, …, и N заземлители центральной ветви;

- 41, 42, 43, 44, …, 45, 4N - одна из N излучающих секций центральной ветви антенной системы длиной , включенная между 21, 22, 23, 24, 25, …, 2N преобразователями (как изолированный проводник длиной не более 20 км, находящийся в земле на глубине hК или называемый подземным или подводным неэкранированным кабелем);

- 211, …, 21N - первый, …, и N преобразователи первой ветви передающей антенны;

- 221, …, 22N - первый, …, и N преобразователи второй ветви передающей антенны;

- 231, …, 23N - первый, …, и N преобразователи третьей ветви передающей антенны;

- 241, …, 24N - первый, …, и N преобразователи четвертой ветви передающей антенны;

- 251, …, 25N - первый, …, и N преобразователи пятой ветви передающей антенны;

- 311, …, 31N - первый, …, и N заземлители первой ветви тока передающей антенны;

- 321, …, 32N - первый, …, и N заземлители второй ветви тока передающей антенны;

- 331, …, 33N - первый, …, и N заземлители третьей ветви тока передающей антенны;

- 341, …, 34N - первый, …, и N заземлители четвертой ветви тока передающей антенны;

- 351, …, 35N - первый, …, и N заземлители пятой ветви тока передающей антенны;

- 411, …, 41N - одна из N излучающих секций первой ветви передающей антенны, включенная между 211, …, 21N преобразователями этой ветви;

- 421, …, 42N - одна из N излучающих секций второй ветви передающей антенны, включенная между 221, …, 22N преобразователями этой ветви;

- 431, …, 43N - одна из N излучающих секций третьей ветви передающей антенны, включенная между 231, …, 23N преобразователями этой ветви;

- 441, …, 44N - одна из N излучающих секций четвертой ветви передающей антенны, включенная между 241, …, 24N преобразователями этой ветви;

- 451, …, 45N - одна из N излучающих секций пятой ветви передающей антенны, включенная между 251, …, 25N преобразователями этой ветви;

- h - глубина протекания обратного тока антенны для первой, второй, третьей, четвертой и пятой ветвей (определяемая скин-слоем

- hК - глубина прокладки подземного (подводного) неэкранированного кабеля антенной системы для центральной, первой, второй, третьей, четвертой и пятой ветвей;

- IA - ток в антенне (подземном кабеле) центральной ветви;

- - обратный ток в земле, между заземлителем 31 центральной ветви и N заземлителем 31N первой ветви передающей антенны;

- - обратный ток в земле, между заземлителем 31 центральной ветви и N заземлителем 32N второй ветви передающей антенны;

- - обратный ток в земле, между заземлителем 31 центральной ветви и N заземлителем 33N третьей ветви передающей антенны;

- - обратный ток в земле, между заземлителем 31 центральной ветви и N заземлителем 34N четвертой ветви передающей антенны;

- - обратный ток в земле, между заземлителем 31 центральной ветви и N заземлителем 35N пятой ветви передающей антенны;

- 5 - коммутатор ветвей, определяет рабочие частоты и направление излучения из пяти дополнительных ветвей тока.

На Фиг. 3 представлен информационный блок 1-1 содержащий в каждом передающем канале два генератора настроенные на две частоты, таким образом, передача информации осуществляется двухчастотным методом: в первом канале передачи данных генератор 16-1 работает на частоте ƒ1, а генератор 16-2 работает на частоте ƒ2; во втором канале: генератор 17-1 - на ƒ3, а генератор 17-2 - на ƒ4; в третьем канале: генератор 18-1 - на ƒ5, а генератор 18-2 - на ƒ6; в четвертом канале: генератор 19-1 - на ƒ7, а генератор 19-2 - на ƒ8; в пятом канале: генератор 20-1 - на ƒ9, а генератор 20-2 - на ƒ10; десять модуляторов: 6, 7, 8, 9, 10, 11, 12, 13, 14, и формирователь спектра 21, при этом первый вход информационного блока 1-1 соединен параллельно с входами десяти генераторов: 16-1, 16-2, 17-1, 17-2, 18-1, 18-2, 19-1,19-2, 20-1, и 20-2; выход первого генератора 16-1 соединен через первый вход первого модулятора 6 с первым входом формирователя спектра 21; выход второго генератора 16-2 соединен через первый вход второго модулятора 7 со вторым входом формирователя спектра 21; выход третьего генератора 17-1 соединен через первый вход третьего модулятора 8 с третьим входом формирователя спектра 21; выход четвертого генератора 17-2 соединен через первый вход четвертого модулятора 9 с четвертым входом формирователя спектра 21; выход пятого генератора 18-1 соединен через первый вход пятого модулятора 10 с пятым входом формирователя спектра 21; выход шестого генератора 18-2 соединен через первый вход шестого модулятора 11 с шестым входом формирователя спектра 21; выход седьмого генератора 19-1 соединен через первый вход седьмого модулятора 12 с седьмым входом формирователя спектра 21; выход восьмого генератора 19-2 соединен через первый вход восьмого модулятора 13 с восьмым входом формирователя спектра 21; выход девятого генератора 20-1 соединен через первый вход девятого модулятора 14 с девятым входом формирователя спектра 21; выход десятого генератора 20-2 соединен через первый вход десятого модулятора 15 с десятым входом формирователя спектра 21; выход формирователя спектра 23 соединен с выходом информационного блока 1-1; второй вход информационного блока 1-1 соединен параллельно со вторыми входами десяти модуляторов: первого модулятора - 6, второго -7, третьего - 8, четвертого - 9, пятого - 10, шестого - 11, седьмого - 12, восьмого - 13, девятого - 14 и десятого - 15.

На Фиг. 4 один из N преобразователей любой из 21, 22, 23, 24, 25, …, 2N в центральной ветви тока, любой из 211, …, 21N первой ветви тока, любой из 221, …, 22N второй ветви тока, любой из 231, …, 23N третьей ветви тока, любой из 241, …, 24N четвертой ветви тока, любой из 251, …, 25N пятой ветви тока, где:

- 4 - секция антенной системы (подземного или подводного неэкранированного кабеля), любая 41, 42, 43, 44, 45, …, 4N в центральной токовой ветви, 411, …, 41N в первой токовой ветви, 421, …, 42N второй токовой ветви, 431, …, 43N в третьей токовой ветви, 441, …, 44N четвертой токовой ветви, 451, …, 45N пятой токовой ветви;

- 1-7 - источник электрической энергии;

- 22 - информационный трансформатор;

- 23 - усилитель;

- 24 - блок узкополосных фильтров;

- 25 - формирователь информационных каналов;

- 26 - формирователь спектра передающей антенны;

- 27 - предварительный усилитель;

- 28 - усилитель мощности;

- 29 - регулятор мощности на входе усилителя мощности

- 30 - силовой трансформатор;

- 31 - токовый трансформатор;

- - ток в N-1 секции антенны длиной 20 км;

- - ток в N секции антенны длиной 20 км;

- - разность токов N-1 секции и N секции антенной системы.

На фиг. 5 представлен блок узкополосных фильтров 24 предназначен для выделения частотных каналов передачи и, содержащий десять узкополосных фильтров: узкополосный фильтр 24-1 для выделения первой рабочей частоты ƒ1; узкополосный фильтр 24-2 для выделения второй рабочей частоты ƒ2; узкополосный фильтр 24-3 для выделения третьей рабочей частоты ƒ3; узкополосный фильтр 24-4 для выделения четвертой рабочей частоты ƒ4; узкополосный фильтр 24-5 для выделения пятой рабочей частоты ƒ5; узкополосный фильтр 24-6 для выделения шестой рабочей частоты ƒ6; узкополосный фильтр 24-7 для выделения седьмой рабочей частоты ƒ7; узкополосный фильтр 24-8 для выделения восьмой рабочей частоты ƒ8; узкополосный фильтр 24-9 для выделения девятой рабочей частоты ƒ9; узкополосный фильтр 24-10 для выделения десятой рабочей частоты ƒ10; при этом первый вход блока узкополосных фильтров 24 соединен с его первым выходом через первый узкополосный фильтр 24-1, второй вход блока узкополосных фильтров 24 соединен с его вторым выходом через второй узкополосный фильтр 24-2, третий вход блока узкополосных фильтров 24 соединен с его третьим выходом через третий узкополосный фильтр 24-3, четвертый вход блока узкополосных фильтров 24 соединен с его четвертым выходом через четвертый узкополосный фильтр 24-4, пятый вход блока узкополосных фильтров 24 соединен с его пятым выходом через пятый узкополосный фильтр 24-5, шестой вход блока узкополосных фильтров 24 соединен с его шестым выходом через шестой узкополосный фильтр 24-6, седьмой вход блока узкополосных фильтров 24 соединен с его седьмым выходом через седьмой узкополосный фильтр 24-7, восьмой вход блока узкополосных фильтров 24 соединен с его восьмым выходом через восьмой узкополосный фильтр 24-8, девятый вход блока узкополосных фильтров 24 соединен с его девятым выходом через девятый узкополосный фильтр 24-9, десятый вход блока узкополосных фильтров 24 соединен с его десятым выходом через десятый узкополосный фильтр 24-10.

На фиг. 6 представлен блок формирователей информационных каналов 25, содержащий десять формирователей информационных каналов: формирователь первого информационного канала - 25-1, второго канала - 25-2, третьего канала - 25-3, четвертого канала - 25-4, пятого канала - 25-5, шестого канала - 25-6, седьмого канала - 25-7, восьмого канала - 25-8, девятого канала - 25-9, десятого канала - 25-10; при этом первый вход блока формирователей информационных каналов 25 соединен с его первым выходом через формирователь первого информационного канала 25-1; второй вход блока формирователей информационных каналов 25 соединен с его вторым выходом через формирователь второго информационного канала 25-2; третий вход блок формирователей информационных каналов 25 соединен с его третьим выходом через формирователь третьего информационного канала 25-3; четвертый вход блок формирователей информационных каналов 25 соединен с его четвертым выходом через формирователь четвертого информационного канала 25-4; пятый вход блока формирователей информационных каналов 25 соединен с его пятым выходом через формирователь пятого информационного канала 25-5; шестой вход блока формирователей информационных каналов 25 соединен с его шестым выходом через формирователь шестого информационного канала 25-6; седьмой вход блока формирователей информационных каналов 25 соединен с его седьмым выходом через формирователь седьмого информационного канала 25-7; восьмой вход блока формирователей информационных каналов 25 соединен с его восьмым выходом через формирователь восьмого информационного канала 25-8; девятый вход блока формирователей информационных каналов 25 соединен с его девятым выходом через формирователь девятого информационного канала 25-9; десятый вход блока формирователей информационных каналов 25 соединен с его десятым выходом через формирователь десятого информационного канала 25-10.

