×
11.06.2018
218.016.60c0

Результат интеллектуальной деятельности: Способ получения агломерированного танталового порошка

Вид РИД

Изобретение

Аннотация: Изобретение относится к получению агломерированного конденсаторного танталового порошка, который может быть использован в производстве различных типов танталовых конденсаторов. Проводят нагрев металлического тантала, его гидрирование в атмосфере водорода в процессе охлаждения со средней скоростью 5-20°C/мин с использованием губчатого гидрида титана в качестве источника водорода. Массу губчатого гидрида титана определяют из следующей зависимости: M=k⋅M, где M - масса губчатого гидрида титана, кг, М - масса металлического тантала, кг, k - эмпирический коэффициент, равный 0,15-0,6. Образовавшийся гидрид тантала размалывают, после чего осуществляют классификацию порошка с выделением заданной фракции порошка гидрида тантала. Выделенную фракцию дегидрируют и агломерируют при нагреве в токе инертного газа до температуры не более 1650°C, причем нагрев в диапазоне температур 500-800°C ведут со скоростью 3-10°C/мин. Водород, выделяющийся при дегидрировании, поглощают использованным при гидрировании губчатым гидридом титана и используют в замкнутом цикле. Образовавшийся спек размалывают с получением агломерированного танталового порошка. Обеспечивается сокращение на 10-40% длительности гидрирования металлического тантала и снижение до 3,5 раз содержания примеси углерода в агломерированном танталовом порошке. 6 з.п. ф-лы, 5 пр.

Изобретение относится к области порошковой металлургии, более конкретно к способам получения агломерированного конденсаторного танталового порошка с осколочной формой частиц, который может быть использован в производстве различных типов танталовых конденсаторов.

Танталовые конденсаторные порошки с осколочной формой частиц получают из компактного металла, подвергнутого нагреву в вакууме до температуры 750-800°C и последующему охлаждению до комнатной температуры в атмосфере высокочистого водорода. При этом происходит насыщение металлического тантала водородом с образованием гидрида тантала, обладающего высокой хрупкостью. Гидрированный слиток тантала самопроизвольно разрушается с образованием крупки, которую затем измельчают до заданной крупности. Для удаления водорода измельченный гидрид тантала нагревают в вакууме до температуры 750-850°C. В результате образуется металлический порошок тантала, который можно использовать для производства танталовых конденсаторов. Для получения конденсаторов с высоким удельным зарядом необходимы порошки тантала с большой удельной поверхностью. Однако при большой удельной поверхности порошок имеет пониженную текучесть и повышенное содержание кислорода, что затрудняет проведение технологических операций и ухудшает параметры конденсаторов. В частности, увеличивается ток утечки. Для улучшения текучести танталовый порошок агломерируют путем его термической обработки в вакууме при повышенной температуре, в результате чего происходит спекание частиц. Образовавшийся спек измельчают до заданной крупности и получают агломерированный конденсаторный порошок тантала. Он характеризуется высокой текучестью, однако содержание кислорода в порошке возрастает.

Известен способ получения агломерированного танталового порошка (см. пат. 4141719 США, МПК2 B22F 1/04, 1979), включающий размол гидрированных высокочистых металлических слитков тантала с получением порошка гидрида с определенным размером частиц, термическую обработку полученного порошка при температуре T1 для дегидрирования и первичной агломерации, размол и классификацию дегидрированного и первично агломерированного порошка до крупности менее 200 меш, термическую обработку при температуре T2>T1 для вторичной агломерации размолотого и классифицированного порошка, размол и классификацию полученного спека до крупности менее 35 меш и смешивание полученного агломерированного порошка.

Недостатком данного способа является то, что операции дегидрирования и агломерации порошка проводят раздельно в два этапа. Это приводит к увеличению содержания кислорода в конечном продукте, вследствие чего снижается качество получаемых танталовых порошков и соответственно конденсаторов, а также повышается энергоемкость способа. Кроме того, водород, выделившийся в процессе дегидрирования, не утилизируется для гидрирования.

