×
01.02.2020
220.017.fc97

Результат интеллектуальной деятельности: Способ непрерывного ультразвукового приготовления низкотемпературного органического теплоносителя на основе фенилалкана и устройство для его осуществления

Вид РИД

Изобретение

№ охранного документа
0002712456
Дата охранного документа
29.01.2020
Аннотация: Изобретение относится к способу непрерывного ультразвукового приготовления низкотемпературного органического теплоносителя на основе фенилалкана, заключающемуся в том, что ациклический парафин смешивают с фенильным соединением, полученную смесь нагревают, добавляют катализатор алкилирования, алкилируют смесь, выдерживая смесь под воздействием ультразвукового поля, и путем дистилляции выделяют из смеси теплоноситель, отличающемуся тем, что нагрев смеси производят до температуры 150-180°С, частоту ультразвукового поля выбирают в диапазоне 21.3-25.7 кГц, а объемную скорость подачи нагретой смеси в системе, протекающей через реактор алкилирования, выбирают согласно формуле в пределах V/70 < v < V/50, где v - объемная скорость подачи смеси (м/мин), а V - объем реактора (м). 1 ил., 1 пр.

Изобретение относится к области криогенной техники, в частности холодильной техники, и может быть использовано для получения теплоносителей, в том числе, низкотемпературных органических теплоносителей на основе фенилалкана.

Известен способ получения низкотемпературного органического теплоносителя на основе фенилалкана, заключающийся в гидрировании стирола газообразным водородом в присутствии катализатора с последующим выделением целевых продуктов, причем гидрированию подвергают стирол или его производные из ряда α-метилстирол или инден, а в качестве катализатора используют наночастицы никеля, получаемые восстановлением хлорида никеля алюмогидридом лития in situ, при этом процесс проводят при атмосферном давлении водорода в среде тетрагидрофурана при температуре 50-60°С в течение 5-6 ч. (Патент РФ МПК С07С 15/073, B99Z 99/00, С07С 15/085, С07С 13/465, С07С 5/03 №2479563 от 23.03.2012 г.).

Недостатком данного способа является большая длительность процесса получения низкотемпературного органического теплоносителя на основе фенилалкана.

Другим аналогом изобретения является способ получения низкотемпературного органического теплоносителя на основе фенилалкана, заключающийся в том, что ациклический парафин смешивают с фенильным соединением, полученную смесь нагревают, добавляют катализатор алкилирования, алкилируют смесь и выделяют фенилалкан путем дистилляции, при этом нагрев смеси осуществляют при температуре 200°С и выдерживают смесь при данной температуре около 120 минут. Устройство для реализации данного способа содержит емкость для ациклического парафина, емкость для фенильного соединения, смеситель, нагреватель, реактор алкилирования, дистиллятор, емкость сбора фенилалкана, причем выходы емкостей для ациклического парафина и фенильного соединения соединены параллельно и подключены к смесителю, а выходы нагревателя, последовательно подключены к реактору алкилирования, дистиллятору, емкости сбора фенилалкана (Патент РФ №2296734 МПК С07С 2/66, С07С 7/13, С07С 5/333, С10М 105/06 от 25.03.2002 г.).

Недостатком данного технического решения является низкая скорость операции алкилирования, что приводит к значительным энергетическим затратам на производство теплоносителя и увеличивает продолжительность процесса приготовления теплоносителя, уменьшая производительность системы в части выхода продукции (теплоносителя) в единицу времени при непрерывном цикле производства. Заметим, что сам процесс алкилирования в прототипе проводится при температуре около 200°С за 120 минут.

Наиболее близким по технической сущности и достигаемому результату к изобретению (прототипом) является отозванная заявка ОАО «Акустический институт имени академика Н.Н. Андреева» №2014119880/05 (031638) «Способ получения низкотемпературного органического теплоносителя на основе фенилалкана и устройство для его осуществления» от 19.05.2014 г., представляющая собой способ получения низкотемпературного органического теплоносителя на основе фенилалкана, заключающийся в том, что ациклический парафин смешивают с фенильным соединением, полученную смесь нагревают, выдерживают при температуре нагрева, добавляют катализатор алкилирования, алкилируют смесь и выделяют фенилалкан путем дистилляции, отличающийся тем, что на смесь ациклического парафина и фенильного соединения в процессе реакции алкилирования воздействуют ультразвуковыми колебаниями.