На фиг. 7 представлен формирователь информационного канала, любой

из десяти: с первого 25-1 по десятый - 25-10; каждый формирователь информационного канала содержит первый усилитель 32, интегральную цепочку 33, первый вентиль В.1, второй усилитель 34, дифференциальную цепочку 35, второй вентиль В.2, третий усилитель 36, генератор тактовых импульсов 37, модулятор 38; при этом вход формирователя информационного канала соединен с первым усилителем 32, выход первого усилителя 32 соединен параллельно через интегральную цепочку 33, через первый вентиль В.1, через второй усилитель 34 со вторым входом модулятора 38, а также через дифференциальную цепочку 35, через второй вентиль В.2, через третий усилитель 36, через генератор тактовых импульсов 37 с первым входом модулятора 38; выход модулятора 38 соединен с выходом формирователя информационного канала.

На фиг. 8 токовый трансформатор 31 содержит трехобмоточный трансформатор Тр.1, с током от N-1 секции антенной системы в первой обмотке 1, с током от N секции антенной системы во второй обмотке 2 токового трансформатора 31, разностный ток от N-1 секции антенной системы и N секции антенной системы первой 1 и второй обмоток 2 возбуждаемый в третьей обмотке 3 токового трансформатора 31.

На фиг. 9 представлен коммутатор ветвей 5, который определяет рабочие частоты и направление излучения из пяти дополнительных ветвей тока, содержащий преобразователь на пять каналов 39 и пять пятиконтактных включателей: Вк.1, Вк.2, Вк.3, Вк.4 и Вк.5; при этом вход коммутатора ветвей соединен с входом преобразователя на пять каналов 39; первый выход преобразователя на пять каналов 39 соединен параллельно с первой клеммой «1» первого включателя Вк.1, с первой клеммой «1» второго включателя Вк.2, с первой клеммой «1» третьего включателя Вк.3, с первой клеммой «1» четвертого включателя Вк.4, с первой клеммой «1» пятого включателя Вк.5; второй выход преобразователя на пять каналов 39 соединен параллельно с второй клеммой «2» первого включателя Вк.1, с второй клеммой «2» второго включателя Вк.2, с второй клеммой «2» третьего включателя Вк.3, с второй клеммой «2» четвертого включателя Вк.4, с второй клеммой «2» пятого включателя Вк.5; третий выход преобразователя на пять каналов 39 соединен параллельно с третьей клеммой «3» первого включателя Вк.1, с третьей клеммой «3» второго включателя Вк.2, с третьей клеммой «3» третьего включателя Вк.3, с третьей клеммой «3» четвертого включателя Вк.4, с третьей клеммой «3» пятого включателя Вк.5; четвертый выход преобразователя на пять каналов 39 соединен параллельно с четвертой клеммой «4» первого включателя Вк.1, с четвертой клеммой «4» второго включателя Вк.2, с четвертой клеммой «4» третьего включателя Вк.3, с четвертой клеммой «4» четвертого включателя Вк.4, с четвертой клеммой «4» пятого включателя Вк.5; пятый выход преобразователя на пять каналов 39 соединен параллельно с пятой клеммой «5» первого включателя Вк.1, с пятой клеммой «5» второго включателя Вк.2, с пятой клеммой «5» третьего включателя Вк.3, с пятой клеммой «5» четвертого включателя Вк.4, с пятой клеммой «5» пятого включателя Вк.5; шестая, седьмая, восьмая, девятая и десятая клеммы первого включателя Вк.1 соединены параллельно с первым выходом коммутатора ветвей 5; шестая, седьмая, восьмая, девятая и десятая клеммы второго включателя Вк.2 соединены параллельно со вторым выходом коммутатора ветвей 5; шестая, седьмая, восьмая, девятая и десятая клеммы третьего включателя Вк.3 соединены параллельно с третьим выходом коммутатора ветвей 5; шестая, седьмая, восьмая, девятая и десятая клеммы четвертого включателя Вк.4 соединены параллельно с четвертым выходом коммутатора ветвей 5; шестая, седьмая, восьмая, девятая и десятая клеммы пятого включателя Вк.5 соединены параллельно с пятым выходом коммутатора ветвей 5; шестой выход преобразователя на пять каналов 39 соединен с заземлителем через шестой выход коммутатор ветвей 5.

На фиг. 10 представлен преобразователь на пять каналов 39, содержащий 4N - последнюю секцию антенной системы центральной ветви, источник электрической энергии 1-7, информационный трансформатор 22, усилитель 23, блок узкополосных фильтров 24, формирователь информационных каналов 25; формирователи спектра пяти каналов: первого 26-1, второго 26-2, третьего 26-3, четвертого 26-4 и пятого 26-5; предварительные усилители пяти каналов: первого 27-1, второго 27-2, третьего 27-3, четвертого 27-4 и пятого 27-5; усилители мощности пяти каналов: первого 28-1, второго 28-2, третьего 28-3, четвертого 28-4 и пятого 28-5; регулятор мощности на входе усилителя мощности 29; силовые трансформаторы в пяти каналах: первого 30-1, второго 30-2, третьего 30-3, четвертого 30-4 и пятого 30-5; токовый трансформатор 31; IA - ток в N секции 4N центральной ветви антенны длиной 20 км; - ток в первой секции 411÷451 любой из дополнительных пяти ветвей антенны длиной 20 км; - разность токов между током в последней секции 4N центральной ветви и током в первой секции 411÷451 любой дополнительной ветви антенной системы; при этом выход последней секции 4N центральной ветви соединен к входу преобразователя на пять каналов 39, а вход преобразователя на пять каналов 39 соединен через первичную обмотку информационного трансформатора 22, через первый вход токового трансформатора 31, через первый выход токового трансформатора 31 с шестым выходом преобразователя на пять каналов 39; вторичная обмотка информационного трансформатора 22 соединена через усилитель 23 с входом блока узкополосных фильтров 24; десять выходов блока узкополосных фильтров 24 соединены с десятью входами формирователя информационных каналов 25; первый и второй выходы формирователя информационных каналов 25 соединены с первым и вторым входом первого формирователи спектра 26-1 первого канала передачи данных; третий и четвертый выходы формирователя информационных каналов 25 соединены с первым и вторым входом второго формирователи спектра 26-2 второго канала передачи данных; пятый и шестой выходы формирователя информационных каналов 25 соединены с первым и вторым входом третьего формирователи спектра 26-3 третьего канала передачи данных; седьмой и восьмой выходы формирователя информационных каналов 25 соединены с первым и вторым входом четвертого формирователи спектра 26-4 четвертого канала передачи данных; девятый и десятый выходы формирователя информационных каналов 25 соединены с первым и вторым входом пятого формирователи спектра 26-5 пятого канала передачи данных; выход первого формирователя спектра 26-1 первого канала передачи данных через предварительный усилитель 27-1 соединен с первым входом первого усилителя мощности 28-1 первого канала, выход первого усилителя мощности 28-1 соединен с первичной обмоткой первого силового трансформатора 30-1 первого канала, вторичная обмотка этого силового трансформатора 30-1 клеммой «а» соединена со вторым входом токового трансформатора 31, а клеммой «б» вторичная обмотка первого силового трансформатора 30-1 соединена с первым выходом преобразователя на пять каналов 39; выход второго формирователя спектра 26-2 второго канала передачи данных через предварительный усилитель 27-2 соединен с первым входом второго усилителя мощности 28-2 второго канала, выход второго усилителя мощности 28-2 соединен с первичной обмоткой второго силового трансформатора 30-2 второго канала, вторичная обмотка этого силового трансформатора 30-2 клеммой «а» соединена со вторым входом токового трансформатора 31, а клеммой «б» вторичная обмотка второго силового трансформатора 30-2 соединена со вторым выходом преобразователя на пять каналов 39; выход третьего формирователя спектра 26-3 третьего канала передачи данных через предварительный усилитель 27-3 соединен с первым входом третьего усилителя мощности 28-3 третьего канала, выход третьего усилителя мощности 28-3 соединен с первичной обмоткой третьего силового трансформатора 30-3 третьего канала, вторичная обмотка этого силового трансформатора 30-3 клеммой «а» соединена со вторым входом токового трансформатора 31, а клеммой «б» вторичная обмотка третьего силового трансформатора 30-3 соединена с третьим выходом преобразователя на пять каналов 39; выход четвертого формирователя спектра 26-4 четвертого канала передачи данных через предварительный усилитель 27-4 соединен с первым входом четвертого усилителя мощности 28-4 четвертого канала, выход четвертого усилителя мощности 28-4 соединен с первичной обмоткой четвертого силового трансформатора 30-4 четвертого канала, вторичная обмотка этого силового трансформатора 30-4 клеммой «а» соединена со вторым входом токового трансформатора 31, а клеммой «б» вторичная обмотка четвертого силового трансформатора 30-4 соединена с четвертым выходом преобразователя на пять каналов 39; выход пятого формирователя спектра 26-5 пятого канала передачи данных через предварительный усилитель 27-5 соединен с первым входом пятого усилителя мощности 28-5 пятого канала, выход пятого усилителя мощности 28-5 соединен с первичной обмоткой пятого силового трансформатора 30-5 пятого канала, вторичная обмотка этого силового трансформатора 30-5 клеммой «а» соединена со вторым входом токового трансформатора 31, а клеммой «б» вторичная обмотка пятого силового трансформатора 30-5 соединена с пятым выходом преобразователя на пять каналов 39; первый выход токового трансформатора 31 соединен с шестым выходом преобразователя на пять каналов 39, а второй выход токового трансформатора 31 соединен с входом регулятора мощности усилителей мощности 29, выход регулятора мощности 29 соединен параллельно со вторыми входами пяти усилителей мощности: первого усилителя мощности 28-1, второго усилителя мощности 28-2, третьего 28-3, четвертого 28-4 и пятого усилителя мощности 28-5.