Известен также принятый в качестве прототипа способ получения агломерированного танталового порошка (см. Технология агломерированных танталовых конденсаторных порошков и их применение / В.М. Орлов, В.В. Сухоруков, В.И. Бочарова и др. // Научные основы химии и технологии переработки комплексного сырья и синтеза на его основе функциональных материалов: Материалы Всерос. науч. конф. с междунар. участием, 8-11 апр. 2008 г. - Апатиты: Изд-во КНЦ РАН, 2008. Ч. 1. С. 254-257), включающий нагрев металлического тантала до 750°C, его гидрирование при охлаждении в атмосфере водорода, источником которого является губчатый гидрид титана, и размол полученной крупки гидрида тантала до получения порошка с насыпной плотностью 3,9-4,5 г/см3. Цикл гидрирования металлического тантала составил 6 часов. Затем производят кислотную обработку порошка для удаления железа, внесенного при размоле, и осуществляют дегидрирование и агломерацию порошка гидрида тантала в токе высокочистого аргона при температуре 1350-1450°C. Выделяющийся водород поглощают титановой губкой и затем используют в замкнутом цикле для получения гидрида тантала. Полученный спек измельчают до крупности менее 315 мкм. Порошок содержит 0,003-0,005% углерода.

Известный способ характеризуется недостаточной интенсивностью процесса гидрирования и относительно высоким содержанием в порошке примеси углерода. Способ не гарантирует нормированное содержание водорода в агломерированном порошке по причине отсутствия критерия соотношения масс металлического тантала и гидрида титана. Способ также не обеспечивает возможность получения широкого диапазона классов конденсаторных порошков. Все это снижает технологичность известного способа и качество получаемых порошков.

Настоящее изобретение направлено на достижение технического результата, заключающегося в повышении технологичности способа и качества получаемых танталовых порошков за счет ускорения гидрирования металлического тантала, уменьшения содержания в нем примеси углерода и повышения выхода агломерированного порошка с нормированным содержанием водорода. Технический результат заключается также в расширении диапазона получаемых классов агломерированного танталового порошка.

Технический результат достигается тем, что в способе получения агломерированного танталового порошка, включающем нагрев металлического тантала, его гидрирование в процессе охлаждения металлического тантала в атмосфере водорода с использованием губчатого гидрида титана в качестве источника водорода, размол образовавшегося гидрида тантала до заданной насыпной плотности порошка, дегидрирование порошка гидрида тантала и агломерацию порошка при повышенной температуре в токе инертного газа с поглощением выделяющегося водорода, который используется в замкнутом цикле, губчатым гидридом титана, применявшимся при гидрировании, и образованием спека, который размалывают с получением агломерированного танталового порошка, согласно изобретению, охлаждение металлического тантала в атмосфере водорода ведут со средней скоростью 5-20°C/мин, после размола гидрида тантала осуществляют классификацию порошка, а дегидрированию и агломерации подвергают выделенную фракцию порошка гидрида тантала при температуре не более 1650°C, причем нагрев порошка в диапазоне температур 500-800°C ведут со скоростью 3-10°C/мин, а массу губчатого гидрида титана выбирают с учетом зависимости:

где MTi - масса губчатого гидрида титана, кг,

МТа - масса металлического тантала, кг,

k - эмпирический коэффициент, k=0,15-0,6.

Достижению технического результата способствует то, что нагрев металлического тантала ведут в вакууме или в атмосфере высокочистого водорода.

Достижению технического результата способствует также то, что размол гидрида тантала производят до обеспечения насыпной плотности порошка 3,8-5,0 г/см3.

Достижению технического результата способствует также и то, что порошок гидрида тантала с насыпной плотностью 3,8-4,2 г/см3 классифицируют с выделением фракции более 3 мкм и агломерируют при температуре 1300-1400°C с получением порошка с удельным зарядом 5500-6500 мкКл/г.

Достижению технического результата способствует и то, что порошок гидрида тантала с насыпной плотностью 4,1-4,6 г/см3 классифицируют с выделением фракции более 5 мкм и агломерируют при температуре 1400-1500°C с получением порошка с удельным зарядом 4500-5500 мкКл/г.

Достижению технического результата способствует также и то, что порошок гидрида тантала с насыпной плотностью 4,5-5,0 г/см3 классифицируют с выделением фракции более 10 мкм и агломерируют при температуре 1500-1650°C с получением порошка с удельным зарядом 3000-4500 мкКл/г.

На достижение технического результата направлено также то, что выделенную фракцию порошка гидрида тантала дополнительно легируют фосфором до обеспечения его содержания 0,005-0,01% с получением порошка с повышенным удельным зарядом.

Существенные признаки заявленного изобретения, определяющие объем правовой охраны и достаточные для получения вышеуказанного технического результата, выполняют функции и соотносятся с результатом следующим образом.

