×
22.01.2020
220.017.f86b

Результат интеллектуальной деятельности: СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ ЕМКОСТИ РАСТВОРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электрохимических методов анализа, в частности к анализу растворов на предмет определения суммарной антиоксидантной емкости. Изобретение касается способа определения антиоксидантной емкости раствора с использованием потенциометрического метода, в котором предварительно готовят исходный фосфатный буферный раствор, в который вводят систему, содержащую одновременно окисленную и восстановленную формы металла в составе комплексного соединения K3[Fe(CN)6]/K4[Fe(CN)6], а оценку антиоксидантной емкости проводят по изменению окислительно-восстановительного потенциала раствора, измеренного между рабочим платиновым электродом и хлорид-серебряным электродом сравнения, зарегистрированным до и после введения в исходный раствор анализируемого вещества. Из общей антиоксидантной емкости раствора выделяют восстанавливающую и хелатирующую емкости, при этом восстанавливающую емкость предварительно определяют методом потенциометрического титрования окисленной формой реагента (K3[Fe(CN)6. Хелатирующую емкость определяют как разницу между антиоксидантной емкостью и восстанавливающей емкостью. Технический результат - получение достоверной количественной информации о восстанавливающих и хелатирующих свойствах исследуемых объектов с антиоксидантным действием, а также повышение точности и достоверности получаемых результатов. 3 пр., 6 ил.

Изобретение относится к области электрохимических методов анализа, в частности к анализу растворов на предмет определения суммарной антиоксидантной емкости раствора.

Широко распространены методы определения антиоксидантов с использованием в качестве окислителя различных комплексов железа. Они обладают рядом преимуществ: простота и информативность; доступность разнообразных устойчивых комплексных соединений железа, используемых в качестве модели окислителя. Варьируя лигандное окружение состава комплексного соединения железа существует возможность выбора оптимальной модели окислителя по окислительной способности, по устойчивости комплексных соединений при различных рН, по растворимости. Кроме того, большинство комплексов железа имеет устойчивую гексагональную структуру, подобную структуре гемма в молекуле гемоглобина.

Важнейшим классом антиоксидантов являются полифенольные соединения. Механизм антиоксидантного действия полифенолов заключается как в их восстанавливающей способности, так и в том, что полифенольные соединения могут образовывать стабильные комплексы с ионами металлов переменной валентности (константы устойчивости комплексов железа (III) с некоторыми полифенолами β=1027-1043), и тем самым тормозить окислительные процессы с участием свободных радикалов, образующихся по реакции Фентона (1):

Fe2+ + H2O2 → Fe3+ + OH· + OH (1)

Это свойство является важной хелатирующей составляющей в суммарном антиоксидантном действии. Поэтому очень важно иметь информацию как о восстанавливающей, так и хелатирующей составляющих.

Известен способ определения суммарной антиоксидантной активности (RU 2282851), заключающийся во взаимодействии аналита с реагентом Fe(III)-о-фенантролин, аскорбиновой кислоты с реагентом с последующим фотометрированием и расчетом величины суммарной антиоксидантной активности по отношению к стандартному веществу - аскорбиновой кислоте.

К недостаткам данного способа можно отнести то, что в данном способе не учтена хелатирующая емкость полифенольных соединений, входящих в состав природных объектов, по отношению к ионам Fe3+, в то время как комплекс Fe(III)-о-фенантролин обладает гораздо меньшим значением константы устойчивости (β=1023,5), чем многие комплексы Fe(III) с полифенольными соединениями. Также результаты, получаемые данным способом, выражаются в относительных единицах - эквивалентах аскорбиновой кислоты.

Известен способ определения антиоксидантов в растворе [Международная публикация US 6177260В1], основанный на использовании в качестве окислителя комплекса Fe(III)-трипиридилтриазина, который при взаимодействии с антиоксидантами восстанавливается до Fe(II)-трипиридилтриазина, окрашенного в синий цвет (максимум поглощения при 593 нм).

Недостатком этого способа является то, что измерения проводятся в кислой среде, поэтому метод является нечувствительным к сульфгидрильным SH-содержащим антиоксидантам, таким как глутатион и цистеин и не позволяет оценить суммарное содержание антиоксидантов в исследуемом объекте. В данном способе также не учитывается возможное образование комплексных соединений между полифенолами и ионами железа, т.е. не оценена хелатирующая составляющая. Данный способ, как и выше описанный является спектрофотометрическим, т.е. не позволяет достоверно проводить анализ окрашенных и мутных образцов.