На фиг. 11 представлена максимальная ширина диаграммы направленности передающей антенны при совместной работе центральной ветви тока и как продолжение ее последовательно включенных к центральной ветви дополнительных пяти ветвей тока, пять ветвей работают параллельно и одновременно на собственных частотах или на частотах обоснованных по скорости передачи информации и глубине радиоприема, и входящих в передачу данных пяти каналов «Системы связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами». Например, в направлении «А» излучение на частотах первого канала передачи данных, в направлении «С» излучение на частотах второго канала, в направлении «Д» излучение на частотах третьего канала, в направлении «К» излучение на частотах четвертого канала, в направлении «Р» излучение на частотах пятого канала. На основании фиг. 11, где:

- IA - ток в кабеле центральной ветви передающей антенны, как суммарный ток десяти несущих частот пяти каналов: первом- ƒ1 и ƒ2, втором- ƒ3 и ƒ4, третьем- ƒ5 и ƒ6, четвертом- ƒ7 и ƒ8, пятом - ƒ9 и ƒ10;

- ток в первой ветви не равен нулю и соответствует частотам ƒ1 и ƒ2 первого канала, т.е. первая ветвь подключена к цепи центральной ветви включателем Вк.1 в коммутаторе ветвей 5 так, что вход коммутатора 5 соединен с первым выходом коммутатора через преобразователь на пять каналов 39 на первый канал передачи данных, через первую клемму первого включателя Вк.1;

- ток во второй ветви не равен нулю и соответствует частотам ƒ3 и ƒ4 второго канала, т.е. вторая ветвь подключена к цепи центральной ветви включателем Вк.2 в коммутаторе ветвей 5 так, что вход коммутатора 5 соединен со вторым выходом коммутатора 5 через преобразователь на пять каналов 39 на второй канал передачи данных, через вторую клемму второго включателя Вк.2;

- ток в третьей ветви не равен нулю соответствует частотам ƒ5 и ƒ6 третьего канала, т.е. третья ветвь подключена к цепи центральной ветви включателем Вк.3 в коммутаторе ветвей 5 так, что вход коммутатора 5 соединен с третьим выходом коммутатора 5 через преобразователь на пять каналов 39 на третий канал передачи данных, через третью клемму третьего включателя Вк.3;

- ток в четвертой ветви не равен нулю и соответствует частотам ƒ7 и ƒ8 четвертого канала, т.е. четвертая ветвь подключена к цепи центральной ветви включателем Вк.4 в коммутаторе ветвей 5 так, что вход коммутатора 5 соединен с четвертым выходом коммутатора 5 через преобразователь на пять каналов 39 на четвертый канал передачи данных, через четвертую клемму четвертого включателя Вк.4;

- ток в пятой ветви не равен нулю и соответствует частотам ƒ9 и ƒ10 пятого канала, т.е. пятая ветвь подключена к цепи центральной ветви включателем Вк.5 в коммутаторе ветвей 5 так, что вход коммутатора 5 соединен с пятым выходом коммутатора 5 через преобразователь на пять каналов 39 на пятый канал передачи данных, через пятую клемму пятого включателя Вк.5;

- - обратный ток в земле между заземлителем 31 центральной ветви и N, или последним заземлителем 31N первой ветви передающей антенны, как цепь образованная токами центральной ветви IA частот ƒ1 и ƒ2 первого канала и током первой ветви через включатель первый Вк.1 в коммутаторе ветвей 5;

- - обратный ток в земле между заземлителем 31 центральной ветви и N, последним заземлителем 32N второй ветви передающей антенны, как цепь образованная токами центральной ветви IA частот ƒ3 и ƒ4 второго канала, и током второй ветви через включатель второй Вк.2 в коммутаторе ветвей 5;

- - обратный ток в земле между заземлителем 31 центральной ветви и N, последним заземлителем 33N третьей ветви передающей антенны, как цепь образованная токами центральной ветви IA частот ƒ5 и ƒ6 третьего канала и током третьей ветви через включатель третий Вк.3 в коммутаторе ветвей 5;

- - обратный ток в земле между заземлителем 31 центральной ветви и N заземлителем 34N четвертой ветви передающей антенны, как цепь образованная токами центральной ветви IA частот ƒ7 ƒ8 четвертого канала и током четвертой ветви через включатель четвертый Вк.4 в коммутаторе ветвей 5;

- - обратный ток в земле между заземлителем 31 центральной ветви и N заземлителем 35N пятой ветви передающей антенны, как цепь образованная токами центральной ветви IA частот ƒ9 и ƒ10 пятого канала и током пятой ветви через включатель пятый Вк.5 в коммутаторе ветвей 5;

- ширина диаграммы направленности антенны в заданном направлении, как сумма диаграмм направленности по направлениям: «А» на частотах ƒ1 и ƒ2 первого канала, «С» на частотах ƒ3 и ƒ4 второго канала, «Д» на частотах ƒ5 и ƒ6 третьего канала, «К» на частотах ƒ7 и ƒ8 четвертого канала и «Р» на частотах ƒ9 и ƒ10 пятого канала;

- В - ширина диаграммы направленности в обратном направлении «В»;

- UГен - источник ЭДС передающей антенны;

- - ток антенны IA а центральной ветви передающей антенны как последовательная цепь включенных к центральной ветви дополнительных пяти ветвей или сумма токов антенны первой ветви длиной , второй ветви длиной , третей ветви длиной , четвертой ветви длиной , пятой ветви длиной (ток центральной ветви поступает последовательно и параллельно по пяти ветвям, т.е. ветви, как составные части передающей антенны, совместно работающие с центральной ветвью и образующие широкую диаграмму направленности в направлении в заданном направлении «А», «С», «Д», «К» и «Р»;).

На фиг. 12 представлена диаграмма направленности передающей антенны в случае совместной работы и последовательно включенных центральной и первой ветвей тока на любом канале из пяти «Системы связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами», например, в направлении «А» излучение обосновано по глубине и скорости передачи данных на втором канале с частотами ƒ3 и ƒ4 второго канала, остальные частоты четырех каналов информационный блок 1-1 не воспроизводит, тогда:

- IA - ток в кабеле центральной ветви частотах ƒ3 и ƒ4 второго канала избранных из пяти каналов передающей антенны;

- - ток в кабеле первой ветви частотах ƒ3 и ƒ4 второго канала избранных из пяти каналов передающей антенны;

- - ток антенны IA центральной ветви передающей антенны равен току антенны первой ветви длиной (ток центральной ветви имеет продолжение в цепи первой ветви; таким образом, ток центральной ветви и первой ветви, как составные части передающей антенны, совместно работающие на любом из пяти каналов и образующие диаграмму направленности в заданном направлении «А» и обратную диаграмму направленности в направлении «В»).

- - обратный ток в земле между заземлителем 31 центральной ветви и N заземлителем 31N первой ветви передающей антенны, как цепь образованная центральной ветвью и последовательно к ней включенной первой ветви через включатель первый Вк.1 в коммутаторе ветвей 5 по цепи: вход коммутатора 5 соединен с первым выходом коммутатора 5 через преобразователь на пять каналов 39 на второй канал передачи данных, через вторую клемму первого включателя Вк.1;

- ток во второй ветви равен нулю, т.е. вторая ветвь отключена от цепи центральной ветви включателем Вк.2 в коммутаторе ветвей 5;

- ток в третьей ветви равен нулю, т.е. третья ветвь отключена от цепи центральной ветви включателем Вк.3 в коммутаторе ветвей 5;

- ток в четвертой ветви равен нулю, т.е. четвертая ветвь отключена от цепи центральной ветви включателем Вк.4 в коммутаторе ветвей 5;

- ток в пятой ветви равен нулю, т.е. пятая ветвь отключена от цепи центральной ветви включателем Вк.5 в коммутаторе ветвей 5.

На фиг. 13 представлена диаграмма направленности передающей антенны в случае совместной работы и последовательно включенных центральной и второй ветвей тока на любом канале из пяти «Системы связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами», например, в направлении «С» излучение обосновано по глубине и скорости передачи данных на четвертом канале с частотами ƒ7 и ƒ8 четвертого канала, остальные частоты четырех каналов информационный блок 1-1 не воспроизводит, тогда:

- IA - ток в кабеле центральной ветви на частотах ƒ7 и ƒ8 четвертого канала, избранных из пяти каналов передающей антенны;

- - ток в кабеле второй ветви на частотах ƒ7 и ƒ8 четвертого канала, избранных из пяти каналов передающей антенны, при этом;

- - ток антенны IA центральной ветви передающей антенны имеет продолжение в цепи второй ветви длиной (ток центральной ветви протекает во второй ветви; таким образом, центральная ветвь и вторая ветвь как составные части передающей антенны, совместно работающие на любых частотах избранных из пяти каналов и образующие диаграмму направленности в заданном направлении «С» и обратную диаграмму направленности в направлении «В»).

- - обратный ток в земле между заземлителем 31 центральной ветви и N заземлителем 32N второй ветви передающей антенны, как цепь образованная токами центральной ветви IA и током второй ветви через включатель второй Вк.2 в коммутаторе ветвей 5 по цепи: вход коммутатора ветвей 5 соединен со вторым выходом коммутатора ветвей 5 через преобразователь на пять каналов 39 на четвертый канал передачи данных, через четвертую клемму второго включателя Вк.2;

- ток в первой ветви равен нулю, т.е. первая ветвь отключена от цепи центральной ветви включателем Вк.1 в переключателе ветвей 5;

- ток в третьей ветви равен нулю, т.е. третья ветвь отключена от цепи центральной ветви включателем Вк.3 в коммутаторе ветвей 5;

- ток в четвертой ветви равен нулю, т.е. четвертая ветвь отключена от цепи центральной ветви включателем Вк.4 в коммутаторе ветвей 5;

- ток в пятой ветви равен нулю, т.е. пятая ветвь отключена от цепи центральной ветви включателем Вк.5 в переключателе ветвей 5.

На фиг. 14 представлена диаграмма направленности передающей антенны в случае совместной работы и последовательно включенных центральной и третьей ветвей тока на любых частотах избранных из пяти каналов «Системы связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами», например, в направлении «Д» излучение обосновано по глубине и скорости передачи данных на втором канале с частотами ƒ3 и ƒ4 второго канала, остальные частоты четырех каналов информационный блок 1-1 не воспроизводит, тогда:

- IA - ток в кабеле центральной ветви на частотах ƒ3 и ƒ4 второго канала избранных из пяти каналов передающей антенны;

- - ток в кабеле третьей ветви на частотах ƒ3 и ƒ4 второго канала избранных из пяти каналов передающей антенны;

- - ток антенны IA центральной ветви передающей антенны имеет продолжение в цепи третьей ветви длиной (ток центральной ветви протекает в третьей ветви; ветви, как составные части передающей антенны, совместно работающие на частотах ƒ3 и ƒ4 второго канала избранных из пяти каналов и образующие диаграмму направленности в заданную направлении «Д» и обратную диаграмму направленности в направлении «В»).

