×
23.02.2020
220.018.0586

СПОСОБ ОЦЕНКИ АГРЕГАЦИИ НАНОЧАСТИЦ В КОЛЛОИДНЫХ РАСТВОРАХ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области исследования и анализа материалов. Предложен способ оценки агрегации наночастиц в коллоидных растворах. Способ включает направление лазерного излучения в кювету с исследуемым раствором, фокусировку в объеме внутри раствора, сбор рассеянного излучения и направление его на фотоприемное устройство. По зависимости интенсивности рассеянного излучения от времени вычисляют автокорреляционные функции (АКФ) интенсивности рассеянного излучения у исходного образа и у образцов в процессе агрегации. Для оценки агрегации наночастиц в обладающих высокой степенью полидисперсности растворах вычисляют интеграл от нормированной АКФ после вычитания из нее базовой линии в определяемых размерами анализируемых наночастиц пределах, сравнивают его значения с полученным для раствора до начала агрегации значением и по отношению разности полученных значений к значению интеграла до агрегации судят о степени прошедшей агрегации наночастиц. Изобретение обеспечивает повышении чувствительности способа и возможность его использования для полидисперсных систем при простом и надежном алгоритме обработки результатов измерений. 3 ил., 1 табл.
Реферат Свернуть Развернуть

Изобретение относится к нанотехнологии, а именно к способам характеризации наночастиц в коллоидных растворах.

Задача, решаемая изобретением - обеспечить контроль агрегации наночастиц в коллоидных системах с различной степенью полидисперсности с возможностью осуществлять измерения в реальном времени.

При синтезе наночастиц и многих их приложениях важно контролировать их агрегацию (коагуляцию), т.е. объединение в агрегаты, состоящие из нескольких частиц. В тех случаях, когда необходимо использовать одиночные наночастицы, процессы агрегации являются нежелательными. Коагуляцию стремятся избежать при синтезе и хранении наночастиц, а в тех случаях, когда она все же происходит, прибегают к дезагрегации в ультразвуковых ваннах или с помощью стержневого ультразвукового диспергатора. С другой стороны, в настоящее время разрабатываются оптические наносенсорные системы, принцип действия которых основан на специфической агрегации наночастиц, вызываемой аналитом, присутствующим в коллоидной системе. Во всех упомянутых случаях возникает необходимость в неразрушающем контроле процессов агрегации наночастиц в жидких средах, в том числе в реальном времени.

Из уровня техники известены оптические способы контроля агрегации наночастиц - с помощью абсорбционной спектрофотометрии, статического или динамического рассеяния света. (см. Dan Chicea Monitoring nanoparticle aggregation by optical procedures AIP Conference Proceedings, 2013, V 1564, P.P. 84-89).

Известный из уровня техники способ контроля агрегации наночастиц с помощью абсорбционной спектрофотометрии может быть осуществлен по спектрам поглощения в области поверхностного плазмонного резонанса - ППР (см. патент US 2009/0148863, J Krajczewski et al, Plasmonic nanoparticles in chemical analysis, RSC advances, 2017, V. 7, P.P. 17559-17576). Однако в жидкости спектры ППР могут наблюдаться только у наночастиц из нескольких металлов (золота, серебра, платины, меди), для наночастиц из других материалов этот метод неприменим. Известный из уровня техники метод статического рассеяния света применим лишь в ограниченном диапазоне размеров наночастиц, и во многих случаях не допускает однозначной интерпретации результатов.

Наиболее близким техническим решением к предлагаемому способу является способ контроля агрегации наночастиц, основанный на измерении их размеров с помощью динамического рассеяния света (ДРС). ДРС позволяет измерять размеры в диапазоне от 1 до 6 нм независимо от материала наночастицы и по изменениям размера судить об агрегации наночастиц (см. патент US 8883094, кл. G01N 15/02, опубл. 11.11.2010). Способ контроля агрегации, основанный на ДРС, предполагает следующую последовательность операций:

- В кювету с исследуемым раствором направляют линейно поляризованное лазерное излучение и фокусируют его в малом объеме внутри жидкости;

- Собирают излучение, рассеянное этим объемом в некотором телесном угле, поляризация которого совпадает с поляризацией падающего излучения и направляют его на фотоприемное устройство;

- По зависимости интенсивности рассеянного излучения от времени вычисляют автокорреляционные функции (АКФ) интенсивности рассеянного излучения;

- По вычисленным АКФ определяют коэффициент трансляционной диффузии наночастиц в жидкости Dtrans, а по его значению оценивают гидродинамический радиус частицы RH по зависимости интенсивности рассеянного излучения от времени вычисляют автокорреляционные функции (АКФ) интенсивности рассеянного излучения, а по его значению оценивают гидродинамический радиус частицы RH с помощью формулы Сткоса-Эйнштейна

где kB - постоянная Больцмана, Т - абсолютная температура, η - динамическая вязкость жидкости

- По изменению RH по сравнению со значением для исходного раствора судят о произошедшей агрегации наночастиц.

