×
22.01.2020
220.017.f84d

Способ получения сорбента на основе доломита

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способу получения сорбентов на основе природного минерального сырья. Доломит подвергают термообработке при 800-850°С, после чего измельчают до размера частиц не более 50 мкм. Готовят фосфорсодержащий реагент путем смешения нагретой до 30-70°С фосфорной кислоты, титановой соли в виде аммонийтитанилсульфата (NH)TiO(SO)⋅HO или титанилсульфата моногидрата TiOSO⋅HO и фосфата аммония в виде дигидрофосфата аммония NHHPO до обеспечения мольного отношения Ti:P=1:2,0-2,5 и рН 2-3. Проводят разложение доломита фосфорсодержащим реагентом с образованием суспензии. Суспензию фильтруют с отделением твердой фазы, которую промывают водой и сушат с получением сорбента полифазного состава. Изобретение позволяет повысить сорбционную емкость по цезию до 100 мг/г, по стронцию и кобальту до 90 мг/г в широком диапазоне работы сорбента в растворах с рН 3-9. 3 з.п. ф-лы, 5 табл., 5 пр.
Реферат Свернуть Развернуть

Изобретение относится к способу получения сорбента, состоящего из фосфатов титана, кальция и магния, на основе природного минерального сырья и продуктов их переработки, и может быть использовано при очистке жидких отходов от токсичных веществ и радионуклидов.

Существующие способы получения сорбентов на основе доломита не позволяют обеспечить формирование полифазного состава сорбентов, способствующего их эффективному использованию. Для получения сорбентов с улучшенными свойствами необходимо введение дополнительных компонентов, которые при совместном синтезе обеспечивают модифицирование формирующейся твердой фазы и за счет синергизма совместного действия компонентов расширяют диапазон эффективной работы целевого продукта в растворах с различными рН.

Известен способ получения сорбента на основе доломита (см. Николаева М.А., Пименов А.А., Быков Д.Е., Васильев А.В. Доломитовая мука - новый сорбент для очистки нефтезагрязненных сточных вод // Известия Самарского научного центра РАН. 2014. Т. 16, №1(7), С. 1880-1882,), включающий измельчение исходного природного доломита до размера частиц менее 0,071 мм (80% от общей массы) с образованием порошка, рН которого равен 11-12. Суммарное содержание карбонатов кальция и магния CaCO3+MgCO3 - не менее 85% по массе. Полученный сорбент использовали для очистки стоков от нефтепродуктов с исходным содержанием 25 мг/л, фенолов - до 100 мг/л и тяжелых металлов - Fe3+, Mn2+, Cr3+ и Cu2+ с их очень низкой исходной концентрацией в растворе - 1-6⋅10-6 мг/л. Сорбционная емкость по нефтепродуктам составила 0,625 мг/г, по фенолу - 1,35 мг/г, по тяжелым металлам, мг⋅10-3/г: Fe3+ - 73, Mn2+ - 33, Cr3+ - 167 и Cu2+ - 200.

Недостаток способа заключается в том, что получаемый основный сорбент может извлекать катионы тяжелых металлов из растворов в очень незначительном количестве и только в щелочной области рН, поскольку механизм сорбции основан на осаждении извлекаемых катионов в виде гидроксидов.

Известен способ получения сорбента на основе доломита (см. Радько А.И., Иванец А.И., Сахар И.О. и др. Сорбент на основе доломита для извлечения радионуклидов кобальта // Радиохимия. 2011. Т. 53, №6. С. 534-537), включающий термообработку природного доломита при температуре 700-900°С со скоростью нагрева 5°С/мин и последующую выдержку в течение 5 часов. При этом получают гранулированный сорбент состава CaO+MgO с примесью СаСО3, имеющий рН 11,4-12,9, насыпную плотность 0,76-1,14 г/см3, влагопоглощение 5,3-10%. Сорбционная емкость сорбента при извлечении из раствора радионуклида Со60 составляет 0,72-7,7 Бк/г.

К недостаткам способа следует отнести то, что сорбент эффективно работает только в щелочной области рН, поскольку механизм сорбции основан на осаждении извлекаемых катионов в виде гидроксидов. При этом очищаемый раствор загрязняется катионами жесткости. Сорбент обладает минимальной сорбционной способностью по отношению к одновалентным катионам, в частности катиону цезия, в связи с их высокой растворимостью в щелочной среде.