А также устройство для получения низкотемпературного органического теплоносителя на основе фенилалкана, содержащее емкость для ациклического парафина, емкость для фенильного соединения, смеситель, нагреватель, реактор алкилирования, дистиллятор, емкость для сбора фенилалкана, причем выходы емкостей для ациклического парафина и фенильного соединения соединены параллельно и подключены последовательно к смесителю, нагревателю, реактору алкилирования, дистиллятору, емкости сбора фенилалкана, отличающееся тем, что оно снабжено ультразвуковым излучателем с волноводом, установленным внутри реактора алкилирования и генератором ультразвуковых колебаний, соединенным с ультразвуковым излучателем.

Одним из недостатков прототипа является низкая эффективность непрерывного цикла операции алкилирования, связанная с тем, что выдержка раствора в нагретом состоянии происходит в нагревателе. Это увеличивает размеры емкости нагревателя и ведет к неоправданному усложнению конструкции системы и замедлению непрерывного процесса производства теплоносителя. Кроме этого, введение в реактор алкилирования волновода, соединенного с генератором ультразвукового поля, предлагаемое в прототипе, является, по существу, лишь постановкой задачи. К тому же, известно, что проведение операции алкилирования в присутствии катализатора, работающего с применением акустического воздействия, обеспечивает некоторое ускорение химической реакции между исходными соединениями и снижение энергии на нагрев (см. Рябишина Л.А. Совершенствование конструкции гидродинамического аппарата для процесса алкилирования. - автореферат диссертации к.т.н., Уфа, 2005 г. 119 с. - D2). Однако, как показывают эксперименты, размеры реагирующих частиц смеси и катализатора, а также структура (толщина) пограничного слоя на поверхности реагирующих частиц, а также требование однородности ультразвукового поля в объеме реактора приводят к уточнению и оптимизации диапазона частот ультразвукового поля, требуемого для снижения энергетических затрат на производство теплоносителя (в работе Л.А. Рябишиной такая оптимизация не рассматривалась).

Техническим результатом изобретения является уменьшение времени приготовления теплоносителя при непрерывном цикле производства за счет ускорения проведения химической реакции между ациклическим парафином и фенильным соединением в присутствии катализатора, выражающееся в увеличении производительности цикла и снижении расхода энергии на нагрев при проведении реакции алкилирования.

Технический результат достигается за счет того, что в известном способе получения низкотемпературного органического теплоносителя на основе фенилалкана (прототипе) ациклический парафин смешивают с фенильным соединением, полученную смесь нагревают, выдерживают при температуре нагрева, добавляют катализатор алкилирования, алкилируют смесь и выделяют фенилалкан путем дистилляции, причем нагрев смеси производят до температуры 150-180°С, а частоту ультразвукового поля выбирают в диапазоне 21.3-25.7 кГц (длина волны в объеме смеси несколько сантиметров), при этом выдержка нагретой смеси, в отличие от прототипа, производится непосредственно в реакторе системы одновременно с воздействием ультразвукового поля, а объемную скорость подачи смеси в системе при непрерывном цикле производства выбирают исходя из того, чтобы суммарное время воздействия ультразвукового поля на частицы алкилируемой смеси составляло в целом не менее 50-70 минут.

При этом в известном устройстве для получения низкотемпературного органического теплоносителя на основе фенилалкана, содержащем емкость для ациклического парафина, емкость для фенильного соединения, смеситель, нагреватель, реактор алкилирования, дистиллятор, емкость сбора фенилалкана, причем выходы емкостей для ациклического парафина и фенильного соединения соединены параллельно и подключены последовательно к смесителю, нагревателю, реактору алкилирования, дистиллятору, емкости сбора фенилалкана, температура в нагревателе поддерживается в пределах 150-180°С, а генератор ультразвуковых колебаний, соединенный с ультразвуковым излучателем, настроен на диапазон частот 21.3-25.7 кГц. При этом объемную скорость смеси, протекающей через реактор алкилирования, выбирают согласно формуле в пределах

V/70<v<V/50

где v объемная скорость подачи смеси (м3/мин), а V объем реактора (м3). Движение смеси и регулирование объемной скорости смеси в системе может обеспечиваться путем подбора диаметра тракта при подаче смеси из емкостей компонент «самотеком» в поле силы тяжести или путем использования специального побудителя расхода смеси (например, насоса). Сущность изобретения поясняется чертежом.