Технической проблемой являются следующие недостатки изложенного выше способа:

- Недостаточная чувствительность к агрегации частиц, особенно в тех случаях, когда образуется относительно небольшое число агрегатов относительно общего числа наночастиц, находящихся в коллоидном растворе. В этом случае изменение гидродинамического радиуса оказывается недостаточным для того, чтобы быть надежно зафиксированным по коэффициенту трансляционной диффузии.

- Малая информативность среднего гидродинамического диаметра для полидисперсных систем. Возможной альтернативой при исследовании агрегации частиц в таких системах могло бы стать сравнение не средних значений гидродинамического диаметра, а распределений наночастиц по значениям этого диаметра, которые могут быть восстановлены по измеренным АКФ путем решения обратной задачи. Такое восстановление требует достаточно сложных вычислений, не обеспечивая при этом получения надежных и однозначных результатов.

Цели предлагаемого изобретения заключаются в преодолении указанных недостатков, т.е. в повышении чувствительности метода, обеспечении возможности его использования для полидисперсных систем при простом и надежном алгоритме обработки результатов измерений.

Эти цели достигаются за счет следующих технических решений: Использование для оценки агрегации наночастиц в растворе уменьшения коэффициента ротационной диффузии вместо гидродинамического радиуса, определяемого по коэффициенту трансляционной диффузии. Данное решение обосновано тем, что коэффициент ротационной диффузии гораздо сильнее зависит от размеров наночастиц, чем коэффициент трансляционной диффузии, по которому вычисляется гидродинамический радиус. Это ясно из сравнения формул для Dtrans и Drot

Из формулы (2) видно, что коэффициент трансляционной диффузии убывает обратно пропорционально первой степени радиуса, а коэффициент ротационной диффузии - обратно пропорционально его третьей степени.

Оценка изменений коэффициента ротационной диффузии без решения обратной задачи, а по интегральным значениям АКФ рассеянного излучения, направление поляризации которого перпендикулярно направлению поляризации падающего излучения или составляет с ним угол, близкий к 90°. АКФ рассеянного излучения с различающимися таким образом направлениями поляризации падающего и рассеянного излучения значительно более чувствительны к значениям коэффициента трансляционной диффузии, чем АКФ для совпадающих направлений поляризации. (см. А.Д. Левин и др. Исследование геометрических параметров несферических наночастиц методом частично деполяризованного динамического рассеяния света. Российские нанотехнологии. - 2015. - Т. 10. - №5-6. - С. 54-59).

Интегральные значения АКФ с различающимися указанным выше образом направлениями поляризации падающего и рассеянного излучения весьма чувствительны к изменениям коэффициента ротационной диффузии. (А.Д. Левин и др. Интегральная оценка эффектов агрегации наночастиц в растворах по автокорреляционным функциям интенсивности рассеянного излучения, Измерительная техника, 2018, №12, - С. 13-16). Интегральные значения АКФ вычисляются по формуле

где, GVH - АКФ рассеянного излучения, направление поляризации которого перпендикулярно направлению поляризации падающего излучения, τ - время задержки (аргумент АКФ), GVH(0) - базовая линия АКФ, т.е. значение АКФ при τ=0. Перед интегрированием производится вычитание базовой линии АКФ и нормирование на базовую линию. В качестве пределов интегрирования выбирается интервал τ1<τ<τ2 времен задержки, при которых имеются значимые различия между АКФ исследуемого раствора и того же раствора до начала агрегации Этот критерий может быть выражен с помощью неравенства

В качестве показателя (индекса) агрегации наночастиц ε используется нормированная разность значений интеграла (3) для раствора после агрегации Iагр и исходного раствора Iисх

Согласно предложенному способу, выполняют следующую последовательность операций:

1. В кювету с исходным раствором (до начала агрегации) направляют линейно поляризованное лазерное излучение и фокусируют его в малом объеме внутри жидкости;

2. Собирают излучение, рассеянное этим объемом излучение, поляризация которого перпендикулярна поляризации возбуждающего излучения или составляет с ним угол, близкий к 90° (в интервале от 75° до 90°;

3. По зависимости интенсивности рассеянного излучения от времени вычисляют АКФ интенсивности рассеянного излучения GVH(τ);

4. Повторяют операции по 1-3 для кюветы с раствором, прошедшим агрегацию.

