×
18.03.2020
220.018.0ccc

Результат интеллектуальной деятельности: Способ нанесения защитного покрытия на катоды электролизера для получения алюминия

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу нанесения защитного покрытия на катоды электролизера для получения алюминия из расплавленных электролитов, смачиваемого получаемым алюминием. Способ включает электроосаждение компонентов покрытия на катоды из расплавленного электролита, содержащего добавки, являющиеся источниками покрытия, при этом электроосаждение компонентов покрытия на катоды осуществляют в электролизере для получения алюминия при температуре от 700°С из расплавленного электролита KF-NaF-AlF, содержащего в мас.%: KF до 54, NaF до 30, AlF - остальное, упомянутые добавки в мас.% от массы электролита: BO до 6, AlO до 6. Обеспечивается получение сплошного смачиваемого получаемым алюминием покрытия, хорошо сцепленного с катодами электролизера при значительном понижении температуры, снижение энергозатрат и упрощение операций по обслуживанию электролизера. 3 ил.

Изобретение относится к цветной металлургии, в частности к нанесению защитного покрытия на катоды электролизера для получения алюминия из расплавленных электролитов, смачиваемого получаемым алюминием.

Основной промышленный способ получения алюминия включает электролитическое разложение глинозема в электролите на базе криолит-глиноземного расплава (NaF-AlF3-Al2O3) при температуре 950-970ºС с использованием углеродных анодов и катодов. Ввиду высокой температуры и химической агрессивности расплава способ характеризуется высокими энергозатратами, крайне низкой эффективностью и малым сроком службы электролизеров. При этом основной причиной остановок электролизера является разрушение катодной подины в результате проникновения в нее компонентов расплава. Для предотвращения проникновения компонентов расплава в подину предлагается использовать смачиваемые получаемым алюминием катоды, в качестве которых могут быть использованы бориды тугоплавких металлов, либо покрытые боридами графитовые блоки катодов, которые с технико-экономической точки зрения являются наиболее оптимальными для промышленного производства.

Известен электролитический способ нанесения защитного покрытия на катоды электролизера для производства алюминия [1]. Способ включает электроосаждение бора и титана в виде диборида титана на графит и другие материалы из фторидных и хлоридно-фторидных расплавов, содержащих K2TiF6 и KBF4, при температуре 650-710ºС. Получаемые покрытия характеризуются хорошим сцеплением с графитовым катодом и относительно высокой эрозионной и химической стойкостью в расплавленных солях. Однако то, что нанесение покрытия данным способом производят вне электролизера для получения алюминия, приводит к необходимости проведения дополнительных операций по транспортировке катодов с нанесенным покрытием из одного аппарата в другой. В результате покрытие катодов подвергается механическому и термическому воздействию, что может привести к ухудшению сцепления покрытия с поверхностью графита.

К более эффективным относятся способы нанесения защитного покрытия на катоды, осуществляемые непосредственно в электролизерах для производства алюминия. Более того, эти покрытия получают из расплавленных электролитов для получения алюминия. Так, известен способ создания защитного покрытия на графитовые блоки катода алюминиевого электролизера, включающий электроосаждение компонентов покрытия из расплавленного электролита NaF-AlF3-Al2O3 при температуре 970-990ºС [2]. Формирование данного покрытия производят в два этапа. Сначала осуществляют загрузку соединений тугоплавкого металла в электролизер и электроосаждение тугоплавкого металла на графитовые блоки катода, при котором на поверхности графитовых блоков наряду с тугоплавким металлом формируются карбиды тугоплавких металлов. После этого в электролизер загружают соединения бора и производят электроосаждение бора, который вступает в твердофазные реакции с тугоплавкими металлами на подине, образуя смачиваемое покрытие для последующего электроосаждения алюминия. Преимуществом данного способа является то, что после полного электроосаждения компонентов смачиваемого покрытия, электролит NaF-AlF3-Al2O3 используют для электролитического получения алюминия. К недостаткам относятся многостадийность, высокие энергозатраты, высокая температура, низкая стабильность соединений бора в расплавленном электролите, высокая вероятность образования прочных двойных оксидов натрия и бора, которые приводят к изменению физико-химических свойств расплавленного электролита, блокировке катодной поверхности, снижению катодного выхода по току, сокращению службы электролизеров и нарушению процесса электролитического получения алюминия. Кроме того, при температуре 960ºС в принципе сложно и неэффективно организовывать электролиз с вертикальными электродами. Покрытие в верхней части электрода будет контактировать с атмосферой и окисляется гораздо быстрее.