- - обратный ток в земле между заземлителем 31 центральной ветви и N заземлителем 33N третьей ветви передающей антенны, как цепь образованная токами центральной ветви IA и током третьей ветви через включатель второй Вк.3 в коммутаторе ветвей 5 по цепи: вход коммутатора ветвей 5 соединен с третьим выходом коммутатора 5 через преобразователь на пять каналов 39 на третий канал передачи данных, через вторую клемму третьего включателя Вк.3;

- ток в первой ветви равен нулю, т.е. первая ветвь отключена от цепи центральной ветви включателем Вк.1 в коммутаторе ветвей 5;

- ток во второй ветви равен нулю, т.е. вторая ветвь отключена от цепи центральной ветви включателем Вк.2 в коммутаторе ветвей 5;

- ток в четвертой ветви равен нулю, т.е. четвертая ветвь отключена от цепи центральной ветви включателем Вк.4 в коммутаторе ветвей 5;

- ток в пятой ветви равен нулю, т.е. пятая ветвь отключена от цепи центральной ветви включателем Вк.5 в коммутаторе ветвей 5.

На фиг. 15 представлена диаграмма направленности передающей антенны в случае совместной работы центральной ветви и продолжением ей первой дополнительной ветви, работающей на частотах ƒ1 и ƒ2 первого канала избранных из пяти каналов и второй дополнительной ветви тока, работающей на частотах ƒ7 и ƒ8 четвертого канала избранных из пяти каналов «Системы связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами», в направлениях «А» на частотах ƒ1 и ƒ2 первого канала и «С» на частотах ƒ7 и ƒ8 четвертого канала излучение обосновано по глубине и скорости передачи данных, остальные частоты трех каналов информационный блок 1-1 не воспроизводит, тогда:

- IA - ток в кабеле центральной ветви, представляющей совместную передачу частот двух каналов передающей антенны на частотах ƒ1 и ƒ2 первого канала и на частотах ƒ7 и ƒ8 четвертого канала;

- ток в первой ветви не равен нулю частотах ƒ1 и ƒ2 первого канала, т.е. первая ветвь, подключена к цепи центральной ветви включателем Вк.1 в коммутаторе ветвей 5;

- ток во второй ветви не равен нулю на частотах ƒ7 и ƒ8 четвертого канала избранных из пяти каналов, т.е. вторая ветвь, подключена к цепи центральной ветви включателем Вк.2 в коммутаторе ветвей 5;

- - ток антенны IA центральной ветви передающей антенны как сумма токов антенны первой ветви длиной и второй ветви длиной (ток центральной ветви есть сумма токов двух ветвей на любых частотах избранных двух каналов из пяти каналов передаваемых; и ветви, как составные части передающей антенны, совместно работающие и образующие диаграмму направленности в заданном направлении «А» и «С», и обратную диаграмму направленности в направлении «В»).

- - обратный ток в земле между заземлителем 31 центральной ветви и N заземлителем 31N первой ветви передающей антенны, как цепь образованная токами центральной ветви IA и током первой ветви через включатель первый Вк.1 в коммутаторе ветвей 5 по цепи: вход коммутатора 5 соединен с первым выходом коммутатора 5 через преобразователь на пять каналов 39 на первый канал передачи данных, через первую клемму первого включателя Вк.1;

- - обратный ток в земле между заземлителем 31 центральной ветви и N заземлителем 32N второй ветви передающей антенны, как цепь образованная токами центральной ветви IA и током второй ветви через включатель второй Вк.2 в коммутаторе ветвей 5 по цепи: вход коммутатора ветвей 5 соединен со вторым выходом коммутатора 5 через преобразователь на пять каналов 39 на четвертый канал передачи данных, через четвертую клемму второго включателя Вк.2;

- ток в третьей ветви равен нулю, третья ветвь отключена от цепи центральной ветви включателем Вк.3 в коммутаторе ветвей 5;

- ток в четвертой ветви равен нулю, т.е. четвертая ветвь, отключена от цепи центральной ветви включателем Вк.4 в коммутаторе ветвей 5;

- ток в пятой ветви равен нулю, т.е. пятая ветвь, отключена от цепи центральной ветви включателем Вк.5 в переключателе ветвей 5.

На фиг. 16 представлена диаграмма направленности передающей антенны в случае работы центральной ветви совместно с продолжением ей четвертой ветви, работающей на частотах ƒ1 и ƒ2 первого канала, избранных из пяти каналов с излучением в направлении «К», и пятой ветвями, работающей на частотах ƒ9 и ƒ10 пятого канала, избранных из пяти каналов с излучением в направлении «Р», остальные частоты трех каналов информационный блок 1-1 не воспроизводит в «Системе связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами», тогда:

- IA - ток в кабеле центральной ветви передающей антенны на частотах ƒ1 и ƒ2 первого канала и на частотах ƒ9 и ƒ10 пятого канала;

- ток на частотах ƒ1 и ƒ2 первого канала в четвертой ветви не равен нулю, т.е. четвертая ветвь подключена к цепи центральной ветви включателем Вк.4 в коммутаторе ветвей 5 по цепи: вход коммутатора 5 соединен с четвертым выходом коммутатора 5 через преобразователь на пять каналов 39 на первый канал передачи данных, через первую клемму четвертого включателя Вк.4;

- ток в пятой ветви на частотах ƒ9 и ƒ10 о пятого канала не равен нулю, т.е. пятая ветвь подключена к цепи центральной ветви включателем Вк.5 в коммутаторе ветвей 5 по цепи: вход коммутатора 5 соединен с пятым выходом коммутатора 5 через преобразователь на пять каналов 39 на пятый канал передачи данных, через пятую клемму пятого включателя Вк.5;

- - ток антенны IA центральной ветви передающей антенны как сумма токов антенны четвертой ветви длиной и пятой ветви длиной (ток центральной ветви есть сумма токов двух ветвей, и ветви, как составные части передающей антенны, совместно работающие и образующие диаграмму направленности в заданном направлении «К» и «Р», и обратную диаграмму направленности в направлении «В»).

- - обратный ток в земле между заземлителем 31 центральной ветви и N заземлителем 34N четвертой ветви передающей антенны, как цепь образованная токами центральной ветви IA и током четвертой ветви через включатель четвертый Вк.4 в коммутаторе ветвей 5;

- - обратный ток в земле между заземлителем 31 центральной ветви и N заземлителем 35N пятой ветви передающей антенны, как цепь образованная токами центральной ветви IA и током пятой ветви через включатель пятый Вк.5 в коммутаторе ветвей 5;

- ток в третьей ветви равен нулю, третья ветвь отключена от тока центральной ветви включателем Вк.3 в коммутаторе ветвей 5;

- ток во второй ветви равен нулю, т.е. вторая ветвь отключена от тока центральной ветви включателем Вк.2 в коммутаторе ветвей 5;

- ток в первой ветви равен нулю, т.е. первая ветвь отключена от тока центральной ветви включателем Вк.1 в коммутаторе ветвей 5.

Принцип действия «Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами» состоит в следующем. Система связи на берегу содержит передающую антенну (фиг. 1, фиг. 2), представляющую центральную ветвь тока, протекаемого по подземному протяженному проводнику длиной , изолированному от земли, как проводящей среды. Этот протяженный проводник, или центральная ветвь тока через коммутатор ветвей 5 подключает любую из пяти ветвей тока в зависимости от необходимого для радиосвязи района действия погруженного объекта мирового океана. Топология трасс центральной и любой из пяти ветвей позволяет выбрать направление излучения, что позволяет управлять диаграммой направленности передающей антенны. Каждая из пяти дополнительных ветвей разделена на N излучающих секций последовательно соединенных между собой.

Прием и регистрация излучения, создаваемого СНЧ-КНЧ-антенной системой, осуществляются с помощью буксируемой кабельной антенны, антенного усилителя и приемника СНЧ-КНЧ-диапазона, находящихся на борту подводного объекта,

Соседние секции, из N секций, между собой в центральной ветви тока соединены через преобразователь 2N, из N преобразователей в антенной системе, каждый из N преобразователей соединен с собственным заземлителем 3N из N заземлителей. Передающая система 1 (фиг. 2), состоящая из информационного блока 1-1 содержащего десять каналов передачи данных, предварительного усилителя 1-2, системы управления, защиты и автоматизации 1-3, усилителя мощности 1-4, согласующего устройства 1-5, индикатор тока антенны 1-6, и источника тока 1-7 предназначена для создать в антенной системе заданный ток соответствующий требуемому значению магнитного момента антенны на заданной частоте излучения. В каждом передающем канале, из пяти имеемых каналов в системе, два генератора настроенные на две частоты, таким образом, передача информации осуществляется двухчастотным методом в каждом канале, что в два раза увеличивает скорость передачи данных. Поэтому информационный блок 1-1 содержит десять генераторов, десять модуляторов и блок формирования частотного спектра (фиг. 3). Так в первом канале передачи данных генератор 16-1 работает на частоте ƒ1, а генератор 16-2 работает на частоте ƒ2; во втором канале: генератор 17-1 работает на частоте ƒ3, а генератор 17-2 - на ƒ4; в третьем канале: генератор 18-1 работает на частоте ƒ5, а генератор 18-2 -на ƒ6; в четвертом канале: генератор 19-1 работает на частоте ƒ7, а генератор 19-2 - на ƒ8; в пятом канале: генератор 20-1 работает на частоте ƒ9, а генератор 20-2 - на ƒ10 десять модуляторов: первый 6, второй 7, третий 8, четвертый 9, пятый 10, шестой 11, седьмой 12, восьмой 13, девятый 14 и десятый 15; и формирователь спектра 21, при этом первый вход информационного блока 1-1 соединен параллельно с входами десяти генераторов; выход первого генератора 16-1 с частотой ƒ1 соединен через первый вход первого модулятора 6 с первым входом формирователя спектра 21; выход второго генератора 16-2 с частотой ƒ2 соединен через первый вход второго модулятора 7 со вторым входом формирователя спектра 21; выход третьего генератора 17-1 частотой ƒ3 соединен через первый вход третьего модулятора 8 с третьим входом формирователя спектра 21; выход четвертого генератора 17-2 частотой ƒ4, соединен через первый вход четвертого модулятора 9 с четвертым входом формирователя спектра 21; выход пятого генератора 18-1 частотой ƒ5 соединен через первый вход пятого модулятора 10 с пятым входом формирователя спектра 21; выход шестого генератора 18-2 частотой ƒ6 соединен через первый вход шестого модулятора 11 с шестым входом формирователя спектра 21; выход седьмого генератора 19-1 частотой ƒ7 соединен через первый вход седьмого модулятора 12 с седьмым входом формирователя спектра 21; выход восьмого генератора 19-2 частотой ƒ8 соединен через первый вход восьмого модулятора 13 с восьмым входом формирователя спектра 21; выход девятого генератора 20-1 частотой ƒ9 соединен через первый вход девятого модулятора 14 с девятым входом формирователя спектра 21; выход десятого генератора 20-2 частотой ƒ10 соединен через первый вход десятого модулятора 15 с десятым входом формирователя спектра 21; выход формирователя спектра 21 соединен с выходом информационного блока 1-1; второй вход информационного блока 1-1 соединен параллельно со вторыми входами десяти модуляторов.

