×
04.04.2020
220.018.1326

Результат интеллектуальной деятельности: Электробаромембранный аппарат плоскокамерного типа

Вид РИД

Изобретение

Аннотация: Изобретение относится к области разделения, концентрирования и очистки растворов методами электромикрофильтрации, электроультрафильтрации, электронанофильтрации, электроосмофильтрации. Электробаромембранный аппарат плоскокамерного типа содержит чередующиеся диэлектрические камеры корпуса с “выступом” и с “впадиной” имеют переточные каналы, соединяющие камеры разделения и малые камеры разделения соответственно, в прокладках выполнены вертикальные цилиндрические отверстия, а в чередующихся диэлектрических камерах корпуса с “выступом” и с “впадиной” выполнены горизонтальные цилиндрические отверстия, переточный канал соединен с вертикальным цилиндрическим отверстием в прокладке, а переточный канал с горизонтальнымцилиндрическим отверстием в диэлектрических камерах корпуса с “выступом” и с “впадиной”, между которыми размещены прокладки с отверстиями под переточной канал, на диэлектрических камерах корпуса с “впадиной” имеются установленные на передней и задней стенке камерные штуцеры ввода исходного раствора и вывода ретентата, которые размещены на расстоянии 30 и 90 мм соответственно от основания аппарата по центральной вертикальной оси, малая камера разделения имеет высоту, равную высоте прикатодной, прианодной мембран, а шириной равной ширине малой прикатодной, прианодной мембран, насечки сетки-турбулизатора имеют полукруглую форму. Технический результат - увеличение площади разделения растворов, увеличение производительности по прикатодному и прианодномупермеату, повышение качества и эффективности разделения растворов, снижение материалоемкости на единицу объема устройства. 7 ил.

Изобретение относится к области разделения, концентрирования и очистки растворов методами электромикрофильтрации, электроультрафильтрации, электронанофильтрации, электроосмофильтрации и может быть использовано в химической, текстильной, целлюлозно-бумажной, микробиологической, пищевой и других отраслях промышленности.

Аналогом данной конструкции является баромембранный аппарат, приведенный в работе Дытнерского Ю.И. «Обратный осмос и ультрафильтрация». М.: Химия, 1978 стр. 111, 197-200. Он представляет собой однокамерный аппарат, состоящий из пористого анода и катода, прианодной и прикатодной мембран. Недостатками являются: малая площадь разделения при высокихэнергозатратах на процесс разделения. Эти недостатки частично устранены в прототипе.

Прототипом данной конструкции является электробаромембранный аппарат плоскокамерного типа, конструкция которого приведена в патенте RU 2689617 С1, 28.05.2019 Бюл. № 16.Известный аппарат состоит из двух фланцев, каналов ввода и вывода разделяемого раствора и отвода пермеата, штуцеров ввода и вывода разделяемого раствора, штуцеров для отвода прикатодного и прианодногопермеата, устройства для подвода постоянного электрического тока, чередующихся диэлектрических камер корпуса с “выступом” и с “впадиной”, дренажных сеток, монополярно-пористых пластин электрода-катода и электрода-анода, пористых подложек из ватмана, прикатодных и прианодных мембран, соответственно довнешнего периметра, прокладок, по внутреннему периметру которых расположены центральные прямоугольные углубления величиной 0,5 мм от их толщины и одной третьей их части по ширине, причем в эти центральные прямоугольные углубления по всему внутреннему периметру прокладок вставлены концы сеток-турбулизаторов, представляющих собой набор переплетенных под углом 90° в одной плоскости нарезок катионообменных и анионообменных мембран, внутренние поверхности диэлектрических фланцев корпуса снабжены уложеннымипоследовательно друг на друга дренажными сетками, монополярно-пористыми пластинами электродом-катодом, пористыми подложками из ватмана, прикатодными мембранами соответственно, на чередующихся диэлектрических камерах корпуса с “выступом” и с “впадиной” имеются двусторонние отверстия для подвода электрических проводов, залитые полимерным компаундом от отрицательной и положительной клемм устройства для подвода постоянного электрического тока, соединенные с дренажными сетками, на внутренней стороне диэлектрических фланцев корпуса имеется отверстие дляподвода электрического провода от отрицательной клеммы устройства для подвода постоянного электрического тока к дренажной сетке и канал для отвода прикатодногопермеата с диэлектрической сеткой по всей площади, расположенные в тех же местах, что и на чередующихся диэлектрических камерах корпуса с “выступом” и с “впадиной”, на которых расположены каналы для отвода прикатодного и прианодногопермеата и отверстия для подвода электрических проводовв зависимости от схемы подключения электродов “минус” или “плюс”, чередующиеся диэлектрические камеры корпуса с “выступом” и с “впадиной” выполнены с полостью в виде малой камеры разделения в форме прямоугольного параллелепипеда, толщина которого равна толщине диэлектрической камеры корпуса с “выступом” и с “впадиной” от одной ее стороны с уплотнительной поверхностью шип-паз по другую, под малые прикатодные и прианодные мембраны на уплотнительнойповерхности диэлектрических камер корпуса с “выступом” и с “впадиной” имеется углубление величиной 1 мм, для установки малой прокладки прямоугольной формы, уплотняющей периметр малой прикатодной и прианодной мембран соответственно, в месте установки дренажной сетки с двух противоположных ее концов по плоской поверхности установлены последовательно монополярно-пористые пластины электрод-катод и малый электрод-катод, монополярно-пористые пластины электрод-анод и малый электрод-анод соответственно, пористая подложка из ватмана и малая пористая прикатодная подложка из ватмана, пористая подложка из ватмана и малая пористая прианодная подложка из ватмана соответственно, прикатодная мембрана и малая прикатодная мембрана, прианодная мембрана и малая прианодная мембрана соответственно.