Наиболее близким решением служит потенциометрический способ определения оксидантной/антиоксидантной активности растворов (RU 2235998), заключающийся в том, что предварительно готовят исходный раствор, в который вводят одновременно окисленную и восстановленную формы реагента, а оценку оксидантной/антиоксидантной активности проводят по изменению окислительно-восстановительного потенциала раствора, определенного до и после введения в исходный раствор анализируемого вещества.

К недостаткам данного способа можно отнести то, что в случае использования системы свободных солей Fe3+/Fe2+ не учитывается возможное гидроксообразование, и также не учитывается хелатирующий эффект полифенольных соединений, в то время как при использовании свободных солей реакции комплексообразования полифенолов с ионами Fe3+ будут протекает с более высокой долей вероятности, чем в предыдущих методах.

Таким образом, общей проблемой существующих способов является получение интегрального параметра об антиоксидантных свойствах исследуемых объектов и отсутствие информации о составляющих этого параметра: хелатирующей и восстанавливающей способности соединений.

Техническим решением настоящего изобретения является получение достоверной количественной информации о восстанавливающей и хелатирующей емкости исследуемых объектов с антиоксидантным действием, а также повышение точности и достоверности получаемых результатов.

Проблема решается тем, что при определении суммарной антиоксидантной емкости растворов предлагается выделять восстанавливающую емкость и хелатирующую емкость. При определении суммарной антиоксидантной емкости в растворе присутствует избыток возможного комплексообразователя - системы Fe(III)/Fe(II) в виде комплексных соединений, поэтому возможно протекание как реакции восстановления железа (III), так и реакции комплексообразования между полифенольными соединениями и Fe(III), вероятность которой зависит от соотношения условных констант устойчивости исходных комплексов железа и полифенольных комплексов железа. Таким образом, при определении суммарной антиоксидантной емкости при взаимодействии с комплексным соединением Fe(III) в растворе, происходит одновременное определение как восстанавливающей, так и хелатирующей емкости по реакциям (2) и (3).

[Fe3+L] + AO = n[Fe2+L] + AOOx (2)

При потенциометрическом титровании анализируемого раствора соединением железа (III), взаимодействие происходит в условиях недостатка комплексообразователя, в связи с этим, более вероятным становится процесс окисления - восстановления и, таким образом, определяется восстанавливающая емкость. Хелатирующая емкость находится по разности между суммарной антиоксидантной емкостью и восстанавливающей емкостью.

Сущность заявляемого способа заключается в том, что определения антиоксидантной емкости раствора с использованием потенциометрического метода проводят по изменению окислительно-восстановительного системы окисленная/восстановленная форма железа в составе комплексного соединения, определенного до и после введения в исходный раствор анализируемого вещества. Антиоксидантную емкость в растворе рассчитывают по формуле:

где АОЕ- антиоксидантная емкость;

Сох - концентрация окисленной формы реагента;

Cred - концентрация восстановленной формы реагента;

где Е - исходный потенциал системы, E1 - потенциал, устанавливающийся в системе после введения пробы, b=2,3RT/nF,

где R - универсальная газовая постоянная, Т - температура, К, n - число электронов, участвующих в окислительно-восстановительной реакции; F - число Фарадея.

Из общей антиоксидантной емкости раствора выделяют восстанавливающую емкость и хелатирующую емкость.

Восстанавливающую емкость предварительно определяют методом потенциометрического титрования окисленной формой реагента и рассчитываются по формуле:

где ВЕ - восстанавливающая емкость, СOx - концентрация окисленной формы реагента, VOx - объем окисленной формы реагента в точке эквивалентности, V - объем раствора анализируемого вещества,

хелатирующая емкость оценивается как разница между антиоксидантной емкостью и восстанавливающей емкостью по формуле:

где ХЕ - хелатирующая емкость.

В качестве реагентов могут быть использованы комплексные соединения Fe(II) и Fe(III): K3[Fe(CN)6], Fe(III)-PHEN, Fe(III)-EDTA, Fe(III)-TPTZ, K4[Fe(CN)6], Fe(II)-PHEN, Fe(II)-EDTA, Fe(II)-TPTZ.

Рабочий электрод может быть изготовлен из платины, золота, стеклоуглерода. Электродом сравнения может служить стандартный хлоридсеребряный электрод.