В передающей системе 1 (фиг. 2) информационный блок 1-1 перестраивается по первому входу на рабочие частоты в каждом из пяти каналов передачи данных, а по второму входу блока 1-1 осуществляется модуляция информацией поступающей по защищенной кабельной линии ЗК. С выхода блока 1-1 информационные каналы поступают на предварительный усилитель 1-2 и далее через него на первый вход усилителя мощности 1-4, последний обеспечивает на своем выходе заданный ток на выходе передающей системы 1 в первой секции 41 антенной системы, причем согласование выходных параметров усилителя мощности 1-4 с первой секцией 4 антенной системы на рабочих частотах осуществляется через первый вход согласующего устройства 1-5. Контроль параметров согласования тока поступающего в первую секцию 41 антенной системы центральной ветви осуществляется в согласующем устройстве 1-5, данные по параметрам согласования, по частоте и величине тока через согласующее устройстве 1-5 поступают по первому входу в систему управления, защиты и автоматизации 1-3. Одновременно, контролируется ток заземлителя 31 через второй вход передающей системы 1, вход усилителя мощности 1-4, через выход индикатора тока антенной системы 1-6 поступают на второй вход системы управления, защиты и автоматизации 1-3. По току заземлителя 31 в системе управления, защиты и автоматизации 1-3 осуществляется контроль работы всей антенной системы ее элементов: преобразователей 2N, заземлителей 3N и N секций, отрезков подземного не-экранированного кабеля 4N: определяется точность настройки антенной системы «Системы связи …» по величине тока, по частоте и по искаженности информации. Регулировка передающей системы 1 осуществляется через выход системе управления, защиты и автоматизации 1-3 для информационного блока 1-1 через его вход, для усилителя мощности 1-4 через его второй вход и согласующее устройство 1-5 через его второй вход.

Таким образом, передающая система 1 задает параметры по частотам в каждом из пяти каналов для работы всей антенной системы по ее пяти ветвям. Так параметры тока по частоте, модуляции и уровню, поступающий на выходе передающей системы 1 и протекающей по первой секции 41 кабеля антенной системы должен быть восстановлены каждым из N преобразователей. Следовательно, ток, втекающий в заземлитель 3N, должен быть равен току первой секции 41 подземного кабеля. Достигается это работой преобразователей 2N, принцип работы преобразователей идентичен в центральной ветви и в пяти дополнительных ветвях и представлен блок-схемой на фиг. 4.

Ток системы управления передающей СНЧ-КНЧ антенной 1, пройдя первую секцию 41 подземного кабеля центральной ветви тока, поступает на вход первого преобразователя 21 (фиг. 4). С первого входа преобразователя 21 ток протекает по первичной обмотке 1 информационного трансформатора 22 и далее через первый вход токового трансформатора 31 и второй выход преобразователя 21 поступает на заземлитель 32. За счет взаимной индукции ток первичной обмотки информационного трансформатора 22 во вторичной его обмотке 2 наводится ЭДС, соответствующая параметрам тока в первичной обмотке 1. Эта ЭДС усиливается первым усилителем 23 и поступает на вход блока узкополосных фильтров 24, где происходит выделение десяти частот: ƒ1, ƒ2, ƒ3, ƒ4, ƒ5, ƒ6, ƒ7, ƒ8, ƒ9, ƒ10 по каналам, так что по первому выходу блока узкополосных фильтров 24 поступает выделенная из смеси десяти частот на входе преобразователя информация, передаваемая на первой частоте ƒ1; по второму выходу блока узкополосных фильтров 24 поступает выделенная из смеси десяти частот на входе преобразователя информация, передаваемая на второй частоте ƒ2; по третьему выходу блока узкополосных фильтров 24 поступает выделенная из смеси десяти частот на входе преобразователя информация, передаваемая на третьей частоте ƒ3; по четвертому выходу блока узкополосных фильтров 24 поступает выделенная из смеси десяти частот на входе преобразователя информация, передаваемая на четвертой частоте ƒ4; по пятому выходу блока узкополосных фильтров 24 поступает выделенная из смеси десяти частот на входе преобразователя информация, передаваемая на пятой частоте ƒ5; по шестому выходу блока узкополосных фильтров 24 поступает выделенная из смеси десяти частот на входе преобразователя информация, передаваемая на шестой частоте ƒ6; по седьмому выходу блока узкополосных фильтров 24 поступает выделенная из смеси десяти частот на входе преобразователя информация, передаваемая на седьмой частоте ƒ7; по восьмому выходу блока узкополосных фильтров 24 поступает выделенная из смеси десяти частот на входе преобразователя информация, передаваемая на восьмой частоте ƒ8; по девятому выходу блока узкополосных фильтров 24 поступает выделенная из смеси десяти частот на входе преобразователя информация, передаваемая на девятой частоте ƒ9; по десятому выходу блока узкополосных фильтров 24 поступает выделенная из смеси десяти частот на входе преобразователя информация, передаваемая на десятой частоте ƒ10. Десять выходов блока узкополосных фильтров 24 соединены через десять входов формирователя информационных каналов 25 и через десять выходов формирователя информационных каналов 25 с десятью входами формирователя спектра передающей антенны 26. Выход формирователя спектра передающей антенны 26 через предварительный усилитель 27 соединен с первым входом усилителя мощности 28. Высокое напряжение на выходе усилителя мощности 28 создает достаточный ток в первичной обмотке силового трансформатора 30, чтобы во вторичной его обмотке создать требуемый ток для работы второй секции 42 кабеля антенной системы «Системы связи …». Ток второй обмотки силового трансформатора 30 клеммой «в» соединен с первым выходом преобразователя 21, а первый выход преобразователя соединен со второй секцией 42 кабеля антенной системы, возбуждая в секции 42 ток. Данный ток должен быть равен току, возбуждаемому в секции 41 кабеля передающей системой 1. Для контроля тока в секции 41 кабеля клемма «а» вторичной обмотки силового трансформатора соединена со вторым входом токового трансформатора 31, а второй выход этого токового трансформатора 31 подсоединен через регулятор мощности 29 ко второму входу усилителя мощности 28, чем обеспечивается регулировка уровня мощности на выходе усилителя мощности 28.

На фиг. 5 приведен принцип работы блока узкополосных фильтров 24 содержащий десять фильтров: 24-1, 24-2, 24-3, 24-4, 24-5, 24-6, 24-7, 24-8, 24-9, 24-10. Первый узкополосный фильтр 24-1 из спектра частот передачи передающей антенны выделяет только информацию передаваемую на первой частоте ƒ1. Второй узкополосный фильтр 24-2 из спектра частот передачи передающей антенны выделяет только информацию передаваемую на второй частоте ƒ2. Третий узкополосный фильтр 24-3 из спектра частот передачи передающей антенны выделяет только информацию передаваемую на третьей частоте ƒ3. Четвертый узкополосный фильтр 24-4 из спектра частот передачи передающей антенны выделяет только информацию передаваемую на четвертой частоте ƒ4. Пятый узкополосный фильтр 24-5 из спектра частот передачи передающей антенны выделяет только информацию передаваемую на пятой частоте ƒ5. Шестой узкополосный фильтр 24-6 из спектра частот передачи передающей антенны выделяет только информацию передаваемую на шестой частоте ƒ6. Седьмой узкополосный фильтр 24-7 из спектра частот передачи передающей антенны выделяет только информацию передаваемую на седьмой частоте ƒ7. Восьмой узкополосный фильтр 24-8 из спектра частот передачи передающей антенны выделяет только информацию передаваемую на восьмой частоте ƒ8. Девятый узкополосный фильтр 24-9 из спектра частот передачи передающей антенны выделяет только информацию передаваемую на девятой частоте ƒ9. Десятый узкополосный фильтр 24-10 из спектра частот передачи передающей антенны выделяет только информацию передаваемую на десятой частоте ƒ10. При этом первый вход блока узкополосных фильтров 24 соединен с его первым выходом через первый узкополосный фильтр 24-1, второй вход блока узкополосных фильтров 24 соединен с его вторым выходом через второй узкополосный фильтр 24-2, третий вход блока узкополосных фильтров 24 соединен с его третьим выходом через третий узкополосный фильтр 24-3, четвертый вход блока узкополосных фильтров 24 соединен с его четвертым выходом через четвертый узкополосный фильтр 24-4, пятый вход блока узкополосных фильтров 24 соединен с его пятым выходом через пятый узкополосный фильтр 24-5, шестой вход блока узкополосных фильтров 24 соединен с его шестым выходом через шестой узкополосный фильтр 24-6, седьмой вход блока узкополосных фильтров 24 соединен с его седьмым выходом через седьмой узкополосный фильтр 24-7, восьмой вход блока узкополосных фильтров 24 соединен с его восьмым выходом через восьмой узкополосный фильтр 24-8, девятый вход блока узкополосных фильтров 24 соединен с его девятым выходом через девятый узкополосный фильтр 24-9, десятый вход блока узкополосных фильтров 24 соединен с его десятым выходом через десятый узкополосный фильтр 24-10.