Наиболее близким к заявляемому является известный способ нанесения защитного покрытия на катоды электролизера для получения алюминия, включающий электроосаждение титана и бора на графитовые блоки катода из расплавленного электролита NaF-AlF3-Al2O3, содержащего добавки, являющиеся источниками бора, титана и/или циркония при температуре 950-970ºС [3]. За исключением многостадийности, данному способу также присущи недостатки вышеописанного способа [2].

Задачей изобретения является повышение качества защитного покрытия катодов электролизера для получения алюминия при упрощении процесса его нанесения.

Поставленная задача решается тем, что способ нанесения защитного покрытия на катоды для электролитического получения алюминия, как и способ прототип, осуществляется непосредственно в электролизере для электролитического получения алюминия в пусковой период. Способ включает в себя электроосаждение компонентов покрытия на катоды из расплавленного электролита, содержащего добавки, являющиеся источниками покрытия. При этом электроосаждение компонентов покрытия на катоды производят при температуре от 700ºС из расплавленного электролита KF-NaF-AlF3, содержащего в мас.%: KF – до 54; NaF – до 30; AlF3 – остальное, а также добавки - источники покрытия, в мас.% от массы электролита: B2O3 – до 6; Al2O3 – до 6.

В качестве катода могут быть использованы любые электропроводящие материалы, химически стойкие к воздействию используемого расплавленного электролита.

Сущность заявленного способа заключается в том, что при электроосаждении бора и алюминия из расплавленного электролита KF-NaF-AlF3, содержащего соединения бора и алюминия, при температуре от 700ºС на катодах формируются тонкие (до 1 мм) покрытия, содержащие бор, бориды алюминия, а также соединения бора и алюминия с элементами катода (например, карбид бора, бориды железа, алюмобориды железа и др.). Сформированные покрытия хорошо смачиваются получаемым в электролизере алюминием и характеризуются высокой химической стойкостью к компонентам расплавленного электролита и хорошей адгезией к материалу катода, в качестве которого, в частности, могут быть использованы графит, сталь, чугун, сплавы железа, никеля, меди. Варьирование катодной плотности тока, концентрации соединений бора и алюминия, температуры и времени электроосаждения позволяет наносить покрытия необходимой толщины, фазового и элементного состава.

Использование расплавленного электролита KF-NaF-AlF3 заявленного состава, который определен экспериментально, позволяет снизить температуру процесса нанесения покрытий, что приводит к снижению энергозатрат, существенному повышению химической стойкости исходных катодов и наносимого покрытия, а также обеспечивает стабильность борсодержащих соединений в электролите. Предел содержания добавок B2O3 и Al2O3 в составе электролита обусловлен их растворимостью в расплавленных электролитах указанного состава в температурном интервале от 700 до 900ºС. В свою очередь это позволяет реализовать заявляемый способ в электролизерах для электролитического получения алюминия, как с горизонтальным, так и с вертикальным расположением электродов. Присутствие алюминия в составе наносимого защитного покрытия, которое приводит к снижению катодного перенапряжения и величины общего падения напряжения на электролизере в начальный момент электролиза.

После нанесения покрытия на катоды ведут электролиз расплавленного электролита KF-NaF-AlF3 при температуре выше 700ºС, при этом состав электролита может быть скорректирован фторидными добавками с целью обеспечения электролитического получения алюминия при оптимальных условиях.