Устройство для непрерывного ультразвукового приготовления низкотемпературного органического теплоносителя на основе фенилалкана содержит емкость для ациклического парафина 1, емкость для фенильного соединения 2, смеситель 3, нагреватель 4, реактор алкилирования 5, волновод с ультразвуковым излучателем 6, ультразвуковой генератор 7, дистиллятор 8, емкость сбора фенилалкана 9. При этом выходы емкостей для ациклического парафина 1 и фенильного соединения 2 соединены параллельно и подключены последовательно смесителю 3, нагревателю 4, реактору алкилирования 5, внутри которого помещен волновод с ультразвуковым излучателем 6, электрически соединенный с генератором ультразвуковых колебаний 7, дистиллятору 8, и емкости сбора фенилалкана 9. Нагрев смеси в нагревателе 4 устройства производят до температуры 150-180°С, частоту ультразвукового поля излучателя 6 с генератором 7 выбирают в диапазоне 21.3-25.7 кГц (длина волны в объеме смеси несколько сантиметров), а объемную скорость подачи смеси в системе выбирают исходя из того, чтобы суммарное время воздействия ультразвукового поля на частицы алкилируемой смеси составляет не менее 50-70 минут. Для этого скорость подачи смеси выбирают с учетом соотношения согласно формуле в пределах

V/70<v<V/50

где v объемная скорость подачи смеси (м3/мин), а V объем реактора (м3).

Способ непрерывного ультразвукового приготовления

низкотемпературного органического теплоносителя реализуется с помощью предлагаемого устройства следующим образом.

Ациклический парафин и фенильное соединение заливают в емкости 1 и 2, соответственно, из которых указанные ингредиенты поступают в смеситель 3. В смесителе 3 компоненты смеси перемешивают и направляют в нагреватель 4, при этом смесь нагревают до температуры 150-180°С, а затем нагретая смесь поступает в реактор алкилирования 5.

К поступающей в реактор алкилирования 5 нагретой смеси, добавляется катализатор алкилирования, а объемная скорость подачи смеси в реактор обеспечивает («самотеком» или под действием дополнительного побудителя расхода) выдержку смеси в реакторе в течение 50-70 минут под действием ультразвукового поля, в результате чего в объеме реактора полностью завершается реакция алкилирования и происходит выделение готового продукта в дистилляторе 7. Готовый продукт поступает в емкость сбора фенилалкана 9.

Ультразвуковые колебания в оптимизированном диапазоне частот вводятся в реактор алкилирования 5, где в выбранном диапазоне частот создается диффузное звуковое поле (распределенное равномерно по внутреннему объему реактора) для обеспечения непрерывности процесса приготовления теплоносителя. Частота достижения диффузного поля в объеме реактора зависит от скорости распространения звука в алкилированной смеси и значения поглощения звука внутренними стенками реактора. В экспериментах нами использовался реактор объема порядка (1-2) м3, что вполне реально для промышленных установок подобного рода. Так что при скорости звука в смеси порядка 1200 м/с и коэффициенте поглощения стенок реактора порядка 0.01, граничная частота достижения диффузности звукового поля в объеме составляла порядка 20 кГц. Эксперименты подтвердили правильность выбора диапазона частот звукового поля в объеме реактора. Колебания подводятся непосредственно к движущемуся объему смеси в реактор алкилирования 5 волноводом, установленным в объеме реактора с ультразвуковым излучателем 6, возбуждаемым от ультразвукового генератора 7. Эксперименты показывают, что под действием ультразвуковых колебаний выбранного диапазона в объеме реактора происходит активная гомогенизация смеси, а также турбулизация и снижение толщины пограничного слоя смеси вблизи частиц катализатора, ускоряющие алкилирование.

При этом в диффузном звуковом поле смешиваемые химические вещества во всем объеме реактора более интенсивно вступают во взаимодействие между собой в присутствие катализатора, что уменьшает время завершения химических реакций и позволяет проводить процесс алкилирования при более низких температурах, чем в отсутствие ультразвуковых колебаний.

В качестве ультразвукового излучателя могут быть использованы стержневые магнитострикционные или пьезоэлектрические излучатели с согласованным по импедансу волноводом. Интенсивное воздействие ультразвуковых колебаний, распределенное равномерно по объему реактора, на исходные ингредиенты при проведении операции алкилирования позволяет обеспечить непрерывность процесса приготовления теплоносителя за счет сокращения времени проведения химической реакции между ациклическим парафином и фенильным соединением в присутствии катализатора, более высокую гомогенизацию смеси и снижение энергии на нагрев смеси перед проведением реакции алкилирования.