Формирователь информационных каналов 25 представленный на фиг. 6 обеспечивает на основе полученной информации в каждом канале из блока узкополосных фильтров 24 восстановление информационного канала и передача для формирования общего спектра в формирователь спектра 26 (фиг. 4), Формирователь информационных каналов 25 содержит десять формирователей информационных каналов: например, формирователь первого информационного канала - 25-1, второго канала - 25-2, третьего канала - 25-3 и так далее до десятого канала - 25-10; при этом первый вход формирователя информационных каналов 25 соединен с его первым выходом через формирователь первого информационного канала 25-1; второй вход формирователя информационных каналов 25 соединен с его вторым выходом через формирователь второго информационного канала 25-2; третий вход формирователя информационных каналов 25 соединен с его третьим выходом через формирователь третьего информационного канала 25-3; четвертый вход формирователя информационных каналов 25 соединен с его четвертым выходом через формирователь четвертого информационного канала 25-4; пятый вход формирователя информационных каналов 25 соединен с его пятым выходом через формирователь пятого информационного канала 25-5; шестой вход формирователя информационных каналов 25 соединен с его шестым выходом через формирователь шестого информационного канала 25-6; седьмой вход формирователя информационных каналов 25 соединен с его седьмым выходом через формирователь седьмого информационного канала 25-7; восьмой вход формирователя информационных каналов 25 соединен с его восьмым выходом через формирователь восьмого информационного канала 25-8; девятый вход формирователя информационных каналов 25 соединен с его девятым выходом через формирователь девятого информационного канала 25-9; десятый вход формирователя информационных каналов 25 соединен с его десятым выходом через формирователь десятого информационного канала 25-10.

Формирователь информационного канала (фиг. 7) обеспечивает восстановление полученной информации в каждом из десяти каналов: с первого 25-1 по десятый - 25-10; каждый формирователь информационного канала содержит первый усилитель 32, интегральную цепочку 33, первый вентиль В.1, второй усилитель 34, дифференциальную цепочку 35, второй вентиль В.2, третий усилитель 36, генератор тактовых импульсов 37, модулятор 38; при этом вход формирователя информационного канала соединен с первым усилителем 32, выход первого усилителя 32 соединен параллельно через интегральную цепочку 33, через первый вентиль В.1, через второй усилитель 34 со вторым входом модулятора 38, а также через дифференциальную цепочку 35, через второй вентиль В.2, через третий усилитель 36, через генератор тактовых импульсов 37 с первым входом модулятора 38; выход модулятора 38 соединен с выходом формирователя информационного канала.

Токовый трансформатор 31 обеспечивает передачу энергии в секции антенной системы и сравнение токов соседних излучающих отрезков антенной системы с целью обеспечения их равенства. Токовый трансформатор 31 содержит трехобмоточный трансформатор Тр.1, с током от N-1 секции антенной системы в первой обмотке 1, с током от N секции антенной системы во второй обмотке 2 токового трансформатора 31, разностный ток от N-1 секции антенной системы и N секции антенной системы первой 1 и второй обмоток 2 возбуждаемый в третьей обмотке 3 токового трансформатора 31.

Описанная работа преобразователя 21 является типовой для остальных преобразователей как в центральной ветви тока, так и для дополнительной первой ветви тока - от 211 до 21N, дополнительной второй ветви - от 221 до 22N, дополнительной третьей ветви -от 231 до 23N, дополнительной четвертой ветви - от 241 до 24N и дополнительной пятой ветви - от 251 до 25N, поэтому нет необходимости повторять описание их принципа действия.

Таким образом, через заземлитель 32 в рабочем состоянии ток не течет, ибо токи первичной и вторичной обмоток в токовом трансформаторе 31 всегда подстраиваются равными по амплитуде, но противоположными по фазе, поэтому компенсируют поля возбуждаемые друг другом. Поэтому заземлители должны быть дешевыми при строительстве. Следовательно, все заземлители при преобразователях являются не рабочими и необходимы только для настройки требуемого тока в антенной системе. Для работы используются только первый 31 заземлитель в центральной ветви тока и последний заземлитель в каждой из пяти ветвей тока, то есть: З1N, З2N, З3N, З4N, З5N заземлители ветвей в антенной системе (фиг. 1, фиг. 2).

Коммутатор ветвей 5 (фиг. 9) содержит преобразователь на пять каналов 39 и пять пятиконтактных включателей: Вк.1, Вк.2, Вк.3, Вк.4 и Вк.5; при этом вход коммутатора ветвей соединен с входом преобразователя на пять каналов 39; первый выход преобразователя на пять каналов соединен параллельно с первой клеммой «1» первого включателя Вк.1, с первой клеммой «1» второго включателя Вк.2, с первой клеммой «1» третьего включателя Вк.3, с первой клеммой «1» четвертого включателя Вк.4, с первой клеммой «1» пятого включателя Вк.5; второй выход преобразователя на пять каналов соединен параллельно с второй клеммой «2» первого включателя Вк.1, с второй клеммой «2» второго включателя Вк.2, с второй клеммой «2» третьего включателя Вк.3, с второй клеммой «2» четвертого включателя Вк.4, с второй клеммой «2» пятого включателя Вк.5; третий выход преобразователя на пять каналов соединен параллельно с третьей клеммой «3» первого включателя Вк.1, с третьей клеммой «3» второго включателя Вк.2, с третьей клеммой «3» третьего включателя Вк.3, с третьей клеммой «3» четвертого включателя Вк.4, с третьей клеммой «3» пятого включателя Вк.5; четвертый выход преобразователя на пять каналов соединен параллельно с четвертой клеммой «4» первого включателя Вк.1, с четвертой клеммой «4» второго включателя Вк.2, с четвертой клеммой «4» третьего включателя Вк.3, с четвертой клеммой «4» четвертого включателя Вк.4, с четвертой клеммой «4» пятого включателя Вк.5; пятый выход преобразователя на пять каналов соединен параллельно с пятой клеммой «5» первого включателя Вк.1, с пятой клеммой «5» второго включателя Вк.2, с пятой клеммой «5» третьего включателя Вк.3, с пятой клеммой «5» четвертого включателя Вк.4, с пятой клеммой «5» пятого включателя Вк.5; шестая, седьмая, восьмая, девятая и десятая клеммы первого включателя Вк.1 соединены параллельно с первым выходом коммутатора ветвей 5; шестая, седьмая, восьмая, девятая и десятая клеммы второго включателя Вк.2 соединены параллельно со вторым выходом коммутатора ветвей 5; шестая, седьмая, восьмая, девятая и десятая клеммы третьего включателя Вк.3 соединены параллельно с третьим выходом коммутатора ветвей; шестая, седьмая, восьмая, девятая и десятая клеммы четвертого включателя Вк.4 соединены параллельно с четвертым выходом коммутатора ветвей 5; шестая, седьмая, восьмая, девятая и десятая клеммы пятого включателя Вк.5 соединены параллельно с пятым выходом коммутатора ветвей 5; шестой выход преобразователя на пять каналов 39 соединен с заземлителем через шестой выход коммутатор ветвей 5.

Преобразователь на пять каналов 39 (фиг. 10), содержащий 4N - последнюю секцию антенной системы центральной ветви, источник электрической энергии 1-7, информационный трансформатор 22, усилитель 23, блок узкополосных фильтров 24, формирователь информационных каналов 25; формирователи спектра пяти каналов: первого 26-1, второго 26-2, третьего 26-3, четвертого 26-4 и пятого 26-5; предварительные усилители пяти каналов: первого 27-1, второго 27-2, третьего 27-3, четвертого 27-4 и пятого 27-5; усилители мощности пяти каналов: первого 28-1, второго 28-2, третьего 28-3, четвертого 28-4 и пятого 28-5; регулятор мощности 29 на входе усилителя мощности в каждом из пяти каналов; силовые трансформаторы в пяти каналах: первого 30-1, второго 30-2, третьего 30-3, четвертого 30-4 и пятого 30-5; токовый трансформатор; IA - ток в N секции 4N центральной ветви антенны длиной 20 км; - ток в первой секции 411÷451 любой участок из дополнительных пяти ветвей антенны длиной по 20 км; - разность токов между током в последней секции 4N центральной ветви и током в первой секции 411÷451 любой дополнительной ветви антенной системы; при этом выход последней секции 4N центральной ветви соединен к входу преобразователя на пять каналов 5, а вход преобразователя на пять каналов соединен через первичную обмотку информационного трансформатора, через первый вход токового трансформатора, через первый выход токового трансформатора с шестым выходом преобразователя на пять каналов; вторичная обмотка информационного трансформатора соединена через усилитель с входом блока узкополосных фильтров; десять выходов блока узкополосных фильтров соединены с десятью входами формирователя информационных каналов; первый и второй выходы формирователя информационных каналов соединены с первым и вторым входом первого формирователи спектра первого канала передачи данных; третий и четвертый выходы формирователя информационных каналов соединены с первым и вторым входом второго формирователи спектра второго канала передачи данных; пятый и шестой выходы формирователя информационных каналов соединены с первым и вторым входом третьего формирователи спектра третьего канала передачи данных; седьмой и восьмой выходы формирователя информационных каналов соединены с первым и вторым входом четвертого формирователи спектра четвертого канала передачи данных; девятый и десятый выходы формирователя информационных каналов соединены с первым и вторым входом пятого формирователи спектра пятого канала передачи данных; выход первого формирователя спектра первого канала передачи данных через предварительный усилитель соединен с первым входом первого усилителя мощности первого канала, выход первого усилителя мощности соединен с первичной обмоткой первого силового трансформатора первого канала, вторичная обмотка этого силового трансформатора клеммой «а» соединена со вторым входом токового трансформатора, а клеммой «б» вторичная обмотка первого силового трансформатора соединена с первым выходом преобразователя на пять каналов; выход второго формирователя спектра второго канала передачи данных через предварительный усилитель соединен с первым входом второго усилителя мощности второго канала, выход второго усилителя мощности соединен с первичной обмоткой второго силового трансформатора второго канала, вторичная обмотка этого силового трансформатора клеммой «а» соединена со вторым входом токового трансформатора, а клеммой «б» вторичная обмотка второго силового трансформатора соединена со вторым выходом преобразователя на пять каналов; выход третьего формирователя спектра третьего канала передачи данных через предварительный усилитель соединен с первым входом третьего усилителя мощности третьего канала, выход третьего усилителя мощности соединен с первичной обмоткой третьего силового трансформатора третьего канала, вторичная обмотка этого силового трансформатора клеммой «а» соединена со вторым входом токового трансформатора, а клеммой «б» вторичная обмотка третьего силового трансформатора соединена с третьим выходом преобразователя на пять каналов; выход четвертого формирователя спектра четвертого канала передачи данных через предварительный усилитель соединен с первым входом четвертого усилителя мощности четвертого канала, выход четвертого усилителя мощности соединен с первичной обмоткой четвертого силового трансформатора четвертого канала, вторичная обмотка этого силового трансформатора клеммой «а» соединена со вторым входом токового трансформатора, а клеммой «б» вторичная обмотка четвертого силового трансформатора соединена с четвертым выходом преобразователя на пять каналов; выход пятого формирователя спектра пятого канала передачи данных через предварительный усилитель соединен с первым входом пятого усилителя мощности пятого канала, выход пятого усилителя мощности соединен с первичной обмоткой пятого силового трансформатора пятого канала, вторичная обмотка этого силового трансформатора клеммой «а» соединена со вторым входом токового трансформатора, а клеммой «б» вторичная обмотка пятого силового трансформатора соединена с пятым выходом преобразователя на пять каналов; первый выход токового трансформатора соединен с шестым выходом преобразователя на пять каналов, а второй выход токового трансформатора соединен с входом регулятора мощности усилителей мощности, выход регулятора мощности соединен параллельно со вторыми входами пяти усилителей мощности: первого усилителя мощности, второго усилителя мощности, третьего, четвертого и пятого усилителя мощности.