Технический результат, достигаемый заявленным способом, заключается в получении сплошного, смачиваемого получаемым алюминием покрытия, хорошо сцепленного с катодами электролизера при значительном понижение температуры, что приводит к снижению энергозатрат и упрощению операций по обслуживанию электролизера в целом.

Изобретение иллюстрируется рисунками, где на фиг.1 приведены микрофотографии поперечного среза графитового катода с нанесенным покрытием толщиной в среднем от 40 до 60 мкм, представленного фазами AlB2, B4C, Al и B по данным рентгенофазового анализа; на фиг. 2 приведена микрофотография поперечного среза графитового катода с нанесенным покрытием и слоем электроосажденного на покрытии алюминия толщиной 1,8-2,5 мм; на фиг. 3 приведен образец типичного покрытия на стали.

Экспериментальную апробацию способа проводили в лабораторном электролизере в составе корундового контейнера и вертикально расположенных графитовых электродов (анода и катода), выполненных в виде пластин с площадью рабочей поверхности 20 см2, соединенных резьбовым соединением с металлическими токоподводами в защитных корундовых трубках. Смесь солей (мас.%) 45KF-7NaF-48AlF3 с добавками 2,6 мас.% B2O3 и 2,1 мас.% Al2O3 общей массой 680 г загрузили в корундовый контейнер электролизера и нагрели до температуры 780ºС. После плавления в полученный расплавленный электролит загрузили электроды и вели электролиз при токовой нагрузке 8 А в течение 4,5 часов. После этого электролиз прекратили, а электроды извлекли из электролизера с целью контроля состава полученного смачиваемого покрытия на графитовом катоде. Микрофотография покрытия приведена на фигуре 1.

Для установления факта смачивания получаемого покрытия алюминием эксперимент был воспроизведен при аналогичных условиях за исключением того, что спустя 4,5 часа электролиза в корундовый контейнер электролизера начали периодически подгружать Al2O3 для электролитического получения алюминия. Дальнейший электролиз вели в течение 48 часов, после чего электроды извлекли из электролизера, а расплавленный электролит и полученный на дне электролизера алюминий слили в изложницы. По данным спектрального анализа в застывшем плаве электролита и алюминии содержалось менее 0,001 мас.% бора, что указывает, во-первых, на полное расходование добавки B2O3 на формирование смачиваемого покрытия, а во-вторых, на высокую химическую стойкость полученного покрытия в алюминии. Катодный выход алюминия по току составил выше 80 %. На микрофотографии (фиг. 2) видно, что слой выделившегося алюминия хорошо сцеплен с катодом по всей поверхности.

По вышеописанной методике нанесение покрытия на графитовый катод проводили также в лабораторном электролизере с электролитом (мас.%) 40KF-60AlF3 с добавками 2,0 мас.% B2O3 и 1,1 мас.% Al2O3 общей массой 500 г при температуре 700ºС. Электролиз вели при токовой нагрузке 4 А в течение 3 часов, после чего в электролит начали периодически подгружать Al2O3, а токовую нагрузку повысили до 6 А. Спустя 48 часов электролиз был прекращен; на поднятом из расплава катоде был обнаружен алюминий, что указывает на наличие смачиваемого алюминием защитного покрытия на графите. Катодный выход алюминия по току составил выше 72 %, а наличие покрытия после охлаждения катода было подтверждено при помощи сканирующей электронной микроскопии.