Недостатками являются: малая площадь разделения растворов, малая производительность по прикатодному и прианодномупермеату, низкое качество и эффективность разделения растворов, большая материалоемкость на единицу объема аппарата.

Технический результат выражается увеличением площади разделения растворов, увеличением производительности по прикатодному и прианодномупермеату, повышением качества и эффективности разделения растворов, снижением материалоемкости на единицу объема устройстваза счет того, что аппарат состоит из двух фланцев, каналов ввода и вывода разделяемого раствора и отвода пермеата, штуцеров ввода и вывода разделяемого раствора, штуцеров для отвода прикатодного и прианодногопермеата, устройства для подвода постоянного электрического тока, чередующихся диэлектрических камер корпуса с “выступом” и с “впадиной”, дренажных сеток, монополярно-пористых пластин электрода-катода и электрода-анода, пористых подложек из ватмана, прикатодных и прианодных мембран, соответственно до внешнего периметра, прокладок по внутреннему периметру которых расположены центральные прямоугольные углубления величиной 0,5 мм от их толщины и одной третьей их части по ширине, причем в эти центральные прямоугольные углубления по всему внутреннему периметру прокладок вставлены концы сеток-турбулизаторов, представляющих собой набор переплетенных под углом 90° в одной плоскости нарезок катионообменных и анионообменных мембран, все соседние межузлия сетки-турбулизатора имеют насечки шириной 2 мм, глубина которых составляет половину толщины нарезок катионообменных и анионообменных мембран, а сами насечки обращены к прианодным и прикатодным мембранам, внутренние поверхности диэлектрических фланцев корпуса снабжены уложенными последовательно друг надруга дренажными сетками, монополярно-пористыми пластинами электродом-катодом, пористыми подложками из ватмана, прикатодными мембранами соответственно, на чередующихся диэлектрических камерах корпуса с “выступом” и с “впадиной” имеются двусторонние отверстия для подвода электрических проводов, залитые полимерным компаундом от отрицательной и положительной клемм устройства для подвода постоянного электрического тока, соединенные с дренажными сетками, на внутренней стороне диэлектрических фланцев корпуса имеется отверстие для подвода электрического проводаот отрицательной клеммы устройства для подвода постоянного электрического тока к дренажной сетке и канал для отвода прикатодногопермеата с диэлектрической сеткой по всей площади, расположенные в тех же местах, что и на чередующихся диэлектрических камерах корпуса с “выступом” и с “впадиной”, на которых расположены каналы для отвода прикатодного и прианодногопермеата и отверстия для подвода электрических проводов в зависимости отсхемы подключения электродов “минус” или “плюс”, чередующиеся диэлектрические камеры корпуса с “выступом” и с “впадиной” выполнены с полостью в виде малой камеры разделения в форме прямоугольного параллелепипеда, толщина которого равна толщине диэлектрической камеры корпуса с “выступом” и с “впадиной” от одной ее стороны с уплотнительной поверхностью шип-паз по другую, под малые прикатодные и прианодные мембраны на уплотнительной поверхности диэлектрических камеркорпуса с “выступом” и с “впадиной” имеется углубление величиной 1 мм, для установки малой прокладки прямоугольной формы, уплотняющей периметр малой прикатодной и прианодной мембран соответственно, в месте установки дренажной сетки с двух противоположных ее концов по плоской поверхности установлены последовательно монополярно-пористые пластины электрод-катод и малый электрод-катод, монополярно-пористые пластины электрод-анод и малый электрод-анод соответственно, пористая подложка из ватмана и малая пористаяприкатодная подложка из ватмана, пористая подложка из ватмана и малая пористая прианодная подложка из ватмана соответственно, прикатодная мембрана и малая прикатодная мембрана, прианодная мембрана и малая прианодная мембрана соответственно, отличающийся тем, что чередующиеся диэлектрические камеры корпуса с “выступом” и с “впадиной” имеют переточные каналы, соединяющие камеры разделения и малые камеры разделения соответственно, в прокладках выполнены вертикальные цилиндрические отверстия, а вчередующихся диэлектрических камерах корпуса с “выступом” и с “впадиной” выполнены горизонтальные цилиндрические отверстия, переточный канал соединен с вертикальным цилиндрическим отверстием в прокладке, а переточный канал с горизонтальным цилиндрическим отверстием в диэлектрических камерах корпуса с “выступом” и с “впадиной”, между которыми размещены прокладки с отверстиями под переточной канал, на диэлектрических камерах корпуса с “впадиной” имеются установленные на передней и задней стенке камерные штуцеры ввода исходного раствора и вывода ретентата, которые размещены на расстоянии 30 и 90 мм соответственно от основания аппарата по центральной вертикальной оси, малая камера разделения имеет высоту равную высоте прикатодной, прианодной мембран, а шириной равной ширине малой прикатодной, прианодной мембран, насечки сетки-турбулизатора имеют полукруглую форму.