Обоснованное распределение каналов передачи по пяти дополнительным ветвям позволяет представить передачу энергии пяти информационных каналов и построить распределение по пяти направлениям, обеспечивая таким образом, одновременно передачу информации на пять объектов находящихся в удаленных районах мирового океана. На фиг. 10 представлена специфика работы оконечных заземлителей при совместной работе центральной ветви тока при последовательном включении к центральной ветви дополнительных пяти ветвей, работающих на собственном информационном канале. Причем пять ветвей включены параллельно и также направленные свойства передающей антенны приведены для нескольких вариантов с различными каналами передачи данных.

Например, на фиг. 11 представлена специфика работы пяти ветвей и каждая на своем канале передачи данных. Ток IA, возбуждаемый генератором ЭДС UГен в центральной ветви спектром пяти каналов, продолжает протекать в виде тока первого канала на частотах ƒ1 и ƒ2 в первой ветви; тока второго канала на частотах ƒ3 и ƒ4 во второй ветви; тока третьего канала на частотах ƒ5 и ƒ6 в третьей ветви; тока четвертого канала на частотах ƒ7 и ƒ8 в четвертой ветви; тока пятого канала на частотах ƒ9 и ƒ10 в пятой ветви через вход коммутатора ветвей 5 и его первый, второй, третий, четвертый и пятый выходы при замкнутых пяти включателях: Вк.1, Вк.2, Вк.3, Вк.4 и Вк.5. При этом разность потенциала генератора ЭДС UГен одновременно приложена к земляной поверхности пяти ветвей. ЭДС генератора между первым заземлителем З1 центральной ветви и последним заземлителем З1N первой ветви для частот первого канала, это приводит к протеканию обратного тока . Кроме того, разность потенциала генератора ЭДС UГен между первым заземлителем З1 центральной ветви и последним заземлителем З2N второй ветви для частот второго канала, это приводит к протеканию обратного тока . Кроме того, ЭДС генератора между первым заземлителем З1 центральной ветви и последним заземлителем З3N третьей ветви для частот третьего канала, это приводит к протеканию обратного тока . Кроме того, ЭДС генератора между первым заземлителем З1 центральной ветви и последним заземлителем З4N четвертой ветви для частот четвертого канала, это приводит к протеканию обратного тока . А также ЭДС генератора между первым заземлителем З1 центральной ветви и последним заземлителем З5N пятой ветви на частотах пятого, это приводит к протеканию обратного тока . Эти обратные токи: замыкают цепь, и являются токами передающей антенны на пяти каналах, состоящего из центральной ветви ток IA, пяти ветвей тока и пяти обратных токов . Направление излучения или диаграмма направленности цепи образованной этими токами соответствует собственной топологии или линиям обратного тока. Причем оконечные заземлители пяти ветвей пространственно разнесены, поэтому топологии обратных токов разнесены и находятся под определенными углами относительно топологии центральной ветви, следовательно пять каналов передачи данных обслуживают свой собственный сектор мирового океана, чем обозначается независимая и одновременная система управления подводными объектами. Сопротивления всех пяти ветвей для тока антенны одинаковы, поэтому токи во всех пяти ветвях могут быть одинаковы и их сумма равна току в центральной ветви. Учитывая топологию обратных токов, ширина диаграмм направленности в направлении заданном образует пять направлений и пять независимых зон обслуживания инфотелекоммуникационной системой: по «А» на частотах ƒ1 и ƒ2 первого канала, по «С» на частотах ƒ3 и ƒ4 второго канала, по «Д» на частотах ƒ5 и ƒ6 третьего канала, по «К» на частотах ƒ7 и ƒ8 четвертого канала и по «Р» на частотах ƒ9 и ƒ10 пятого канала, или будет в пять раз шире, чем в направлении «В» (фиг. 12).

На фиг. 12 показана специфика работы оконечных заземлителей при совместной работе центральной ветви и первой ветви, а также направленные свойства передающей антенны данного варианта. Причем ток IA, протекаемый по подземному кабелю центральной ветви и далее, в подземном кабеле ток первой ветви может быть любого из пяти каналов. Причем если удаленный объект находится на большой глубине целесообразно использовать наименьшие частоты первого канала, т.е. частоты 3 Гц и 10 Гц. В тоже время для сокращения времени передачи информации при небольшой глубине подводного объекта целесообразно использовать более высокие частоты пятого канала, например, частоты 95 Гц и 100 Гц. Путем подключения каналов для совместной работы в коммутаторе ветвей 5 включателем Вк.1 образуют единую цепь тока, в которой между заземлителем первым 31 в центральной ветви и заземлителем последним З1N в первой ветви возникает в земле обратный ток , протекаемый в земле на глубине скин-слоя. Таким образом, создается первый замкнутый контур тока второго канала на частотах ƒ3 и ƒ4 или рамка с током, которая является передающей антенной, возбуждаемое ею поле излучения формируется в направлениях прямого и обратного по топологии протекания обратного тока (фиг. 12). При этом задействованы два заземлителя, вокруг которых создается поле и которые формируют диаграмму направленности антенны. В тоже время, учитывая, что ток в кабеле IA и ток обратный в земле равны по величине и обратные по фазе, следовательно, эти токи взаимно компенсируют образованные ими электромагнитные поля. Следовательно, диаграмма направленности (фиг. 12) при работе цепи центральной ветви и первой ветви будет иметь два лепестка: один направлен по топологии обратного тока в направлении «А», а другой в противоположном направлении «В». Ширина диаграмм направленности в обоих направлениях одинакова.

На фиг. 13 представлена специфика работы оконечных заземлителей при совместной работе центральной ветви и второй ветви, а также направленные свойства передающей антенны данного варианта. Ток IA, возбуждаемый генератором ЭДС UГен в центральной ветви всех пяти каналов, продолжает протекать в виде тока любого из каналов, обоснованных по необходимой глубине радиоприема или скорости передачи во второй ветви через вход коммутатора 5 и его второй выход. При этом разность потенциала генератора ЭДС UГен четвертого канала на частотах ƒ7 и ƒ8 приложена к земляной поверхности, между первым заземлителем З1 центральной ветви и последним заземлителем З2N второй ветви приводит к протеканию обратного тока для заданного канала передачи из пяти. Этот ток замыкает цепь, как ток передающей антенны, состоящего из центральной ветви тока IA, второй ветви тока и обратного тока . Направление излучения или диаграмма направленности цепи, образованной этими токами на частотах ƒ7 и ƒ8, соответствует собственной топологии или линии обратного тока. Причем токи в заземлителях равны, следовательно, ширина диаграмм направленности в направлении «С» и «В» одинакова.

На фиг. 14 представлена специфика работы оконечных заземлителей при совместной работе центральной ветви и третьей ветви, а также направленные свойства передающей антенны данного варианта. Ток IA для пяти каналов передачи данных, возбуждаемый генератором ЭДС UГен второго канала на частотах ƒ3 и ƒ4 центральной ветви, продолжает протекать в виде тока в третьей ветви с выбором канала передачи обоснованных для глубины подводного объекта или скорости передачи данных. При этом через вход коммутатора ветвей 5 и его третий выход. При этом разность потенциала генератора ЭДС UГен приложена к земляной поверхности, между первым заземлителем З1 центральной ветви и последним заземлителем З3N третьей ветви на частотах обоснованного канала передачи данных приводит к протеканию обратного тока . Этот ток замыкает цепь, и является током передающей антенны, состоящего из центральной ветви ток IA, третьей ветви тока и обратного тока . Направление излучения или диаграмма направленности цепи, образованной этими токами на частотах ƒ3 и ƒ4, соответствует собственной топологии или линии обратного тока . Причем токи в заземлителях равны, следовательно, ширина диаграмм направленности в направлении «Д» и «В» одинакова.

На фиг. 15 представлена специфика работы оконечных заземлителей при совместной работе центральной ветви с током на пяти частотах и с ней параллельными первой на частотах ƒ1 и ƒ2 первого канала, и второй ветвями с токами частот ƒ7 и ƒ8, обоснованных для радиоприема, а также направленные свойства передающей антенны данного варианта. Учитывая, что обратные токи образуют две разнесенные линии с разной топологией, следовательно. Ширина диаграммы направленности увеличивается в два раза в направлении, т.е. как «А» на частотах ƒ1 и ƒ2 и «С» на частотах ƒ7 и ƒ8, по сравнению с направлением «В». В направлении «А» и «С» ширина диаграммы на фиг. 14 отличается в сравнении с шириной диаграмм направленности.

Определения освещенных океанических зон на основе обоснованных данных по глубине радиоприема и скорости передачи данных имеет существенное значение, поэтому смена частот рабочих на основе глубины и скорости радиоприема может иметь множество вариантов. Однако, уже показанные примеры полностью определяют практическое значение предложенного технического решения по построению радиостанции.

Важнейшую роль играют концевые заземлители, таким образом, обеспечивают электрический контакт с земной поверхностью, причем стремятся создать наилучшие условия для уменьшения переходного затухания между проводом и земной поверхностью. Уменьшить переходное сопротивление на границе раздела сред металл-земля возможно путем увеличения размеров заземлителей. Наиболее приемлемыми размерами для проводимости земли σ=10-4 См/м являются 1000×1000 м. При этом ток растекания от концевых заземлителей будет представлять полусферу в земле радиусом Rтока заземлителя=11 км, как это было показано расчетами выше.