Экспериментальную апробацию способа нанесения защитного покрытия на стальной катод проводили в лабораторном электролизере с электролитом (мас.%) 40KF-20NaF-40AlF3 с добавками 6,0 мас.% B2O3 и 3,0 мас.% Al2O3 общей массой 800 г при температуре 860ºС. Электролиз вели при токовой нагрузке 10 А в течение 2 часов, после чего катод извлекли из расплава с целью микрорентгеноструктурного исследования нанесенного покрытия. Образец покрытия проиллюстрирован на фиг. 3. Видно, что на стали формируется сплошное покрытие, представленное фазами FeB, FeB2 и AlB2. Далее эксперимент повторили при аналогичных условиях, за исключением того, что после 3 часов электролиза при токовой нагрузке 10 А в электролит начали периодически подгружать Al2O3, а токовую нагрузку повысили до 12 А. Спустя 72 часа электролиз был прекращен. После электролиза стальной катод был хорошо смочен алюминием, а катодный выход алюминия по току составил выше 84 %.

Серию испытаний, варьируя состав расплавленного электролита, температуру, катодную плотность тока, а также материал катода (графит, сталь). В зависимости от условий на графите были получены покрытия толщиной до 500 мкм, представленные фазами AlB2, B4C, Al и B, а на стали - покрытия толщиной до 400 мкм, представленные фазами FeB, FeB2 и AlB2.

Аналогичные покрытия на катодах из разных материалов могут быть получены при другом расположении электродов, в частности, горизонтальном.

Таким образом, при снижении температуры и энергозатрат способ обеспечивает получение сплошного, хорошо сцепленного с катодами покрытия, которое хорошо смачивается получаемым в электролизере алюминием.

Источники информации:

1. Journal of The Electrochemical Society, 2009, Vol.156(4), D131-D137

2. RU 2486292 C1, публ. 27.03.2013

3. RU 2299278 C2, публ. 20.05.2007

Способ нанесения защитного покрытия на катоды электролизера для получения алюминия, включающий электроосаждение компонентов покрытия на катоды из расплавленного электролита, содержащего добавки, являющиеся источниками покрытия, при этом электроосаждение компонентов покрытия на катоды осуществляют в электролизере для получения алюминия, отличающийся тем, что электроосаждение компонентов покрытия на катоды производят при температуре от 700°С из расплавленного электролита KF-NaF-AlF, содержащего в мас.%: KF до 54, NaF до 30, AlF – остальное, упомянутые добавки в мас.% от массы электролита: BO до 6, AlO до 6.
Способ нанесения защитного покрытия на катоды электролизера для получения алюминия
Способ нанесения защитного покрытия на катоды электролизера для получения алюминия
Способ нанесения защитного покрытия на катоды электролизера для получения алюминия
Источник поступления информации: Роспатент

Показаны записи 11-20 из 94.
10.02.2014
№216.012.9f99

Генератор влажности газов

Изобретение относится к аналитической технике, в частности к генераторам создания и поддержания заданной влажности или осушения газов. Генератор влажности газов содержит помещенную в термостат рабочую камеру, включающую в себя кислородпроводящий и протонпроводящий твердые электролиты,...
Тип: Изобретение
Номер охранного документа: 0002506565
Дата охранного документа: 10.02.2014
27.03.2014
№216.012.ae7e

Твердооксидный композитный материал для мембран электрохимических устройств

Изобретение относится к области электротехники, а именно к твердооксидным мембранным материалам, и может быть использовано, в частности, для получения кислорода или водорода. Твердооксидный композитный материал для мембран электрохимических устройств содержит титанато-феррит стронция и...
Тип: Изобретение
Номер охранного документа: 0002510385
Дата охранного документа: 27.03.2014
20.05.2014
№216.012.c333

Электрохимический способ получения лигатурных алюминий-циркониевых сплавов

Изобретение относится к электрохимическому получению лигатурных алюминий-циркониевых сплавов. В способе осуществляют анодную гальваностатическую поляризацию циркония с плотностью тока 0,5-4,0 мАсм в течение 1-5 часов в расплавленных хлоридах щелочных металлов или смеси...
Тип: Изобретение
Номер охранного документа: 0002515730
Дата охранного документа: 20.05.2014
27.05.2014
№216.012.c87c

Электрохимический способ получения металлов и/или сплавов из малорастворимых и нерастворимых соединений