На фиг. 1 изображен электробаромембранный аппарат плоскокамерного типа, продольный разрез; фиг. 2 - вид сверху; фиг. 3 - вид слева; фиг. 4 - сечение Б-Б на фиг. 2; фиг. 5 - сечение В-В на фиг. 2; фиг. 6 - вид Г увеличенный, схема разделения в межмембранном канале на фиг. 1; фиг. 7 - вид Д (2:1) повернутый, пространственная модель межмембранного канала на фиг. 6.

Электробаромембранный аппарат плоскокамерного типа состоит из чередующихся диэлектрических камер корпуса с “выступом” 2 и с “впадиной” 1, двух диэлектрических фланцев 3, металлических пластин 4, прокладок 5, устройства для подвода постоянного электрического тока 6, штуцеров для отвода прикатодного и прианодногопермеата 7, 29, болтов 8, шайб 9 и гаек 10, штуцеров ввода и вывода разделяемого раствора 11, 12, сетки-турбулизатора 13, монополярно-пористыхпластин электрод-катод и электрод-анод 14, 30, малых монополярно-пористых пластин электрод-катод и электрод-анод 35, 42, прикатодной мембраны 15 и малой прикатодной мембраны 24, прианодной мембраны 27 и малой прианодной мембраны 41 соответственно,пористой подложки из ватмана 16 и малой пористой прикатодной подложки из ватмана 43, пористой подложки из ватмана 31 и малой пористой прианодной подложки из ватмана 40 соответственно, дренажных сеток17, 25, переточных каналов 18 и 19, соединяющих камеры разделения 46 и малые камеры разделения 20 соответственно, полимерного компаунда 21, диэлектрической сетки 22, каналов ввода и вывода разделяемого раствора 32, 33, каналов отвода прикатодного и прианодногопермеата 34, 23, дренажных сеток 25, двусторонних отверстий для подвода электрических проводов 26, полимерной композиции 28, камерных штуцеров ввода исходного раствора и вывода ретентата 36, 37, прокладок 38 с отверстиями под переточной канал 18, малых прокладок 39 прямоугольной формы, уплотняющих периметр малой прикатодной и прианодной мембран 24, 41 соответственно, горизонтальных и вертикальных цилиндрических отверстий 44, 45.

Чередующиеся диэлектрические камеры корпуса с “выступом” и с “впадиной” 2 и 1, диэлектрические фланцы 3, штуцеры ввода и вывода разделяемого раствора 11, 12, диэлектрическая сетка 22, штуцеры для отвода прикатодного и прианодногопермеата 7, 29, камерные штуцеры ввода исходного раствора 36 и вывода ретентата 37 могут быть изготовлены из капролона.

Монополярно-пористые пластины электрод-катод и малый электрод-катод 14 и 35, монополярно-пористые электрод-анод 30 и малый электрод-анод 42 соответственно могут быть изготовлены из 20-45 процентного пористого проката типа Х18Н15-ПМ, Х18Н15-МП, Н-МП, ЛНПИТ, ЛПН-ПМ.

Сетки-турбулизаторы 13 представляющие собой переплетенные под углом девяносто градусов в одной плоскости набор из нарезок катионообменных и анионообменных мембран марок МК-40, МА-40, МК-40Л, МА-41И, МА-ИЛ, МБ-1, МБ-2.

Полимерный компаунд 21 и полимерная композиция 28 изготавливаются из диэлектрических герметизирующих эпоксидных смол, пластмассы или клея холодная сварка.

Фланцевая дренажная сетка 17, дренажная сетка 25 могут быть изготовлены из материала Х18Н9Т, Х18Н10Т, 20Х23Н18, 10Х17Н13М2Т, 08Х18Т1.

Прокладка 5, прокладка 38 с отверстиями под переточной канал 18 и малая прокладка 39 могут быть выполнены из паронита или прокладочной резины.

Металлические пластины 4 могут быть изготовлены из стали 3, стали 15, стали 25, стали 30, стали 45.