Указанные отличия существенны. Выделение хелатирующей и восстанавливающей емкости из общей антиоксидантной емкости позволяет получать достоверные данные об антиоксидантных свойствах исследуемых соединений, механизмах их антиоксидантного действия: восстанавливающей и хелатирующей способности.

В настоящее время из патентной и научно-технической литературы неизвестен способ определения интегральной антиоксидантной емкости, позволяющий разделить восстанавливающею и хелатирующую емкость, в заявляемой совокупности признаков.

На фиг. 1 представлена зависимость потенциала от времени при добавлении к системе K3[Fe(CN)6]/K4[Fe(CN)6] пирогаллола.

На фиг. 2 представлена интегральная кривая потенциометрического титрования пирогаллола раствором K3[Fe(CN)6].

На фиг. 3 представлена дифференциальная кривая потенциометрического титрования пирогаллола раствором K3[Fe(CN)6].

На фиг. 4 представлена зависимость потенциала от времени при добавлении к системе K3[Fe(CN)6]/K4[Fe(CN)6] кверцетина.

На фиг. 5 представлена интегральная кривая потенциометрического титрования кверцетина раствором K3[Fe(CN)6].

На фиг. 6 представлена дифференциальная кривая потенциометрического титрования кверцетина раствором K3[Fe(CN)6].

Способ иллюстрируется следующими примерами.

Пример 1

В 10 мл водного раствора, содержащего 0,01М K3[Fe(CN)6] и 0,0001М K4[Fe(CN)6] в фосфатном буферном растворе, опускают измерительный электрод и электрод сравнения. Установившееся значение потенциала (Е), измеряемое с помощью цифрового вольтметра, составляет 335 мВ. В электрохимическую ячейку вносят 0,1 мл 0,01М раствора пирогаллола. Установившееся значение потенциала (Е1) составляет 287 мВ.

Результаты измерений приведены на фиг.1. Антиоксидантную емкость рассчитывают по формуле:

где АОЕ- антиоксидантная емкость;

Сох - концентрация окисленной формы реагента;

Cred - концентрация восстановленной формы реагента;

где Е - исходный потенциал системы, E1 - потенциал, устанавливающийся в системе после введения пробы, b=2,3RT/nF,

где R - универсальная газовая постоянная, Т - температура, К, n - число электронов, участвующих в окислительно-восстановительной реакции; F - число Фарадея.

Расчет показывает, что значение АОЕ составляет 5,17·10-4 М-экв.

В 10 мл водного раствора, содержащего 0,1мМ пирогаллол в фосфатном буферном растворе, опускают измерительный электрод и электрод сравнения. Затем проводят потенциометрическое титрование 0,01М K3[Fe(CN)6]. Результаты измерений интегральной кривой потенциометрического титрования приведены на фиг.2. Полученную кривую дифференцируют по объему титранта K3[Fe(CN)6]. Дифференциальная кривая титрования приведена на фиг.3. Объем добавленного K3[Fe(CN)6] в точке эквивалентности, определенный по максимуму дифференциальной кривой титрования, составляет 3,8 мл.

Восстанавливающую емкость рассчитываются по формуле:

где ВЕ - восстанавливающая емкость, СOx - концентрация K3[Fe(CN)6], VOx - объем K3[Fe(CN)6] в точке эквивалентности, V - объем раствора анализируемого вещества.

Расчет показывает, что значение ВЕ составляет 3,80·10-4 М-экв.

Хелатирующая емкость оценивается как разница между антиоксидантной емкостью и восстанавливающей емкостью по формуле:

где ХЕ - хелатирующая емкость.

Расчет показывает, что значение ХЕ составляет 1,37·10-4 М-экв.

Пример 2

В 10 мл водного раствора, содержащего 0,01М K3[Fe(CN)6] и 0,0001М K4[Fe(CN)6] в фосфатном буферном растворе, опускают измерительный электрод и электрод сравнения. Установившееся значение потенциала (Е), измеряемое с помощью цифрового вольтметра, составляет 338 мВ. В электрохимическую ячейку вносят 0,1 мл 0,01М раствора квернцетина. Установившееся значение потенциала (Е1) составляет 292 мВ.

Результаты измерений приведены на фиг.4. Антиоксидантную емкость рассчитывают по формуле:

где АОЕ- антиоксидантная емкость;

Сох - концентрация окисленной формы реагента;

Cred - концентрация восстановленной формы реагента;

где Е - исходный потенциал системы, E1 - потенциал, устанавливающийся в системе после введения пробы, b=2,3RT/nF,

где R - универсальная газовая постоянная, Т - температура, К, n - число электронов, участвующих в окислительно-восстановительной реакции; F - число Фарадея.