Известен также принятый в качестве прототипа способ получения сорбента на основе доломита (см. Шашкова И.Л., Китикова Н.В., Ратько А.И., Дьяченко А.Г. Синтез гидрофосфатов кальция и магния из природного доломита и исследование их сорбционных свойств // Неорганические материалы. 2000. Т. 36, №8. С. 990-994), включающий измельчение доломита и классификацию измельченного материала с отбором фракции 0,09-0,25 мм. Далее проводят разложение доломита фосфорсодержащим реагентом, в качестве которого используют 10-20% фосфорную кислоту, при отношении массы доломита и объема кислоты Т:VЖ=1:2-20 в течение 2-10 суток при комнатной температуре или в режиме кипения. Полученную суспензию фильтруют с отделением твердой фазы, которую промывают водой и сушат с получением целевого продукта состава CaHPO4⋅2H2O+MgHPO4⋅2H2O. Емкость сорбента из раствора, содержащего 20 г/л свинца, составляет 18-19 мг-экв/г по Pb2+.

Недостаток способа заключается в том, что получаемый сорбент эффективно работает только при очистке концентрированных исходных растворов в кислой среде по механизму «растворение-осаждение», основанному на различной растворимости фосфатов кальция-магния и фосфатов извлекаемых катионов. Катионы цезия плохо осаждаются фосфатами кальция-магния ввиду высокой растворимости образующихся фосфатов цезия, а катионы стронция и кобальта сорбируются недостаточно хорошо.

Изобретение направлено на достижение технического результата, заключающегося в повышении сорбционной емкости сорбента и расширении диапазона эффективной работы сорбента в растворах с различными рН.

Технический результат достигается тем, что в способе получения сорбента на основе доломита, включающем измельчение доломита, разложение измельченного доломита фосфорсодержащим реагентом с образованием суспензии, фильтрование суспензии, отделение твердой фазы, ее промывку и сушку с получением целевого продукта, согласно изобретению, перед измельчением доломит подвергают термообработке при 800-850°С, фосфорсодержащий реагент получают путем смешения нагретой до 30-70°С фосфорной кислоты с концентрацией 5-20% H3PO4, титановой соли и фосфата аммония до обеспечения мольного отношения Ti:P=1:2,0-2,5 и рН=2-3, а разложение термообработанного измельченного доломита ведут при массовом отношении доломита и реагента, равном 1:5-15, в течение 5-10 часов.

Достижению технического результата способствует то, что измельчение доломита проводят до размера частиц не более 50 мкм.

Достижению технического результата способствует также то, что в качестве титановой соли используют аммонийтитанилсульфат (NH4)2TiO(SO4)2⋅H2O или титанилсульфат моногидрат TiOSO4⋅H2O.

Достижению технического результата способствует также и то, что фосфат аммония берут в виде дигидрофосфата аммония NH4H2PO4.

Существенные признаки заявленного изобретения, определяющие объем правовой охраны и достаточные для получения вышеуказанного технического результата, выполняют функции и соотносятся с результатом следующим образом.

Термообработка доломита при 800-850°С обеспечивает удаление из доломита воды и углекислого газа с образованием оксидов кальция и магния. Термообработка при температуре ниже 800°С не обеспечивает полноту преобразования карбонатов кальция и магния в оксиды, что приводит к появлению в сорбенте фаз, снижающих свойства сорбента, а при температуре более 850°С значительно повышается продолжительность измельчения.

Использование нагретой до 30-70°С фосфорной кислоты с концентрацией 5-20% Н3РО4 при смешении с титановой солью и фосфатом аммония способствует получению реакционно активного фосфорсодержащего реагента. При температуре фосфорной кислоты ниже 30°С и концентрации менее 5% получаемый фосфорсодержащий реагент не обеспечивает полное разложение доломита, что снижает свойства конечного продукта. При температуре выше 70°С и концентрации кислоты более 20% фосфорсодержащий реагент имеет повышенную кислотность, что также отрицательно сказывается на свойствах получаемого сорбента.

Смешение фосфорной кислоты, титановой соли и фосфата аммония до обеспечения мольного отношения Ti:P=1:2-2,5 и рН=2-3 при получении фосфорсодержащего реагента стабилизирует его состав, что обеспечивает формирование сорбента для эффективной работы в растворах с различными рН вследствие того, что процесс сорбции этим сорбентом протекает по механизму ионного обмена и осаждения. При содержании фосфора в отношении Ti:P менее 2 и рН более 3 разложение доломита протекает не полностью, что дестабилизирует состав реагента и приводит к снижению свойств конечного продукта, а при содержании фосфора в отношении Ti:P более 2,5 и рН менее 2 получается реагент с повышенной кислотностью, что также снижает свойства конечного продукта.