В качестве прикатодных, прианодных мембран 15, 27 и малой прикатодной, прианодной мембран 24, 41 соответственно могут применяться изготовленные в виде ленты, полотна мембраны следующих типов МГА-95, МГА-95П-Н, МГА-95П-Т, МГА-100П, ОПМ-К, ESPA, ESNA, УАМ-150П, УПМ-П, УПМ-ПП, УПМ-50, УПМ-50М, УФМ-100, УФМ-50, УФМ-П, УФМ-ПТ, ОПМН-К, ОПМН (ОФМН)-П, МФФК-0, МФФК-3, ММК, ММПА+,МПС, МФФК-Г, ММФ4, ММТ.

Аппарат работает следующим образом.

Исходный раствор под давлением, превышающем осмотическое давление растворенных в нем веществ, через штуцер ввода разделяемого раствора 11 расположенный на диэлектрическом фланце 3, фиг. 1, 2, 3, подается, минуя полимерную композицию 28 по каналу ввода разделяемого раствора 32, фиг. 1 в первую камеру разделения 46, образованную прикатодной мембраной 15, прокладкой 5 по внутреннему периметру которой расположены центральные прямоугольные углубления величиной 0,5мм от их толщины и одной третьей их части по ширине, причем в эти центральные прямоугольные углубления по всему внутреннему периметру прокладки 5 вставлены концы сетки-турбулизатора 13 представляющей собой переплетенные под углом девяносто градусов в одной плоскости набор из нарезок катионообменных и анионообменных мембран соответственно, и прианодной мембраны 27, образуя, таким образом, межмембранный канал в тех местах, где расположена сетка-турбулизатор 13.

В этот же момент времени к чередующимся диэлектрическим камерам корпуса с “выступом” и с “впадиной” 2, 1 и диэлектрическим фланцам 3, фиг. 1, включением устройства для подвода постоянного электрического тока 6 через электрические провода 26 проходящих в отверстиях, которые залиты полимерным компаундом 21 и соединенных с дренажными сетками 17, 25, к аппарату подводится внешнее постоянное электрическое поле с заданной плотностью тока.

Раствор, двигаясь, перемешивается при помощи сетки-турбулизатора 13, фиг. 1, 6, 7, и поступает к прикатодной и прианодной мембранам 15, 27 соответственно, фиг. 1, 6,в зависимости от схемы подключения “минус” или “плюс”.

Из образовавшейся между прикатодными, прианодными мембранами 15, 27 расположенными на диэлектрическом фланце 3 и диэлектрической камере корпуса с“впадиной” 1 и прокладкой 5 камеры разделения 46, фиг. 1, катионы и анионы, проникающие через прикатодную и прианодную мембраны 15, 27, пористые подложки из ватмана 16, 31, монополярно-пористые пластины электрод-катод и электрод-анод 14, 30, дренажные сетки 17, 25 уложенные последовательно друг надруге, проходят в пространстве между диэлектрическим фланцем 3 и монополярно-пористой пластиной электрод-катод 14 в пространстве дренажной сетки 17 и диэлектрической камерой корпуса с “впадиной” 1 и монополярно-пористой пластиной электрод-анод 30 в пространстве дренажной сетки 25 соответственно, и по каналам для отвода прикатодного и прианодногопермеата 34, 23 отводятся через штуцеры для отвода прикатодного и прианодногопермеата 7, 29 в виде оснований, кислот и газа в зависимости от схемы подключения“минус” или “плюс”.

Оставшиеся в камере разделения 46 анионы и катионы, движущиеся в ядре потока сетки-турбулизатора 13, фиг. 1, поступают по вертикальным цилиндрическим отверстиям 45 в прокладках 5 по переточному каналу 18, в следующую (вторую) камеру разделения 46, образованную соединенными между собой диэлектрическими камерами корпуса с “впадиной” и с “выступом” 1, 2, фиг. 1, и прианодными и прикатодными мембранами 27, 15 соответственно ввиде кислот, оснований и газа в зависимости от схемы подключения“минус” или “плюс”.

Раствор переходит из первой камеры разделения 46 во вторую камеру разделения 46 и далее по всем камерам разделения 46 по вертикальным цилиндрическим отверстиям 45 в прокладках 5 по переточным каналам 18чередующихся диэлектрических камер корпуса с “впадиной” и с “выступом”1 и 2, всего аппарата фиг. 1, 5, где происходит аналогичное разделение, катионы и анионы отводятся с пермеатом через прикатодные и прианодные мембраны 15 и 27 и по каналам для отвода прикатодного и прианодногопермеата 34 и 23, отводятся через штуцера для отвода прикатодного и прианодногопермеата 7 и 29 в виде оснований и кислот в зависимости от схемы подключения“минус” или “плюс”, а ретентатвыводится минуя полимерную композицию 28, по каналу вывода разделяемого раствора 33.