Способ непрерывного ультразвукового приготовления низкотемпературного органического теплоносителя на основе фенилалкана и устройство для его осуществления
Источник поступления информации: Роспатент

Показаны записи 1-10 из 18.
25.08.2017
№217.015.bf2e

Способ передачи информации в цифровой системе связи с шумоподобными сигналами

Изобретение относится к области передачи цифровой информации и предназначено для применения в приемных устройствах систем синхронной цифровой связи. Технический результат - повышение помехоустойчивости передачи информации при одновременной передаче нескольких элементарных посылок (ЭП) в одном и...
Тип: Изобретение
Номер охранного документа: 0002617122
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.c1c7

Способ помехоустойчивого кодирования и декодирования подлежащих передаче цифровых данных

Изобретение относится к области передачи цифровой информации и предназначено для применения в кодерах/декодерах, например, систем обмена данными между компьютерами. Технический результат - повышение достоверности передачи цифровых данных. Для этого в способе помехоустойчивого кодирования и...
Тип: Изобретение
Номер охранного документа: 0002617929
Дата охранного документа: 28.04.2017
26.08.2017
№217.015.d569

Способ приема цифрового сообщения в целом в условиях многолучевого распространения

Изобретение относится к области передачи цифровой информации и может быть использовано в приемных устройствах систем синхронной цифровой связи, работающих в условиях наличия межсимвольной интерференции (МСИ) Технический результат - снижение его вычислительной сложности. В способе приема...
Тип: Изобретение
Номер охранного документа: 0002623109
Дата охранного документа: 22.06.2017
29.12.2017
№217.015.f518

Способ приема сигналов в системе цифровой связи с компенсацией помех, обусловленных многолучевой интерференцией

Изобретение относится к области передачи цифровой информации. Технический результат - повышение помехоустойчивости приема сигналов цифровой связи при работе системы связи в условиях наличия многолучевой интерференции. Данный способ предусматривает выполнение следующих операций: по...
Тип: Изобретение
Номер охранного документа: 0002637422
Дата охранного документа: 04.12.2017
20.01.2018
№218.016.1009

Способ передачи информации в системах связи с шумоподобными сигналами

Изобретение относится к области передачи цифровой информации и предназначено для применения в системах цифровой связи с шумоподобными сигналами (ШПС). Технический результат - повышение помехоустойчивости передачи информации. В способе передачи информации в системах связи с ШПС осуществляют, в...
Тип: Изобретение
Номер охранного документа: 0002633614
Дата охранного документа: 16.10.2017
20.01.2018
№218.016.17d1

Способ передачи информации в системе связи с шумоподобными сигналами

Изобретение относится к области передачи цифровой информации и предназначено для применения в системах цифровой связи с шумоподобными сигналами (ШПС). Технический результат - повышение скорости передачи цифровой информации. В способ передачи информации в системе связи с ШПС на передающей...
Тип: Изобретение
Номер охранного документа: 0002635552
Дата охранного документа: 14.11.2017
10.05.2018
№218.016.3893

Способ передачи и приема цифровой информации в целом

Изобретение относится к области передачи цифровой информации и может быть использовано в приемных устройствах систем синхронной цифровой связи. Технический результат - повышение помехоустойчивости передачи. Способ передачи и приема цифровой информации в целом заключается в том, что на...
Тип: Изобретение
Номер охранного документа: 0002646867
Дата охранного документа: 12.03.2018
09.06.2018
№218.016.5b86

Способ определения структуры гидроакустического поля техногенных подводных объектов от вибраций корпуса под действием динамических сил

Изобретение относится к области гидроакустики и может быть использовано для измерения (уточнения) структуры гидроакустического поля (ГАП), в том числе - зависимостей ГАП от угла в пространстве и от расстояния до объекта. Техническим результатом настоящего изобретения является повышение...
Тип: Изобретение
Номер охранного документа: 0002655683
Дата охранного документа: 29.05.2018
09.06.2018
№218.016.5ba0

Способ определения структуры гидроакустического поля техногенных подводных объектов от воздушного шума внутри корпуса

Изобретение относится к области гидроакустики и может быть использовано для измерения структуры гидроакустического поля (ГАП), зависимостей ГАП от угла в пространстве и от расстояния до подводных объектов. Техническим результатом настоящего изобретения является: возможность получения данных о...
Тип: Изобретение
Номер охранного документа: 0002655680
Дата охранного документа: 29.05.2018
03.07.2018
№218.016.69ee

Способ приема цифровой информации при наличии межсимвольной интерференции

Изобретение относится к области передачи цифровой информации. Техническим результатом является повышение помехоустойчивости приема цифровой информации. Способ включает операции: к каждой возможной i-й гипотезе последовательности ЭП принимаемого сообщения формируют соответствующие этим...
Тип: Изобретение
Номер охранного документа: 0002659478
Дата охранного документа: 02.07.2018
Показаны записи 1-10 из 40.
20.02.2013
№216.012.26bf