Разложение доломита фосфорсодержащим реагентом при массовом отношении доломита и реагента, равном 1:5-15, позволяет получать сорбент требуемого полифазного состава. При расходе реагента менее 5 наблюдается снижение сорбционной емкости по отношению к катионам стронция и кобальта, а при более 15 - по отношению к катиону цезия.

Разложение доломита в течение 5-10 часов обеспечивает формирование стабильной структуры фаз, входящих в состав полифазного сорбента, что и обеспечивает высокие сорбционные свойства сорбента. При разложении в течение менее 5 часов нарушается стабильность фазового состава сорбента, а разложение более 10 часов практически не влияет на фазовый состав сорбента.

Совокупность вышеуказанных признаков необходима и достаточна для достижения технического результата изобретения, заключающегося в повышении сорбционной емкости сорбента по отношению к катионам цезия, стронция и кобальта и расширении диапазона эффективной работы сорбента в растворах с различными рН.

Измельчение доломита до размера частиц не более 50 мкм обеспечивает высокую скорость его разложения. При размере частиц более 50 мкм скорость разложения уменьшается.

Использование при получении фосфорсодержащего реагента титановой соли в виде аммонийтитанилсульфата (NH4)2TiO(SO4)2⋅H2O или титанилсульфата моногидрата TiOSO4⋅H2O обеспечивает получение сорбента эффективно работающего в растворах с различными рН.

Использование при получении фосфорсодержащего реагента фосфата аммония в виде дигидрофосфата аммония NH4H2PO4 позволяет сократить расход реагента.

Вышеуказанные частные признаки изобретения позволяют осуществить способ в оптимальном режиме с точки зрения повышения сорбционной емкости сорбента и расширения диапазона эффективной работы сорбента в растворах с различными рН.

Сущность предлагаемого способа и достигаемые результаты более наглядно могут быть проиллюстрированы следующими примерами.

Пример 1. Берут 1 кг доломита состава, мас. %: СаО-30, MgO-20, SiO2-1,1, Fe2O3-0,4, Al2O3-0,5, летучие компоненты в виде воды и углекислого газа - 48. Доломит подвергают термообработке при 800°С, после чего термообработанный доломит массой 520 г измельчают в шаровой мельнице до размера частиц не более 50 мкм. Готовят фосфорсодержащий реагент путем смешения нагретой до 70°С фосфорной кислоты с концентрацией 5% H3PO4, аммонийтитанил-сульфата (NH4)2TiO(SO4)2⋅H2O и дигидрофосфата аммония NH4H2PO4 до обеспечения мольного отношения Ti:P=1:2,5 и рН 2,5. Затем измельченный доломит обрабатывают фосфорсодержащим реагентом при массовом отношении доломита и реагента 1:15 и выдерживают при перемешивании в течение 10 часов с образованием суспензии. Далее суспензию фильтруют с отделением твердой фазы, которую промывают водой и сушат при температуре 60°C с получением сорбента полифазного состава:

Ti(HPO4)2⋅H2O+CaHPO4⋅2H2O+NH4MgPO4⋅6H2O+TiCa(HPO4)3⋅3H2O.

Сорбционная емкость сорбента из растворов с концентрацией 0,5 г/л по извлекаемым катионам приведена в Таблице 1.

Пример 2. Берут 1 кг доломита состава по Примеру 1. Доломит подвергают термообработке при 850°С, после чего термообработанный доломит массой 520 г измельчают в шаровой мельнице до размера частиц не более 50 мкм. Готовят фосфорсодержащий реагент путем смешения нагретой до 60°С фосфорной кислоты с концентрацией 10% H3PO4, аммонийтитанилсульфата (NH4)2TiO(SO4)2⋅H2O и дигидрофосфата аммония NH4H2PO4 до обеспечения мольного отношения Ti:P=1:2,2 и pH 2. Затем измельченный доломит обрабатывают фосфорсодержащим реагентом при массовом отношении доломита и реагента 1:8 и выдерживают при перемешивании в течение 7 часов с образованием суспензии. Далее суспензию фильтруют с отделением твердой фазы, которую промывают водой и сушат при температуре 60°C с получением сорбента полифазного состава:

Ti(HPO4)2⋅H2O+CaHPO4⋅2H2O+NH4MgPO4⋅6H2O+TiCa(HPO4)3⋅3H2O.