Одновременно с подачей исходного раствора под давлением, превышающем осмотическое давление растворенных в нем веществ, через штуцер ввода разделяемого раствора 11 расположенного на диэлектрическом фланце 3, фиг. 1, 2, 3, также подается исходный раствор под давлением, превышающем осмотическое давление растворенных в нем веществ, через камерный штуцер ввода исходного раствора 36 установленный на передней стенке диэлектрической камеры корпуса с “впадиной” 1 ипоступает в малую камеру разделения 20, где катионы проникают через малые прикатодные мембраны 24, малые пористые прикатодные подложки из ватмана 43, малые монополярно-пористые пластины электрод-катод 35, а анионы проникают через малые прианодные мембраны 41, малые пористые прианодные подложки из ватмана 40, малые монополярно-пористые пластины электрод-анод 42 соответственно в пространстве дренажных сеток 17, 25 и отводятся самотеком в виде оснований, кислот и газа по каналам для отвода прикатодного и прианодногопермеата 34, 23 соответственно, предварительно объединяясь с потоками оснований, кислот и газа, образованных при разделении в основных камерах разделения 46 в зависимости от схемы подключения“минус” или “плюс”.

Оставшиеся в малой камере разделения 20 анионы и катионы, движущиеся в ядре потока, фиг. 1, поступают по горизонтальным цилиндрическим отверстиям 44 по переточному каналу 19 в чередующихся диэлектрических камерах корпуса с “впадиной” и с “выступом” 1, 2, через отверстия в прокладках 38, в следующую (вторую) малую камеру разделения 20.

Раствор переходит из первой малой камеры разделения 20 во вторую малую камеру разделения 20 и далее по всем малым камерам разделения 20 по горизонтальным цилиндрическим отверстиям 44, по переточным каналам 19чередующихся диэлектрических камер корпуса с “впадиной” и с “выступом”1, 2 всего аппарата фиг. 1, где происходит аналогичное разделение, катионы и анионы отводятся с пермеатом через малые прикатодные иприанодные мембраны 24, 41 и по каналам для отвода прикатодного и прианодногопермеата 34 и 23, отводятся через штуцеры для отвода прикатодного и прианодногопермеата 7 и 29 в виде оснований и кислот в зависимости от схемы подключения“минус” или “плюс”, а ретентат выводится через камерный штуцер вывода ретентата 37.

Исходный раствор, протекая по всем камерам разделения 46 последовательно от одного диэлектрического фланца 3 до второго диэлектрического фланца 3, фиг. 1, очищается от катионов и анионов в зависимости от схемы подключения “минус” или “плюс”, причем в прикатодном и прианодном пермеате содержатся различные растворенные газы, выделившиеся на монополярно-пористых пластинах электроде-катоде и электроде-аноде 14 и 30 соответственно в результате электрохимических реакций.

Исходный раствор, протекая по всем малым камерам разделения 20 последовательно от камерного штуцера ввода раствора до камерного штуцера вывода ретентата 37, фиг. 1, 2, очищается от катионов и анионов в зависимости от схемы подключения “минус” или “плюс”, причем прикатодный и прианодныйпермеат, полученный таким образом, объединяется с прикатодным и прианоднымпермеатом, полученных из основных камер разделения 46, где содержатся различные растворенные газы, выделившиеся на монополярно-пористых пластинах электрод-катод и электрод-анод 14 и 30 и малых монополярно-пористых пластинах электрод-катод и электрод-анод 35 и 42 соответственно в результате электрохимических реакций.

Увеличение площади для разделения растворов достигается за счет того, что малые прикатодные, прианодныемембраны выполнены увеличенной высоты, фиг. 1 (см. табл. 1), за счет этого увеличивается и производительность по прикатодному и прианодномупермеату.

Параметр, м2 F к.р F - фланц F м.к.р F пер.окна F - общ F + общ F общ
Аппарат-прототип 0,133 0,030 0,074 0,037 0,128 0,146 0,274
Аппарат,
представленный в данной работе
0,152 0,030 0,102 - 0,132 0,152 0,284

где Fк.р – общая площадь мембран камер разделения, м2; F-фланц - общая площадь мембран фланцев, м2; Fм.к.р - общая площадь мембран малых камер разделения, м2; Fпер.окна - общая площадь мембран переточного окна, м2;
F-общ - общая площадь прикатодных мембран, м2;F+общ – общая площадь прианодных мембран, м2; Fобщ - общая площадь камер разделения электробаромембранного аппарата, м2.

Повышение качества и эффективности разделения растворов достигается за счет того, что увеличивается эффективная площадь для разделения растворов и возрастает производительность при объединении потоков пермеата полученных из основных камер разделения и малых камер разделения растворов, фиг. 1, 4.

Снижение материалоемкости на единицу объема устройства (аппарата), фиг. 1, 4 электробаромембранного разделения растворов достигается за счет того, что чередующиеся диэлектрические камеры корпуса с “выступом” и с “впадиной” выполнены с полостью в виде малой камеры разделения в форме прямоугольного параллелепипеда, высотой равной высоте прикатодной, прианодной мембран, а шириной равной ширине малой прикатодной, прианодной мембран.