Устройство для интенсификации процесса слива и налива вязких жидкостей

Изобретение относится к области транспортирования и разгрузки вязких реологических жидкостей и может быть использовано, в том числе, для слива и налива вязких нефтепродуктов, например мазута, битума и др. Устройство включает вибратор, соединенный с электрическим генератором, размещенный на...
Тип: Изобретение
Номер охранного документа: 0002475439
Дата охранного документа: 20.02.2013
27.02.2013
№216.012.2b80

Скважинный акустический излучатель

Изобретение относится к области нефтедобывающей промышленности и может быть использовано для увеличения притока нефти и борьбы с образованием отложений солей в скважинах. Устройство содержит электромеханический вибратор, подключенный к входу вибратора электрический генератор, выполненный с...
Тип: Изобретение
Номер охранного документа: 0002476663
Дата охранного документа: 27.02.2013
10.04.2014
№216.012.b131

Гидроакустическая буксируемая антенна для геофизических работ

Использование: изобретение относится к области гидроакустики и может быть использовано в морях, океанах, пресноводных водоемах в качестве геофизической косы для проведения исследований в обеспечении инженерно-геофизических работ на морском дне. Сущность: гидроакустическая буксируемая антенна...
Тип: Изобретение
Номер охранного документа: 0002511076
Дата охранного документа: 10.04.2014
27.08.2014
№216.012.ee97

Измерительное устройство кориолисова типа

Измерительное устройство кориолисова типа снабжено возбудителем крутильных колебаний, вмонтированным между расходомерными трубками во впускном разъеме, приемником крутильных колебаний, вмонтированным между расходомерными трубками в выпускном разъеме, блоком вычисления передаточной функции...
Тип: Изобретение
Номер охранного документа: 0002526898
Дата охранного документа: 27.08.2014
10.11.2014
№216.013.04ab

Измерительное устройство кориолисова типа

Измерительное устройство кориолисова типа дополнительно снабжено возбудителем крутильных колебаний, приемником крутильных колебаний, блоком вычисления передаточной функции крутильных колебаний с подключенным к его выходу блоком аппроксимации передаточной функции крутильных колебаний, а также...
Тип: Изобретение
Номер охранного документа: 0002532593
Дата охранного документа: 10.11.2014
27.03.2015
№216.013.3528

Устройство для укладки сейсмокос на морское дно для сейсмоакустического мониторинга

Изобретение относится к области гидро- и геоакустики и может быть использовано в морях, океанах, пресноводных водоемах для проведения исследований и мониторинга сейсмоакустической эмиссии на шельфе в обеспечение инженерно-геофизических работ на морском дне. Техническим результатом изобретения...
Тип: Изобретение
Номер охранного документа: 0002545092
Дата охранного документа: 27.03.2015
27.03.2015
№216.013.3639

Донная кабельная антенна для мониторинга сейсмоакустической эмиссии на шельфе

Изобретение относится к области гидро- и геоакустики и может быть использовано в морях, океанах, пресноводных водоемах в качестве донной кабельной антенны для проведения исследований и мониторинга сейсмоакустической эмиссии на шельфе в обеспечение инженерно-геофизических работ на морском дне....
Тип: Изобретение
Номер охранного документа: 0002545365
Дата охранного документа: 27.03.2015
10.11.2015
№216.013.8e5e

Гидроакустическая буксируемая антенна для геофизических работ

Изобретение относится к области гидроакустики и может быть использовано в морях, океанах, пресноводных водоемах в качестве геофизической косы для проведения исследований в обеспечении инженерно-геофизических работ на морском дне. Техническим результатом изобретения является снижение диаметра...
Тип: Изобретение
Номер охранного документа: 0002568055
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8e6e

Гидроакустическая система для позиционирования

Использование: изобретение относится к области геофизической разведки, высокоточной навигации, в частности к области подводной навигации, и может быть использовано для определения географических координат глубоководных буксируемых объектов при проведении морских геолого-геофизических...
Тип: Изобретение
Номер охранного документа: 0002568071
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8e6f

Оптоволоконный интерферометрический датчик статического и динамического давления

Изобретение относится к области измерения статических и динамических давлений на основе использования оптических интерферометрических схем и оптических волокон. Оптоволоконный интерферометрический датчик статического и динамического давления содержит лазерный источник света, входное оптическое...
Тип: Изобретение
Номер охранного документа: 0002568072
Дата охранного документа: 10.11.2015
+ добавить свой РИД