5. С помощью критерия (4) определяют значения времен задержки τ1 и τ2, в пределах которых необходимо выполнить интегрирование АКФ; измеренных по 1-4.

6. По формуле (3) вычисляют интегральные значения для АКФ, измеренных для исходного образца и образца, прошедшего агрегацию.

7. По формуле (5) вычисляют показатель (индекс) агрегации наночастиц ε.

Пример реализации

Предлагаемый способ был реализован для оценки агрегации золотых наночастиц, используемых в качестве зондов в сенсорной системе для детекции молекул простат-специфического антигена (ПСА). В этой сенсорной системе используются золотые наночастицы сферической формы, на поверхности которых закреплены молекулы-рецепторы, способные устойчиво связываться с молекулами ПСА. Таким образом, присутствие в растворе молекул ПСА способствует агрегации наночастиц и по степени агрегации можно судить об их концентрации в растворе.

Способ был реализован путем выполнения следующих операций

Подготовили коллоидный раствор, содержащий функционализированные золотые наночастицы. На поверхности каждой частицы были закреплены молекулы - рецепторы, способные образовывать химическую связь с молекулами ПСА. Помещали приготовленный коллоидный раствор в кювету.

В приборе динамического рассеянии света направляли на кювету с образцом через зеркала линейно поляризованное излучение лазера и с помощью линзы фокусировали это излучение в центре кюветы (фиг. 1).

С помощью диафрагмы и линзы собирали излучение, рассеянное из центра кюветы с образцом под углом рассеяния 90 градусов и с помощью призмы Глана-Томпсона выделяли из него компоненту, направление поляризации которой составляет 80° с направлением поляризации излучения лазера. Направляли выделенное излучение на фотоприемник. Схема измерений приведена на фиг. 1, где 1 - лазер, 2, 3 - зеркало, 4 - линза, 5 - кювета с образцом, 6 - диафрагма, 7 - линза, 8 - призма Глана-Томпсона, 9 - фотоприемник (модуль счета фотонов).

По измеренной зависимости интенсивности рассеянного излучения от времени вычисляли АКФ

После измерения добавляли в коллоидные растворы молекулы ПСА в концентрациях 7,5, 15 и 30 нг/мл, проводя каждый раз измерение интенсивности компоненты рассеянного излучения по 5.3, и вычисляя соответствующую АКФ. Для определенных таким образом АКФ произвести вычитание базовой линии и нормировку на базовую линию. Пример АКФ, соответствующих исходному раствору и разным концентрациям ПСА, приведен на фиг. 2.

Для измеренных АКФ оценивали пределы интегрирования τ1 и τ2 по критерию (4). В результате оценки получено τ1=3 мкс, τ3=150 мкс. Для измеренных АКФ вычислили интегральные значения по формуле (3).

Для всех исследованных концентраций вычислить индекс агрегации ε по формуле (5). Вычисленные для каждого значения концентрации ПСА значения индекса агрегации приведены в таблице 1, а на графике фиг. 3 показана зависимость индекса агрегации от концентрации.

Результаты, приведенные в таблице 1 и фиг. 3, показывают хорошую корреляцию между концентрацией ПСА и определенным с помощью предлагаемого метода индексом агрегации. Поскольку, как указывалось выше, присутствие в растворе молекул ПСА способствует агрегации наночастиц, продемонстрированная зависимость свидетельствует о достоверности предложенного метода. Данные таблицы 1 иллюстрируют высокую чувствительность предложенного метода, в частности видно, что при изменении концентрации в 2 раза, с 7,5 до 15 нг/мл, гидродинамический диаметр возрастает менее, чем на 4%, а индекс агрегации возрастает в 3,9 раза.

Таким образом, предлагаемый способ обладает следующими преимуществами:

- более высокой чувствительностью, необходимой для обнаружения незначительной агрегации наночастиц, особенно важной для оптических наносенсоров;

- применимостью к взвесям наночастиц с различной полидисперсностью;

- простым алгоритмом обработки результатов измерений, не требующим решения обратной задачи, сопряженного со сложными вычислениями.