Авторам неизвестны технические решения из области радиосвязи, содержащие признаки, эквивалентные отличительным признакам заявленного устройства. Авторам неизвестны технические решения из других областей техники, обладающие свойствами заявленного технического объекта изобретения. Таким образом, заявленное техническое решение, по мнению авторов, обладает критерием существенных признаков.


Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 8
Источник поступления информации: Роспатент

Показаны записи 1-10 из 48.
25.08.2017
№217.015.c59d

Комплекс микросейсмического контроля разработки континентальных и шельфовых месторождений углеводородов на основе площадных систем наблюдения и суперкомпьютерных методов обработки информации

Изобретение относится к геофизическим методам исследования процессов разработки месторождений углеводородов, в частности к комплексам микросейсмического контроля разработки континентальных и шельфовых месторождений углеводородов, содержащим, по крайней мере, один телеметрический сейсмический...
Тип: Изобретение
Номер охранного документа: 0002618485
Дата охранного документа: 03.05.2017
25.08.2017
№217.015.ca3c

Способ определения концентрации адсорбатов наночастиц серебра на поверхности нанопористого кремнезема

Изобретение относится к области нанотехнологий, а также может быть использовано в биологии, медицине, гетерогенном катализе. Способ определения концентрации адсорбатов наночастиц (НЧ) серебра на поверхности нанопористого кремнезема включает приготовление раствора исследуемого вещества,...
Тип: Изобретение
Номер охранного документа: 0002620169
Дата охранного документа: 23.05.2017
19.01.2018
№218.016.0286

Способ защиты стали от коррозии и наводороживания органическими соединениями в средах, содержащих сульфатредуцирующие бактерии

Изобретение относится к области защиты металлов от коррозии, наводороживания и развития сульфатредуцирующих бактерий (СРБ) и может быть использовано в водно-солевых средах, содержащих СРБ. Способ включает введение в коррозионную среду ингибитора-бактерицида, при этом в качестве...
Тип: Изобретение
Номер охранного документа: 0002630149
Дата охранного документа: 05.09.2017
20.01.2018
№218.016.1004

Способ генетического контроля экзоцитоза на основе генетических конструкций для трансфекции клеток астроглии

Изобретение относится к области молекулярной биологии и касается генетической конструкции для осуществления способа генетического контроля экзоцитоза. Представленная конструкция имеет последовательность SEQ ID NO:4 и получена с использованием лентивирусного вектора на основе ВИЧ-1...
Тип: Изобретение
Номер охранного документа: 0002633691
Дата охранного документа: 16.10.2017
20.01.2018
№218.016.1062

Способ молекулярной диагностики митохондриальных патологий на основе технологии пиросеквенирования

Изобретение относится к области медицины и предназначено для выявления патогенных мутаций митохондриальной ДНК. Проводят реакцию просеквенирования с системой, состоящей из прямого праймера, обратного праймера, меченного биотином, и секвенирующего праймера. Всего разработаны четыре системы...
Тип: Изобретение
Номер охранного документа: 0002633752
Дата охранного документа: 17.10.2017
13.02.2018
№218.016.24cd

Флуоресцентный способ прогнозирования эффективности химиотерапии у детей, больных острым лимфобластным лейкозом, путем определения концентраций аденозинтрифосфата в митохондриях

Изобретение относится к медицине и касается флуоресцентного способа прогнозирования эффективности химиотерапии у детей, больных острым лимфобластным лейкозом, путем определения концентраций аденозинтрифосфата в митохондриях, при котором производят забор крови до и после химиотерапии, выделяют...
Тип: Изобретение
Номер охранного документа: 0002642589
Дата охранного документа: 25.01.2018
04.04.2018
№218.016.36b8

Экспериментальная установка (стенд) для изучения многофакторной зависимости коэффициента демпфирования сваи при взаимодействии с грунтом

Изобретение относится к области вибрационной техники, а именно к конструкциям свайных фундаментов зданий и сооружений гражданского и промышленного назначения. Экспериментальная установка состоит из лотка, грунтового массива и моделируемой сваи. Вибрируемый на вибростенде металлический лоток с...
Тип: Изобретение
Номер охранного документа: 0002646540
Дата охранного документа: 05.03.2018
10.05.2018
№218.016.3c12

Флуоресцентный способ прогнозирования эффективности химиотерапии у детей, больных острым лимфобластным лейкозом

Изобретение относится к области биофизики, а именно к медицинской физики, и описывает способ прогнозирования эффективности химиотерапии у детей, больных острым лимфобластным лейкозом (ОЛЛ), в частности прогнозирования рисков возникновения лекарственной резистентности при проведении химиотерапии...
Тип: Изобретение
Номер охранного документа: 0002647834
Дата охранного документа: 19.03.2018
09.06.2018
№218.016.5c34

Способ ранней генетической диагностики риска развития сахарного диабета 2 типа

Изобретение относится к области медицины, в частности к медицинской генетике, и предназначено для ранней генетической диагностики риска развития сахарного диабета (СД) 2 типа. Осуществляют экстракцию ДНК из периферической крови с последующим проведением полимеразной цепной реакции в режиме...
Тип: Изобретение
Номер охранного документа: 0002655635
Дата охранного документа: 29.05.2018
20.06.2018
№218.016.63d7

Устройство и способ для дистанционной беспроводной диагностики функционального состояния сердечно-сосудистой системы человека на основе двигательной активности и фотоплетизмографии

Группа изобретений относится к области медицины, а именно к медицинской технике, и может быть использована в функциональной диагностике состояния сердечно-сосудистой системы амбулаторно. Устройство для дистанционной беспроводной диагностики функционального состояния сердечно-сосудистой системы...
Тип: Изобретение
Номер охранного документа: 0002657966
Дата охранного документа: 18.06.2018
Показаны записи 1-10 из 25.
10.06.2013
№216.012.4a3b

Радиостанция

Изобретение относится к области радиосвязи и может использоваться для создания многоканальных радиостанций, обеспечивающих двухстороннюю радиосвязь. Достигаемый технический результат - повышение помехоустойчивости при совместной работе нескольких корреспондентов, увеличение пропускной...
Тип: Изобретение
Номер охранного документа: 0002484583
Дата охранного документа: 10.06.2013
10.06.2013
№216.012.4a3c

Радиостанция

Изобретение относится к области радиосвязи. Техническим результатом является обеспечение двухсторонней закрытой радиосвязи на одной частоте на одну антенну с документированием переговоров. В радиостанцию, содержащую радиоприемник 5 и радиопередатчик 4, ненаправленную антенну 1, соединенную с...
Тип: Изобретение
Номер охранного документа: 0002484584
Дата охранного документа: 10.06.2013
10.04.2014
№216.012.b08f

Телефонная радиостанция с возможностью передачи данных

Настоящее изобретение относится к области радиосвязи. Технический результат изобретения заключается в повышении маневренности при обмене информацией за счет введения каналов передачи данных, увеличении пропускной способности радиостанции. В радиостанцию дополнительно введен преобразователь...
Тип: Изобретение
Номер охранного документа: 0002510914
Дата охранного документа: 10.04.2014
20.07.2014
№216.012.dff6

Радиостанция для независимой работы 10 телефонными и 10 телеграфными каналами

Изобретение относится к области радиосвязи. Технический результат заключается в автоматизации управления антенным переключателем, обеспечении дуплексного режима при работе на одну антенну в режиме псевдослучайной перестройки рабочих частот (ППРЧ), повышении маневренности при обмене информацией,...
Тип: Изобретение
Номер охранного документа: 0002523120
Дата охранного документа: 20.07.2014
27.08.2014
№216.012.f038

Устройство контроля электромагнитного поля вторичных излучателей

Изобретение относится к измерительной технике, в частности к исследованию параметров вторичного излучения различных сред. Устройство содержит генератор тактовых импульсов, формирователь спектра излучения, коммутатор антенн, приемо-передающую антенную систему, формирователь информации излучения...
Тип: Изобретение
Номер охранного документа: 0002527315
Дата охранного документа: 27.08.2014
10.01.2015
№216.013.1aea

Устройство исследования электромагнитного поля вторичных излучателей

Изобретение относится к области радиосвязи и может быть использовано в устройствах радиосвязи для совместимости радиоэлектронных средств, а также для исследования параметров вторичного излучения различных сред. Технический результат - расширение функциональных возможностей за счет определения...
Тип: Изобретение
Номер охранного документа: 0002538318
Дата охранного документа: 10.01.2015
10.08.2015
№216.013.6bcd

Полевой индикатор естественного электромагнитного поля земли

Изобретение относится к измерительной технике. Технический результат: обеспечение мобильности и автономности измерения естественных электромагнитных полей с контролем частот спектра Земля-ионосфера без использования сторонних источников питания. Сущность: измеритель содержит магнитную рамочную...
Тип: Изобретение
Номер охранного документа: 0002559155
Дата охранного документа: 10.08.2015
27.09.2015
№216.013.8013

Устройство исследования электромагнитного поля вторичных излучателей

Изобретение относится к области радиосвязи. Устройство содержит генератор тактовых импульсов, формирователь спектра излучения, коммутатор антенн, приемо-передающую антенную систему, адаптивный преобразователь, формирователь информации излучения вторичных излучателей, преобразователь частотного...
Тип: Изобретение
Номер охранного документа: 0002564384
Дата охранного документа: 27.09.2015
27.10.2015
№216.013.88bf

Устройство исследования электромагнитного поля вторичных излучателей

Изобретение относится к области радиосвязи и может быть использовано при решении проблемы электромагнитной совместимости радиоэлектронных средств, а также исследованию параметров вторичного излучения различных сред. Устройство содержит генератор тактовых импульсов, формирователь спектра...
Тип: Изобретение
Номер охранного документа: 0002566610
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8af6

Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 1

Изобретение относится к технике сверхнизкочастотной (СНЧ) и крайненизкочастотной (КНЧ) связи с глубокопогруженными и удаленными подводными объектами. Предложенная система связи сверхнизкочастотного и крайненизкочастотного диапазонов с глубокопогруженными и удаленными объектами содержит...
Тип: Изобретение
Номер охранного документа: 0002567181
Дата охранного документа: 10.11.2015
+ добавить свой РИД