На разработанной конструкции электробаромембранного аппарата плоскокамерного типа без наложения электрического поля можно проводить баромембранные процессы, например, обратный осмос, нанофильтрацию, ультрафильтрацию и микрофильтрацию при увеличении степени концентрирования разделяемого раствора за счет того, что обрабатываемый раствор будет последовательно циркулировать по всем малым камерам разделения раствора.

Электробаромембранный аппарат плоскокамерного типа состоит из двух фланцев, каналов ввода и вывода разделяемого раствора и отвода пермеата, штуцеров ввода и вывода разделяемого раствора, штуцеров для отвода прикатодного и прианодного пермеата, устройства для подвода постоянного электрического тока, чередующихся диэлектрических камер корпуса с “выступом” и с “впадиной”, дренажных сеток, монополярно-пористых пластин электрода-катода и электрода-анода, пористых подложек из ватмана, прикатодных и прианодных мембран, соответственно до внешнего периметра, прокладок, по внутреннему периметру которых расположены центральные прямоугольные углубления величиной 0,5 мм от их толщины и одной третьей их части по ширине, причем в эти центральные прямоугольные углубления по всему внутреннему периметру прокладок вставлены концы сеток-турбулизаторов, представляющих собой набор переплетенных под углом 90° в одной плоскости нарезок катионообменных и анионообменных мембран, все соседние межузлия сетки-турбулизатора имеют насечки шириной 2 мм, глубина которых составляет половину толщины нарезок катионообменных и анионообменных мембран, а сами насечки обращены к прианодным и прикатодным мембранам, внутренние поверхности диэлектрических фланцев корпуса снабжены уложенными последовательно друг на друга дренажными сетками, монополярно-пористыми пластинами электродом-катодом, пористыми подложками из ватмана, прикатодными мембранами соответственно, на чередующихся диэлектрических камерах корпуса с “выступом” и с “впадиной” имеются двусторонние отверстия для подвода электрических проводов, залитые полимерным компаундом от отрицательной и положительной клемм устройства для подвода постоянного электрического тока, соединенные с дренажными сетками, на внутренней стороне диэлектрических фланцев корпуса имеется отверстие для подвода электрического провода от отрицательной клеммы устройства для подвода постоянного электрического тока к дренажной сетке и канал для отвода прикатодного пермеата с диэлектрической сеткой по всей площади, расположенные в тех же местах, что и на чередующихся диэлектрических камерах корпуса с “выступом” и с “впадиной”, на которых расположены каналы для отвода прикатодного и прианодного пермеата и отверстия для подвода электрических проводов в зависимости от схемы подключения электродов “минус” или “плюс”, чередующиеся диэлектрические камеры корпуса с “выступом” и с “впадиной” выполнены с полостью в виде малой камеры разделения в форме прямоугольного параллелепипеда, толщина которого равна толщине диэлектрической камеры корпуса с “выступом” и с “впадиной” от одной ее стороны с уплотнительной поверхностью шип-паз по другую, под малые прикатодные и прианодные мембраны на уплотнительной поверхности диэлектрических камер корпуса с “выступом” и с “впадиной” имеется углубление величиной 1 мм, для установки малой прокладки прямоугольной формы, уплотняющей периметр малой прикатодной и прианодной мембран соответственно, в месте установки дренажной сетки с двух противоположных ее концов по плоской поверхности установлены последовательно монополярно-пористые пластины электрод-катод и малый электрод-катод, монополярно-пористые пластины электрод-анод и малый электрод-анод соответственно, пористая подложка из ватмана и малая пористая прикатодная подложка из ватмана, пористая подложка из ватмана и малая пористая прианодная подложка из ватмана соответственно, прикатодная мембрана и малая прикатодная мембрана, прианодная мембрана и малая прианодная мембрана соответственно, отличающийся тем, что чередующиеся диэлектрические камеры корпуса с “выступом” 2 и с “впадиной” 1 имеют переточные каналы 18, 19, соединяющие камеры разделения 46 и малые камеры разделения 20 соответственно, в прокладках 5 выполнены вертикальные цилиндрические отверстия 45, а в чередующихся диэлектрических камерах корпуса с “выступом” 2 и с “впадиной” 1 выполнены горизонтальные цилиндрические отверстия 44, переточный канал 18 соединен с вертикальным цилиндрическим отверстием 45 в прокладке 5, а переточный канал 19 с горизонтальным цилиндрическим отверстием 44 в диэлектрических камерах корпуса с “выступом” 2 и с “впадиной” 1, между которыми размещены прокладки 38 с отверстиями под переточной канал 18, 19, на диэлектрических камерах корпуса с “впадиной” 1 имеются установленные на передней и задней стенке камерный штуцер ввода исходного раствора 36 и вывода ретентата 37, которые размещены на расстоянии 30 и 90 мм соответственно от основания аппарата по центральной вертикальной оси, малая камера разделения 20 имеет высоту, равную высоте прикатодной, прианодной мембран 15, 27, а шириной равной ширине малой прикатодной, прианодной мембран 24, 41, насечки сетки-турбулизатора 13 имеют полукруглую форму.
Электробаромембранный аппарат плоскокамерного типа
Электробаромембранный аппарат плоскокамерного типа
Электробаромембранный аппарат плоскокамерного типа
Электробаромембранный аппарат плоскокамерного типа
Источник поступления информации: Роспатент