Изобретение относится к электрохимическому способу получения металлов, за исключением щелочных и щелочно-земельных, и/или сплавов металлов. Способ включает восстановление металлов и/или сплавов в кальцийсодержащем оксидно-галогенидном расплаве из соединений получаемых металлов и/или из смесей...
Тип: Изобретение
Номер охранного документа: 0002517090
Дата охранного документа: 27.05.2014
10.07.2014
№216.012.dc5a

Способ получения двухслойного несущего катода для твердооксидных топливных элементов

Изобретение относится к области электротехники, а именно к несущим катодам на основе манганита лантана стронция. Способ получения двухслойного катода для твердооксидных топливных элементов, включает формование электродного и коллекторного слоев катода и их спекание, при этом коллекторный слой...
Тип: Изобретение
Номер охранного документа: 0002522188
Дата охранного документа: 10.07.2014
20.07.2014
№216.012.dd82

Способ изготовления газоплотной керамики для элементов электрохимических устройств

Изобретение относится к изготовлению газоплотной оксидной керамики со смешанной ионно-электронной проводимостью. Заявлен способ изготовления газоплотной керамики для элементов электрохимических устройств, который включает получение оксидо-органической формовочной массы смешиванием оксидного...
Тип: Изобретение
Номер охранного документа: 0002522492
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.dec5

Чувствительный элемент электрохимического датчика монооксида углерода в газовых смесях

Изобретение может быть использовано для измерения концентрации монооксида углерода в воздухе и в инертном газе. Чувствительный элемент электрохимического датчика монооксида углерода в газовых смесях выполнен в виде таблетки из твердого оксидного электролита, на одну из поверхностей таблетки...
Тип: Изобретение
Номер охранного документа: 0002522815
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df2e

Электролизер для тонкослойного электролитического рафинирования металлического свинца

Изобретение относится к тонкослойному рафинированию легкоплавких цветных металлов, в частности сортового свинца. Электролизер для тонкослойного электролитического рафинирования металлического свинца содержит вертикально помещенную в корпус электролизера пористую керамическую диафрагму,...
Тип: Изобретение
Номер охранного документа: 0002522920
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e233

Способ получения твердооксидного топливного элемента с двухслойным несущим катодом

Изобретение относится к области электротехники, а именно к способу получения твердооксидного топливного элемента с двухслойным несущим катодом, который включает формование электродного и коллекторного слоев катода, их спекание, при этом на электродный слой катода наносят и припекают слой...
Тип: Изобретение
Номер охранного документа: 0002523693
Дата охранного документа: 20.07.2014
20.08.2014
№216.012.e957

Способ получения нановискерных структур оксидных вольфрамовых бронз на угольном материале

Изобретение относится к способу получения нановискерных структур оксидных вольфрамовых бронз на угольном материале, в котором электролиз ведут в импульсном потенциостатическом режиме при перенапряжении 300 мВ в расплаве, содержащем 30 мол. % KWO, 25 мол. % LiWO и 45 мол. % WO, с использованием...
Тип: Изобретение
Номер охранного документа: 0002525543
Дата охранного документа: 20.08.2014
Показаны записи 11-20 из 58.
10.03.2016
№216.014.bf06

Способ тонкослойного электролитического получения свинца

Изобретение относится к способу получения свинца. Способ включает электролиз в расплаве галогенидов солей с использованием жидкометаллических катода и анода из чернового свинца. При этом электролиз ведут с использованием пропитанной расплавом галогенидов солей керамической диафрагмы,...
Тип: Изобретение
Номер охранного документа: 0002576409
Дата охранного документа: 10.03.2016
27.03.2016
№216.014.dd29

Электрохимический способ получения сложных гибридных каталитических систем на основе модифицированного углерода, содержащих на поверхности оксидные вольфрамовые бронзы