СПОСОБ ОЦЕНКИ АГРЕГАЦИИ НАНОЧАСТИЦ В КОЛЛОИДНЫХ РАСТВОРАХ
СПОСОБ ОЦЕНКИ АГРЕГАЦИИ НАНОЧАСТИЦ В КОЛЛОИДНЫХ РАСТВОРАХ
СПОСОБ ОЦЕНКИ АГРЕГАЦИИ НАНОЧАСТИЦ В КОЛЛОИДНЫХ РАСТВОРАХ
СПОСОБ ОЦЕНКИ АГРЕГАЦИИ НАНОЧАСТИЦ В КОЛЛОИДНЫХ РАСТВОРАХ
СПОСОБ ОЦЕНКИ АГРЕГАЦИИ НАНОЧАСТИЦ В КОЛЛОИДНЫХ РАСТВОРАХ
СПОСОБ ОЦЕНКИ АГРЕГАЦИИ НАНОЧАСТИЦ В КОЛЛОИДНЫХ РАСТВОРАХ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 12.
09.08.2018
№218.016.7a73

Измеритель мощности лазерного излучения

Изобретение относится к области оптических измерений, а именно к энергетической фотометрии, и может быть использовано для проведения измерений больших уровней средней мощности коллимированного лазерного излучения. Измеритель мощности лазерного излучения содержит поглощающую полость с входным...
Тип: Изобретение
Номер охранного документа: 0002663544
Дата охранного документа: 07.08.2018
18.01.2019
№219.016.b162

Установка для измерения микрорельефа поверхности с использованием метода фазовых шагов

Изобретение относится к области оптико-электронных измерительных приборов и предназначено для получения информации о двумерном распределении высот микрорельефа поверхностей, которые применяются в оптическом приборостроении, микроэлектронике и материаловедении. Установка для измерения...
Тип: Изобретение
Номер охранного документа: 0002677239
Дата охранного документа: 16.01.2019
22.01.2019
№219.016.b2a8

Способ измерения концентрации аналита в плазме крови

Изобретение относится к области исследования и анализа материалов, а именно к способам измерения параметров наночастиц, взвешенных в жидкости, оптическими методами, и может быть использовано для определения концентрации аналита в плазме крови. Способ состоит из подготовки исходного коллоидного...
Тип: Изобретение
Номер охранного документа: 0002677703
Дата охранного документа: 21.01.2019
11.03.2019
№219.016.dbed

Устройство для прецизионного измерения временных характеристик импульсного оптического излучения

Изобретение относится к области изучения оптического импульсного излучения, в частности к измерению временных параметров оптических импульсов. Источниками импульсного излучения могут быть любые быстропротекающие процессы естественного или искусственного происхождения, сопровождающиеся световой...
Тип: Изобретение
Номер охранного документа: 0002452926
Дата охранного документа: 10.06.2012
11.04.2019
№219.017.0b2d

Способ формирования лазерного излучения эталонной мощности

Изобретение относится к области энергетической фотометрии и касается способа формирования лазерного излучения эталонной мощности. Способ включает в себя ослабление мощности лазерного излучения от выбранного источника с помощью основного вращающегося механического ослабителя из поглощающего...
Тип: Изобретение
Номер охранного документа: 0002684431
Дата охранного документа: 09.04.2019
14.05.2019
№219.017.518f

Способ калибровки/поверки средств измерения мощности лазерного излучения

Изобретение относится к фотометрии, а именно к способам калибровки/поверки средств измерений большой мощности лазерного излучения, и может быть использовано в метрологических целях. Способ калибровки/поверки средств измерений мощности лазерного излучения заключается в том, что исходный пучок...
Тип: Изобретение
Номер охранного документа: 0002687303
Дата охранного документа: 13.05.2019
09.06.2019
№219.017.7689

Эталонное устройство для передачи размера единицы средней мощности оптического излучения, поверки и калибровки средств измерений средней мощности оптического излучения, оптических аттенюаторов и источников оптического излучения в волоконно-оптических системах передачи

Устройство для повышения точности поверки и калибровки содержит стабилизированный источник лазерного излучения с выходным волоконно-оптическим (ВО) разъемом, регулируемый оптический аттенюатор с входным и выходным ВО разъемами, эталонный ваттметр со входньм оптическим разъемом, измерительный...
Тип: Изобретение
Номер охранного документа: 0002271522
Дата охранного документа: 10.03.2006
01.09.2019
№219.017.c59c