Показаны записи 1-10 из 11.
25.03.2020
№220.018.0f2d

Способ смешения сыпучих материалов и устройство для его осуществления

Изобретение относится к технологии и оборудованию для приготовления смесей сыпучих материалов с высокой неоднородностью частиц по размеру и плотности в химической, пищевой, микробиологической, строительных материалов и других отраслях промышленности. Способ смешения сыпучих материалов...
Тип: Изобретение
Номер охранного документа: 0002717534
Дата охранного документа: 23.03.2020
01.04.2020
№220.018.1270

Электробаромембранный аппарат трубчатого типа

Изобретение относится к конструкциям мембранных аппаратов трубчатого типа. Электробаромембранный аппарат трубчатого типа, состоящий из металлических стержней, соединенных по торцевой поверхности с одной стороны с металлической шпилькой и металлической сеткой, а с другой стороны с торцевыми,...
Тип: Изобретение
Номер охранного документа: 0002718037
Дата охранного документа: 31.03.2020
31.07.2020
№220.018.3959

Комбинированная моечная установка

Изобретение относится к установкам контактного типа для мойки, очистки от загрязнений и дезинфекции поверхностей и может быть использовано в агропромышленном комплексе, пищевой промышленности, на транспорте. Комбинированная установка для мойки емкостей из различных материалов содержит емкость...
Тип: Изобретение
Номер охранного документа: 0002728147
Дата охранного документа: 28.07.2020
12.04.2023
№223.018.4526

Моечная головка для струйной очистки

Изобретение относится к устройствам для мойки и очистки поверхностей и может быть использовано в агропромышленном комплексе, пищевой промышленности, на транспорте и т.п. Моечная головка для струйной очистки содержит сопло для формирования струи жидкости, установленное с возможностью...
Тип: Изобретение
Номер охранного документа: 0002752735
Дата охранного документа: 30.07.2021
12.04.2023
№223.018.452c

Способ контроля степени исчерпания защитных свойств фильтрующе-поглощающих изделий в форме пластин

Изобретение относится к области неразрушающих методов контроля качественного состояния фильтрующе-поглощающих изделий. Заявлен способ контроля степени исчерпания защитных свойств фильтрующе-поглощающих изделий в форме пластин реализуется следующим образом. Образец контролируемого изделия в...
Тип: Изобретение
Номер охранного документа: 0002753593
Дата охранного документа: 18.08.2021
12.04.2023
№223.018.46e2

Способ электрохимического получения наноразмерных пластинок графита

Изобретение относится к способу электрохимического получения наноразмерных пластинок графита, заключающемуся в том, что электроды из природного или искусственного графита, содержащего или не содержащего связующее, помещаются в электролит и к ним подводится электрический ток, который приводит к...
Тип: Изобретение
Номер охранного документа: 0002763535
Дата охранного документа: 30.12.2021
20.04.2023
№223.018.4b83

Реактор для активации микро- и мезопористого углеродного материала

Изобретение относится к реактору для активации микро- и мезопористого углеродного материала, помещенному в печь и состоящему из цилиндрического корпуса и неподвижной крышки, на которой жестко закреплена ось мешалки, сверху установлены патрубки для подачи инертного газа, пара или воды и выхода...
Тип: Изобретение
Номер охранного документа: 0002768879
Дата охранного документа: 25.03.2022
20.04.2023
№223.018.4b8b

Реактор для активации углеродного материала

Изобретение касается реактора активации углеродного материала, помещенного в печь и состоящего из корпуса с фланцевой крышкой, расположенной сверху корпуса, и имеющий патрубки для ввода инертного газа и вывода газообразных продуктов реакции. Внутри корпуса реактора имеется этажерка из...
Тип: Изобретение
Номер охранного документа: 0002768123
Дата охранного документа: 23.03.2022
15.05.2023
№223.018.5b5f

Жидкостно-кольцевая машина

Изобретение относится к насосо-компрессоростроению и позволяет снизить потребляемую мощность, повысить производительность, глубину достигаемого вакуума одноступенчатых жидкостно-кольцевых машин. Жидкостно-кольцевая машина содержит неподвижный цилиндрический корпус 1, размещенное в нем с...
Тип: Изобретение
Номер охранного документа: 0002763233
Дата охранного документа: 28.12.2021
15.05.2023
№223.018.5b60