Сорбционная емкость сорбента из растворов с концентрацией 0,5 г/л по извлекаемым катионам приведена в Таблице 2.

Пример 3. Берут 1 кг доломита состава по Примеру 1. Доломит подвергают термообработке при 850°С, после чего термообработанный доломит массой 520 г измельчают в шаровой мельнице до размера частиц не более 50 мкм. Готовят фосфорсодержащий реагент путем смешения нагретой до 30°С фосфорной кислоты с концентрацией 20% H3PO4, аммонийтитанилсульфата (NH4)2TiO(SO4)2⋅H2O и дигидрофосфата аммония NH4H2PO4 до обеспечения мольного отношения Ti:P=1:2 и рН 3. Затем измельченный доломит обрабатывают фосфорсодержащим реагентом при массовом отношении доломита и реагента 1:5 и выдерживают при перемешивании в течение 5 часов с образованием суспензии. Далее суспензию фильтруют с отделением твердой фазы, которую промывают водой и сушат при температуре 60°C с получением сорбента полифазного состава:

Ti(HPO4)2⋅H2O+CaHPO4⋅2H2O+NH4MgPO4⋅6H2O+TiCa(HPO4)3⋅3H2O.

Сорбционная емкость сорбента из растворов с концентрацией 0,5 г/л по извлекаемым катионам приведена в Таблице 3.

Пример 4. Берут 1 кг доломита состава по Примеру 1. Доломит подвергают термообработке при 830°С, после чего термообработанный доломит массой 520 г измельчают в шаровой мельнице до размера частиц не более 50 мкм. Готовят фосфорсодержащий реагент путем смешения нагретой до 60°С фосфорной кислоты с концентрацией 10% Н3РО4, титанилсульфата моногидрата TiOSO4⋅H2O и дигидрофосфата аммония NH4H2PO4 до обеспечения мольного отношения Ti:P=1:2,2 и рН 2. Затем измельченный доломит обрабатывают фосфорсодержащим реагентом при массовом отношении доломита и реагента 1:6,5 и выдерживают при перемешивании в течение 7 часов с образованием суспензии. Далее суспензию фильтруют с отделением твердой фазы, которую промывают водой и сушат при температуре 60°С с получением сорбента полифазного состава:

Ti(HPO4)2⋅H2O+CaHPO4⋅2H2O+NH4MgPO4⋅6H2O+TiCa(HPO4)3⋅3H2O.

Сорбционная емкость сорбента из растворов с концентрацией 0,5 г/л по извлекаемым катионам приведена в Таблице 4.

Пример 5 (по прототипу). Берут 1 кг доломита состава по Примеру 1, измельчают в шаровой мельнице и классификацией отделяют фракцию порошка с размером частиц 0,09-0,25 мм. Далее порошок загружают в фосфорную кислоту с концентрацией 10% до достижения отношения массы доломита и объема кислоты Т:VЖ=1:10. Разложение доломита проводят при комнатной температуре в течение 7 суток. Полученную суспензию фильтруют с отделением твердой фазы, которую промывают водой и сушат при 60°С с получением целевого продукта состава: CaHPO4⋅2H2O+MgHPO4⋅2H2O.

Сорбционная емкость сорбента из растворов с концентрацией 0,5 г/л по извлекаемым катионам приведена в Таблице 5.

Из приведенных Примеров видно, что по сравнению с прототипом заявляемый способ позволяет повысить сорбционные свойства получаемого полифазного сорбента. В частности, сорбционная емкость значительно возрастает по цезию до 100 мг/г, а по стронцию и кобальту повышается до 90 мг/г в широком диапазоне эффективной работы сорбента в растворах с рН 3-9. Способ согласно изобретению может быть реализован с применением стандартного оборудования, а полученный продукт использован для очистки ЖРО от радионуклидов цезия, стронция и кобальта, а также для очистки стоков промышленных предприятий от токсичных веществ.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 34.
10.05.2018
№218.016.3bae

Способ получения фосфата титана

Изобретение может быть использовано при получении сорбента для очистки водно-солевых промышленных стоков от радионуклидов и токсичных катионов металлов. Для получения фосфата титана смешивают твердый титанилсульфат аммония с фосфорной кислотой. Полученную смесь выдерживают с формированием и...
Тип: Изобретение
Номер охранного документа: 0002647304
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.414c