Расчет показывает, что значение АОЕ составляет 4,91·10-4 М-экв.

В 10 мл водного раствора, содержащего 0,1мМ кверцетина в фосфатном буферном растворе, опускают измерительный электрод и электрод сравнения. Затем проводят потенциометрическое титрование 0,01М K3[Fe(CN)6]. Результаты измерений интегральной кривой потенциометрического титрования приведены на фиг.5. Полученную кривую дифференцируют по объему титранта K3[Fe(CN)6]. Дифференциальная кривая титрования приведена на фиг.6. Объем добавленного K3[Fe(CN)6] в точке эквивалентности, определенный по максимуму дифференциальной кривой титрования, составляет 2 мл.

Восстанавливающую емкость рассчитываются по формуле:

где ВЕ - восстанавливающая емкость, СOx - концентрация K3[Fe(CN)6], VOx - объем K3[Fe(CN)6] в точке эквивалентности, V - объем раствора анализируемого вещества.

Расчет показывает, что значение ВЕ составляет 2,00·10-4 М-экв.

Хелатирующая емкость оценивается как разница между антиоксидантной емкостью и восстанавливающей емкостью по формуле:

где ХЕ - хелатирующая емкость.

Расчет показывает, что значение ХЕ составляет 2,91·10-4 М-экв.

Пример 3

В 10 мл водного раствора, содержащего 0,01М [Fe(III)- о-фенантролин] и 0,0001М [Fe(II)-о-фенантролин] в фосфатном буферном растворе, опускают измерительный электрод и электрод сравнения. Установившееся значение потенциала (Е), измеряемое с помощью цифрового вольтметра, составляет 446 мВ. В электрохимическую ячейку вносят 0,1 мл 0,01М раствора аскорбиновой кислоты. Установившееся значение потенциала (Е1) составляет 417 мВ.

Антиоксидантную емкость рассчитывают по формуле:

где АОЕ- антиоксидантная емкость;

Сох - концентрация окисленной формы реагента;

Cred - концентрация восстановленной формы реагента;

где Е - исходный потенциал системы, E1 - потенциал, устанавливающийся в системе после введения пробы, b=2,3RT/nF,

где R - универсальная газовая постоянная, Т - температура, К, n - число электронов, участвующих в окислительно-восстановительной реакции; F - число Фарадея.

Расчет показывает, что значение АОЕ составляет 2,04·10-4 М-экв.

В 10 мл водного раствора, содержащего 0,1мМ аскорбиновую кислоту в фосфатном буферном растворе, опускают измерительный электрод и электрод сравнения. Затем проводят потенциометрическое титрование 0,01М K3[Fe(CN)6]. Полученную кривую дифференцируют по объему титранта K3[Fe(CN)6]. Объем добавленного K3[Fe(CN)6] в точке эквивалентности, определенный по максимуму дифференциальной кривой титрования, составляет 2,0 мл.

Восстанавливающую емкость рассчитываются по формуле:

где ВЕ - восстанавливающая емкость, СOx - концентрация K3[Fe(CN)6], VOx - объем K3[Fe(CN)6] в точке эквивалентности, V - объем раствора анализируемого вещества.

Расчет показывает, что значение ВЕ составляет 2,00·10-4 М-экв.

Хелатирующая емкость оценивается как разница между антиоксидантной емкостью и восстанавливающей емкостью по формуле:

где ХЕ - хелатирующая емкость.

Расчет показывает, что значение ХЕ составляет 0,04·10-4 М-экв. Хелатирующие свойства у аскорбиновой кислоты отсутствуют.

Источник поступления информации: Роспатент

Показаны записи 201-207 из 207.
16.06.2023
№223.018.7a18

Способ обработки заготовки на металлорежущем станке

Изобретение относится к области металлообработки и может быть использовано при настройке токарных, фрезерных и им подобных металлорежущих станков. Способ обработки включает придание исполнительному органу механизма подачи станка поступательного движения с заданной скоростью и шпинделю станка...
Тип: Изобретение
Номер охранного документа: 0002736129
Дата охранного документа: 11.11.2020
16.06.2023
№223.018.7a2f