Устройство измерения коэффициента поглощения образца

Изобретение относится к измерительной технике, а именно к устройствам для измерения коэффициента поглощения образца, и может быть использовано в ходе исследования оптических характеристик материалов и покрытий, в том числе отражательной и поглощательной способности, их зависимости от угла...
Тип: Изобретение
Номер охранного документа: 0002698520
Дата охранного документа: 28.08.2019
02.10.2019
№219.017.d115

Установка для производства оптических микрорезонаторов

Изобретение относится к установкам для производства оптических микрорезонаторов. Техническим результатом является повышение качества микрорезонаторов. Установка для производства оптических микрорезонаторов содержит механическую подвижку с держателем заготовки оптического волокна и устройство...
Тип: Изобретение
Номер охранного документа: 0002700129
Дата охранного документа: 12.09.2019
05.02.2020
№220.017.fe67

Измеритель мощности лазерного излучения

Изобретение относится к области оптических измерений, а именно к энергетической фотометрии, и может быть использовано для дискретных измерений больших уровней мощности широких пучков лазерного излучения. Измеритель мощности лазерного излучения содержит медный стержневой приемный элемент,...
Тип: Изобретение
Номер охранного документа: 0002713055
Дата охранного документа: 03.02.2020
Показаны записи 1-6 из 6.
10.07.2015
№216.013.60a8

Способ измерения геометрических параметров несферических частиц в жидкости по деполяризованному динамическому рассеянию света и устройство для его осуществления

Изобретение относится к измерительной технике, а именно к оптическим методам измерения параметров несферических дисперсных частиц, взвешенных в жидкости. Способ заключается в измерении зависимостей интенсивности рассеянного излучения от времени при нескольких положениях поляризационного...
Тип: Изобретение
Номер охранного документа: 0002556285
Дата охранного документа: 10.07.2015
25.08.2017
№217.015.af08

Способ оптического измерения счетной концентрации дисперсных частиц в жидких средах и устройство для его осуществления

Изобретение относится к измерительной технике, в частности к оптическим методам измерения концентрации дисперсных частиц, взвешенных в жидкости. Способ оптического измерения счетной концентрации частиц в жидких средах включает измерение среднего гидродинамического диаметра частиц методом...
Тип: Изобретение
Номер охранного документа: 0002610942
Дата охранного документа: 17.02.2017
19.01.2018
№218.016.037b

Способ определения размеров наночастиц, добавленных в исходный коллоидный раствор

Изобретение относится к области исследования и анализа материалов. Способ определения размеров наночастиц, добавленных в исходный коллоидный раствор, включает облучение раствора с добавленными наночастицами лазерным излучением. Измерение текущей интенсивности рассеянного излучения в течение...
Тип: Изобретение
Номер охранного документа: 0002630447
Дата охранного документа: 07.09.2017
22.01.2019
№219.016.b2a8

Способ измерения концентрации аналита в плазме крови

Изобретение относится к области исследования и анализа материалов, а именно к способам измерения параметров наночастиц, взвешенных в жидкости, оптическими методами, и может быть использовано для определения концентрации аналита в плазме крови. Способ состоит из подготовки исходного коллоидного...
Тип: Изобретение
Номер охранного документа: 0002677703
Дата охранного документа: 21.01.2019
11.03.2019
№219.016.d88a

Способ оценки размеров наночастиц в жидких средах при анализе их элементного состава

Предложен способ для оценки размеров наночастиц в жидких средах при анализе их элементного состава на атомно-абсорбционном спектрометре с электротермическим атомизатором, способ, при котором жидкую пробу, содержащую коллоидные наночастицы, дозируют в графитовую печь электротермического...
Тип: Изобретение
Номер охранного документа: 0002395796
Дата охранного документа: 27.07.2010
09.06.2019
№219.017.7c74

Способ определения параметров частиц, взвешенных в жидкости, по спектрам малоуглового рассеяния света и устройство для его осуществления

Изобретение относится к прикладной оптике, а именно к оптическим методам определения параметров дисперсных частиц. Способ определения размеров и полидисперсности частиц, взвешенных в жидкости, заключается в измерении спектров малоуглового рассеяния света исследуемого образца с помощью...
Тип: Изобретение
Номер охранного документа: 0002321840
Дата охранного документа: 10.04.2008
+ добавить свой РИД