Способ получения порошка вентильного металла

Изобретение относится к получению порошка вентильного металла. Способ включает восстановление порошка оксидного соединения вентильного металла парами магния или кальция при нагреве в инертной атмосфере, термообработку продуктов восстановления при температуре 1000-1500°С в течение 0,5-2 часов,...
Тип: Изобретение
Номер охранного документа: 0002649099
Дата охранного документа: 29.03.2018
10.05.2018
№218.016.431e

Способ переработки эвдиалитового концентрата

Изобретение относится к способам переработки эвдиалитового концентрата и может быть использовано для получения соединений циркония, редкоземельных элементов (РЗЭ) и диоксида кремния. Способ включает разложение концентрата серной кислотой, отделение остатка от цирконийсодержащего раствора, его...
Тип: Изобретение
Номер охранного документа: 0002649606
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.4e68

Способ переработки фторсодержащего апатитового концентрата

Изобретение может быть использовано в химической промышленности для получения фосфорной кислоты, концентрата редкоземельных элементов (РЗЭ), карбонатов щелочноземельных металлов и соединений фтора. Фторсодержащий апатитовый концентрат обрабатывают фосфорнокислым раствором в присутствии...
Тип: Изобретение
Номер охранного документа: 0002650923
Дата охранного документа: 18.04.2018
18.05.2018
№218.016.508e

Способ переработки жидких отходов аэс с борным регулированием

Изобретение относится к комплексной переработке сложных по составу жидких борсодержащих отходов АЭС. Способ переработки жидких отходов АЭС с борным регулированием, содержащих соли натрия и калия, включает введение нитрата кальция в боратный раствор с осаждением бората кальция и его отделением...
Тип: Изобретение
Номер охранного документа: 0002652978
Дата охранного документа: 04.05.2018
29.05.2018
№218.016.57e2

Способ извлечения палладия из кислого медьсодержащего раствора

Изобретение относится к извлечению палладия из кислых медьсодержащих растворов. Проводят обработку исходного раствора экстрагентом оксимного типа в виде 20-40 об. % раствора экстракционного реагента на основе кетоксима, альдоксима или их смеси в разбавителе при рН 0,2-2,5 и отношении O:В=1-5:1....
Тип: Изобретение
Номер охранного документа: 0002654818
Дата охранного документа: 22.05.2018
09.06.2018
№218.016.5a59

Способ получения порошка сплава молибдена и вольфрама

Изобретение относится к получению порошка сплава молибдена и вольфрама. Способ включает металлотермическое восстановление их кислородных соединений с образованием реакционной массы, содержащей порошок сплава молибдена и вольфрама, выделение порошка сплава из реакционной массы и водную промывку...
Тип: Изобретение
Номер охранного документа: 0002655560
Дата охранного документа: 28.05.2018
11.06.2018
№218.016.60c0

Способ получения агломерированного танталового порошка

Изобретение относится к получению агломерированного конденсаторного танталового порошка, который может быть использован в производстве различных типов танталовых конденсаторов. Проводят нагрев металлического тантала, его гидрирование в атмосфере водорода в процессе охлаждения со средней...
Тип: Изобретение
Номер охранного документа: 0002657257
Дата охранного документа: 09.06.2018
05.09.2018
№218.016.831b

Способ переработки сфенового концентрата

Изобретение может быть использовано в производстве сорбентов для очистки жидких стоков от тяжелых металлов и радионуклидов, наполнителя для лакокрасочных и строительных материалов. Способ переработки сфенового концентрата включает его измельчение и разложение разбавленной серной кислотой при...
Тип: Изобретение
Номер охранного документа: 0002665759
Дата охранного документа: 04.09.2018
11.10.2018
№218.016.907d

Способ обработки фосфатного концентрата редкоземельных элементов

Изобретение относится к обработке фосфатного концентрата редкоземельных элементов (РЗЭ), получаемого при комплексной переработке апатита, и может быть использовано в химической промышленности для получения нерадиоактивных карбонатного или гидроксидного концентратов РЗЭ. Осуществляют обработку...
Тип: Изобретение
Номер охранного документа: 0002669031
Дата охранного документа: 05.10.2018
Показаны записи 1-10 из 18.
10.06.2013
№216.012.4883