Жидкостно-кольцевая машина

Изобретение относится к насосо-компрессоростроению и позволяет снизить потребляемую мощность, повысить производительность, глубину достигаемого вакуума одноступенчатых жидкостно-кольцевых машин. Жидкостно-кольцевая машина содержит неподвижный цилиндрический корпус 1, размещенное в нем с...
Тип: Изобретение
Номер охранного документа: 0002763233
Дата охранного документа: 28.12.2021
Показаны записи 1-10 из 33.
20.07.2014
№216.012.df08

Электробаромембранный аппарат рулонного типа

Изобретение относится к конструкциям мембранных аппаратов рулонного типа. Электробаромембранный аппарат рулонного типа содержит корпус из диэлектрического материала, монополярных электродов анода и катода, выполненных из графитовой ткани, устройство для подвода электрического тока,...
Тип: Изобретение
Номер охранного документа: 0002522882
Дата охранного документа: 20.07.2014
27.08.2014
№216.012.edfa

Радиолокационная антенна с уменьшенной эффективной площадью рассеяния

Изобретение относится к антенной технике. Технический результат заключается в уменьшении эффективной площади рассеяния антенны в полосе ее рабочих частот. Для этого в радиолокационной антенне, содержащей минимум один излучатель, работающий в заданной полосе рабочих частот, размещенные перед...
Тип: Изобретение
Номер охранного документа: 0002526741
Дата охранного документа: 27.08.2014
10.09.2014
№216.012.f3e8

Электробаромембранный аппарат плоскокамерного типа

Изобретение относится к области разделения, концентрирования и очистки растворов методом электрофильтрации и может быть использовано в химической, текстильной, целлюлозно-бумажной, микробиологической, пищевой и других отраслях промышленности. Техническим результатом изобретения является...
Тип: Изобретение
Номер охранного документа: 0002528263
Дата охранного документа: 10.09.2014
10.11.2014
№216.013.0587

Электробаромембранный аппарат с плоскими фильтрующими элементами

Изобретение относится к области разделения, концентрирования и очистки растворов методами электрогиперфильтрации, электромикрофильтрации, электроультрафильтрации и электронанофильтрации и может быть использовано в химической, текстильной, целлюлозно-бумажной, микробиологической, пищевой и...
Тип: Изобретение
Номер охранного документа: 0002532813
Дата охранного документа: 10.11.2014
10.02.2015
№216.013.22ce

Электробаромембранный аппарат трубчатого типа

Изобретение относится к конструкциям мембранных аппаратов трубчатого типа и может быть использовано для осуществления процессов мембранной технологии. Электробаромембранный аппарат трубчатого типа содержит цилиндрический корпус с расположенными на его внешней поверхности патрубком для ввода...
Тип: Изобретение
Номер охранного документа: 0002540363
Дата охранного документа: 10.02.2015
20.06.2015
№216.013.5739

Электробаромембранный аппарат рулонного типа

Изобретение относится к мембранным аппаратам рулонного типа и может быть использовано для фильтрации и обратного осмоса. Аппарат содержит коллекторы отвода прикатодного и прианодного пермеата, образованные пространством между полуцилиндрами корпуса аппарата, корпусом аппарата и полимерной...
Тип: Изобретение
Номер охранного документа: 0002553859
Дата охранного документа: 20.06.2015
12.01.2017
№217.015.6387

Радиолокационная антенна с уменьшенной эффективной площадью рассеяния

Радиолокационная антенна содержит минимум один излучатель, работающий в заданной полосе рабочих частот, размещенные перед излучателями в одной плоскости устройства частотной селекции с полосовыми характеристиками, позволяющими пропускать электромагнитное излучение в полосе рабочих частот, а за...
Тип: Изобретение
Номер охранного документа: 0002589250
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.66e2

Отражатель электромагнитных волн

Отражатель электромагнитных волн для калибровки устройства радиолокационных систем образован соединением поверхностей минимум трех проводящих прямых круговых цилиндров с одинаковым радиусом основания и разной длиной образующих, лежащих в одной плоскости. Причем длина и радиус выбираются с...
Тип: Изобретение
Номер охранного документа: 0002592046
Дата охранного документа: 20.07.2016
25.08.2017
№217.015.bfff

Устройство для измерения эффективной площади рассеяния радиолокационных объектов

Изобретение относится к области радиолокационной техники и может быть использовано при измерении эффективной площади рассеяния различных объектов радиолокации, соизмеримых и меньших длины волны. Достигаемый технический результат – повышение точности измерения сверхмалых значений эффективной...
Тип: Изобретение
Номер охранного документа: 0002616586
Дата охранного документа: 18.04.2017
26.08.2017
№217.015.d86a

Электробаромембранный аппарат плоскокамерного типа

Изобретение относится к области разделения, концентрирования и очистки растворов методами электромикрофильтрации, электроультрафильтрации, электронанофильтрации, электроосмофильтрации. Электробаромембранный аппарат плоскокамерного типа, состоящий из двух фланцев, каналов ввода и вывода...
Тип: Изобретение
Номер охранного документа: 0002622659
Дата охранного документа: 19.06.2017
+ добавить свой РИД