Изобретение относится к электрохимическому способу получения сложных гибридных каталитических систем на основе модифицированного углерода, содержащих на поверхности оксидные вольфрамовые бронзы, в котором каталитические системы получают из расплава 30 мол.% KWO, 25 мол.% LiWO и 45 мол.% WO в...
Тип: Изобретение
Номер охранного документа: 0002579119
Дата охранного документа: 27.03.2016
10.08.2016
№216.015.5626

Способ получения лигатуры алюминий-скандий

Изобретение относится к области металлургии цветных металлов и может быть использовано для получения лигатуры алюминий-скандий. Способ включает приготовление и расплавление смеси, содержащей фториды алюминия, фториды натрия и алюминий, подачу оксида скандия, алюмотермическое восстановление...
Тип: Изобретение
Номер охранного документа: 0002593246
Дата охранного документа: 10.08.2016
13.01.2017
№217.015.79b0

Электролитический способ непрерывного получения алюминиевого сплава со скандием

Изобретение относится к области металлургии цветных металлов, в частности к получению сплава алюминия с редкоземельными металлами, и может быть использовано для получения алюминиевого сплава с 0,2-0,4 мас. % скандия в условиях промышленного производства алюминия. Способ электролитического...
Тип: Изобретение
Номер охранного документа: 0002599312
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7a9b

Способ электрохимического получения порошка иридия с удельной поверхностью более 5 м/г

Изобретение относится к электрохимическому получению порошкового иридия с высокой удельной поверхностью, который может быть использован в устройствах катализа горения многокомпонентных топлив при температурах до 2100°С без изменения химического состава и потери формы. Электролиз ведут в...
Тип: Изобретение
Номер охранного документа: 0002600305
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.86ff

Способ электролитического алитирования изделий из низкоуглеродистой стали

Изобретение относится к области гальванотехники и может быть использовано для нанесения защитного покрытия на изделия из низкоуглеродистой стали, которые могут эксплуатироваться при высоких температурах. Способ включает электролиз галогенидного алюминийсодержащего расплава при использовании...
Тип: Изобретение
Номер охранного документа: 0002603744
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.90cc

Способ переработки нитридного отработавшего ядерного топлива в солевых расплавах

Изобретение относится к способам переработки нитридного отработавшего ядерного топлива (ОЯТ). Способ переработки нитридного отработавшего ядерного топлива в солевых расплавах включает катодное восстановление ионов урана, подготовку электролита в аппарате для переработки нитридного...
Тип: Изобретение
Номер охранного документа: 0002603844
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.9b31

Способ получения лигатурного сплава алюминий-бор

Изобретение относится к получению лигатурного сплава на основе алюминия, который может быть использован для очистки алюминия, получаемого электролизом, от переходных элементов. Способ получения лигатурного сплава алюминий-бор включает алюмотермическое восстановление борсодержащего компонента в...
Тип: Изобретение
Номер охранного документа: 0002610182
Дата охранного документа: 08.02.2017
25.08.2017
№217.015.a7dd

Способ обработки проволоки для катализатора, выполненной из металла платиновой группы

Изобретение относится к области электрохимической обработки металлов и может быть использовано при изготовлении катализаторов химических реакций. Способ обработки проволоки для катализатора, выполненной из металла платиновой группы, осуществляют переменным током в водном растворе минеральной...
Тип: Изобретение
Номер охранного документа: 0002611463
Дата охранного документа: 22.02.2017
26.08.2017
№217.015.e3cc

Система видеонаблюдения с транспортного средства, находящегося в движении

Система видеонаблюдения с транспортного средства (ТС) 1, в которой видеонаблюдение осуществляют с нескольких ТС, двигающихся по заданным траекториям. Каждое ТС оборудовано видеокамерой 2, подключенной через плату видеоввода 3 к компьютеру 4, имеющему приемно-передающее устройство (ППУ) 5,...
Тип: Изобретение
Номер охранного документа: 0002626251
Дата охранного документа: 25.07.2017
+ добавить свой РИД