Способ получения титанового дубителя

Изобретение относится к технологии минеральных дубителей и может быть использовано при получении титанового дубителя из титансодержащего сырья, в частности из гидроксида титана. Берут гидроксид титана, содержащий 30-80% TiO, смешивают его с сульфатом аммония при массовом отношении 1:0,05-0,2 в...
Тип: Изобретение
Номер охранного документа: 0002484143
Дата охранного документа: 10.06.2013
27.12.2013
№216.012.90fa

Способ выработки кож

Изобретение относится к кожевенной промышленности и может быть использовано при выработке кож для верха обуви, мебели и салонов автомобилей с применением наноразмерных минеральных дубителей и пигментов. Способ включает пикелевание голья, дубление титаноалюминиевым дубителем с размером частиц не...
Тип: Изобретение
Номер охранного документа: 0002502807
Дата охранного документа: 27.12.2013
20.03.2014
№216.012.ac3f

Способ получения минерального дубителя

Изобретение относится к химической технологии получения титансодержащих продуктов, используемых в качестве минеральных дубителей при выработке кож и меха. Производят смешение сульфатной титанилсодержащей и алюмосодержащей солей и сульфата аммония. В качестве сульфатной титанилсодержащей соли...
Тип: Изобретение
Номер охранного документа: 0002509810
Дата охранного документа: 20.03.2014
20.01.2015
№216.013.1eb6

Способ получения титанокремниевой натрийсодержащей композиции

Изобретение относится к способу получения титанокремниевой натрийсодержащей композиции, включающему смешение титансодержащего и кремнийсодержащего компонентов, добавление раствора гидроксида натрия с получением суспензии, выдержку суспензии в герметичных условиях при повышенной температуре с...
Тип: Изобретение
Номер охранного документа: 0002539303
Дата охранного документа: 20.01.2015
10.11.2015
№216.013.8b7b

Способ получения кристаллического титаносиликата

Изобретение может быть использовано при получении сорбентов для очистки воды от токсичных неорганических веществ. Исходный каркасный титаносиликат Na(Na,H)TiO[SiO]·2HO обрабатывают 0,01-0,4 М раствором соляной кислоты в течение 0,5-2 часов с получением кристаллического слоистого титаносиликата...
Тип: Изобретение
Номер охранного документа: 0002567314
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.90db

Способ получения натрийсодержащего титаносиликата

Изобретение относится к способам получения титаносиликатов, используемых в качестве сорбентов и фотокатализаторов. Берут кислый титансодержащий раствор и осуществляют восстановление 20-40% титана (IV) до титана (III) путем электрохимической обработки. Затем в титансодержащий раствор вводят...
Тип: Изобретение
Номер охранного документа: 0002568699
Дата охранного документа: 20.11.2015
27.12.2015
№216.013.9d52

Способ переработки титансодержащего материала

Изобретение может быть использовано в химической промышленности. Способ переработки титансодержащего материала включает выщелачивание измельченного материала серной кислотой при нагревании с получением суспензии. Затем суспензию фильтруют и отделяют твердый остаток от сернокислого раствора...
Тип: Изобретение
Номер охранного документа: 0002571904
Дата охранного документа: 27.12.2015
27.08.2016
№216.015.4eff

Способ получения фосфата титана

Изобретение может быть использовано в производстве сорбента катионов из водно-солевых растворов. Для получения фосфата титана берут титанилсульфат аммония в твердом виде и вводят его в 10-50% раствор фосфорной кислоты, взятой из расчета обеспечения массового отношения TiO:PO=1:(1,75-2,5)....
Тип: Изобретение
Номер охранного документа: 0002595657
Дата охранного документа: 27.08.2016
13.01.2017
№217.015.7956

Способ переработки ниобийсодержащего фторидного раствора с примесью сурьмы

Изобретение относится к экстракционной технологии извлечения и разделения ниобия и сурьмы и может найти применение при получении высокочистых соединений ниобия. В ниобийсодержащий фторидный раствор с примесью сурьмы вводят фторид аммония до обеспечения суммарной концентрации HF и NHF, равной...
Тип: Изобретение
Номер охранного документа: 0002599463
Дата охранного документа: 10.10.2016
25.08.2017
№217.015.b047

Способ получения диоксида титана

Изобретение относится к технологии получения титансодержащих материалов, а именно функционального диоксида титана, используемого в производстве термо- и светостойких пластмасс, красок, клеев, герметиков. Способ получения диоксида титана включает нагрев сульфата титанила и аммония при...
Тип: Изобретение
Номер охранного документа: 0002613509
Дата охранного документа: 16.03.2017
+ добавить свой РИД