Способ производства автомобильного трехмаршрутного катализатора

Предложен способ производства автомобильного трехмаршрутного катализатора. Способ содержит стадии приготовления водной суспензии, содержащей композицию на основе оксидов церия и циркония, оксид алюминия, соль модификатора и раствор соли драгоценных металлов; нанесение суспензии на субстрат,...
Тип: Изобретение
Номер охранного документа: 0002738984
Дата охранного документа: 21.12.2020
16.06.2023
№223.018.7b8d

Способ синтеза композиции на основе оксида алюминия и твердого раствора оксидов церия и циркония

Изобретение относится к способам получения композиционных порошковых материалов гидрометаллургическим способом, а именно к композициям на основе стабилизированного оксида алюминия и твердого раствора оксидов церия и циркония, которые могут быть применены как носители каталитически активной фазы...
Тип: Изобретение
Номер охранного документа: 0002755558
Дата охранного документа: 17.09.2021
16.06.2023
№223.018.7c1a

Способ приготовления биметаллических палладий-родиевых катализаторов (варианты)

Изобретение относится к способам (вариантам) получения каталитических композиций, применяемых в качестве трехмаршрутных катализаторов нейтрализации автомобильных выхлопных газов. Первое изобретение относится к способу приготовления биметаллических палладий-родиевых катализаторов, включающему...
Тип: Изобретение
Номер охранного документа: 0002744920
Дата охранного документа: 17.03.2021
19.06.2023
№223.018.81f1

Резец для растачивания сквозных отверстий

Изобретение относится к области машиностроения и предназначено для растачивания сквозных отверстий. Резец для растачивания сквозных отверстий содержит головку с режущим элементом и полую державку. Внутри полой державки размещена вихревая труба в виде сообщающихся с атмосферой диффузора...
Тип: Изобретение
Номер охранного документа: 0002797232
Дата охранного документа: 31.05.2023
19.06.2023
№223.018.8276

Малогабаритный колесотокарный станок для обработки колесных пар локомотивов и вагонов без выкатки

Изобретение относится к области железнодорожного транспорта и может быть использовано для ремонта локомотивов и вагонов. Малогабаритный колесотокарный станок для обработки колесных пар локомотивов и вагонов без выкатки содержит станину, продольные направляющие, суппорт, поперечные направляющие...
Тип: Изобретение
Номер охранного документа: 0002797231
Дата охранного документа: 31.05.2023
19.06.2023
№223.018.828b

Отрезной резец

Изобретение относится к области машиностроения и предназначено для безвибрационной механообработки на металлорежущих станках. Отрезной резец для токарной обработки состоит из головки в виде пластины с режущим элементом и державки со встроенным виброгасителем цилиндрический формы в виде двух...
Тип: Изобретение
Номер охранного документа: 0002797230
Дата охранного документа: 31.05.2023
Показаны записи 11-14 из 14.
25.08.2017
№217.015.b452

Способ количественного определения триазавирина методом вольтамперометрии (варианты)

Изобретение относится к области аналитической химии, в частности к вольтамперометрическому способу определения лекарственного препарата триазавирина. Способ может быть использован для количественного определения указанного соединения в порошке и его лекарственных формах. Изобретение может быть...
Тип: Изобретение
Номер охранного документа: 0002614022
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b595

Способ определения антиоксидантной активности с использованием метода электронно-парамагнитной резонансной спектроскопии

Изобретение относится к области физико-химических методов анализа, в частности к анализу растворов на предмет количественного определения антиоксидантной активности (АОА). Сущность заявляемого способа заключается в том, что определение АОА проводят по разности количества парамагнитных частиц...
Тип: Изобретение
Номер охранного документа: 0002614365
Дата охранного документа: 24.03.2017
25.08.2017
№217.015.c4e3

Способ определения антиоксидантной активности с использованием радикальных инициаторов

Изобретение относится к области физико-химических методов анализа, в частности к анализу растворов на предмет определения антиоксидантной активности. Изобретение может быть использовано в научно-исследовательских лабораториях для изучения антиоксидантных свойств различных природных,...
Тип: Изобретение
Номер охранного документа: 0002618426
Дата охранного документа: 03.05.2017
19.06.2019
№219.017.8a92

Способ неинвазивного потенциометрического определения оксидант/антиоксидантной активности биологических тканей и устройство для его осуществления

Изобретение относится к медицине и описывает способ неинвазивного потенциометрического определения оксидант/антиоксидантной активности биологических тканей, включающий введение исследуемого объекта в контакт с электропроводящей средой, содержащей медиаторную систему и оценку...
Тип: Изобретение
Номер охранного документа: 0002433405
Дата охранного документа: 10.11.2011
+ добавить свой РИД