Охлаждение металлического тантала в атмосфере водорода со средней скоростью 5-20°C/мин позволяет осуществить гидрирование металлического тантала в ускоренном режиме, что повышает технологичность способа. Охлаждение металлического тантала со скоростью менее 5°C/мин замедляет процесс образования гидрида тантала и разрушение слитка, что нежелательно. Понижение температуры со скоростью более 20°C/мин технически трудноосуществимо.

Классификация порошка гидрида тантала после размола позволяет расширить диапазон получаемых классов агломерированного танталового порошка за счет корректировки гранулометрического состава размолотого гидрида тантала с учетом требуемых характеристик агломерированного порошка.

Дегидрирование и агломерация выделенной фракции порошка гидрида тантала при нагревании до температуры не более 1650°C с проведением нагрева порошка в диапазоне температур 500-800°C со скоростью 3-10°C/мин позволяет снизить содержание в нем примеси углерода, что повышает качество порошка и позволяет получить аноды конденсаторов с меньшей величиной тока утечки. Нагрев до температуры выше 1650°C приводит к ухудшению свойств агломерированного танталового порошка. Проведение нагрева порошка при температуре ниже 500°C со скоростью 3-10°C/мин сопровождается снижением скорости диффузии углерода, что снижает эффективность его удаления. Нагрев порошка при температуре более 800°C со скоростью 3-10°C/мин не обеспечивает удаления примеси углерода по причине незначительного остаточного содержания водорода в выделенной фракции порошка.

Проведение нагрева порошка в выбранном диапазоне температур 500-800°C со скоростью менее 3°C/мин приводит к увеличению длительности нагрева, не повышая эффективность очистки от углерода, а нагрев со скоростью более 10°C/мин снижает степень очистки от углерода.

Желательно, чтобы масса губчатого гидрида титана выбиралась с учетом зависимости:

MTi=k⋅MTa,

где MTi - масса губчатого гидрида титана, кг,

МТа - масса металлического тантала, кг,

k - эмпирический коэффициент, k=0,17-0,34.

Выбор массы гидрида титана с учетом этого соотношения позволяет снизить остаточное содержание примеси водорода в агломерированном танталовом порошке.

Значение эмпирического коэффициента к определяется физическими характеристиками тантала и титана, а именно соотношением растворимости в них водорода и находится в пределах от 0,17 до 0,34. При этом значение коэффициента к менее 0,17 приводит к недостатку водорода в процессе гидрирования металлического тантала, а значение коэффициента к более 0,34 технологически неоправданно по причине увеличения энергозатрат при нагреве рабочей емкости.

Совокупность вышеуказанных признаков необходима и достаточна для достижения технического результата изобретения, заключающегося в ускорении гидрирования металлического тантала, снижении содержания в нем примеси углерода, повышении выхода агломерированного порошка с нормированным содержанием водорода, а также в расширении диапазона получаемых классов агломерированного танталового порошка, что повышает технологичность способа.

В частных случаях осуществления изобретения предпочтительны следующие конкретные операции и режимные параметры.

Проведение нагрева металлического тантала в вакууме или в атмосфере высокочистого водорода позволяет минимизировать нежелательное воздействие примесей на слитки тантала при повышенной температуре.

Размол гидрида тантала до обеспечения насыпной плотности порошка 3,8-5,0 г/см3 позволяет расширить диапазон получаемых классов агломерированного танталового порошка.

Классифицирование порошка гидрида тантала с насыпной плотностью 3,8-4,2 г/см3 с выделением фракции более 3 мкм и агломерирование при температуре 1300-1400°C позволяет получить агломерированный порошок с высокой удельной поверхностью и развитой пористостью. Это обеспечивает получение агломерированного танталового порошка с удельным зарядом 5500-6500 мкКл/г.

Классифицирование порошка гидрида тантала с насыпной плотностью 4,1-4,6 г/см3 с выделением фракции более 5 мкм и агломерирование при температуре 1400-1500°C позволяет получить агломерированный порошок со средней удельной поверхностью и пористостью. Это обеспечивает получение агломерированного танталового порошка с удельным зарядом 4500-5500 мкКл/г.

Классифицирование порошка гидрида тантала с насыпной плотностью 4,5-5,0 г/см3 с выделением фракции более 10 мкм и агломерирование при температуре 1500-1650°C позволяет получить агломерированный порошок с пониженной удельной поверхностью и пористостью. Это обеспечивает получение агломерированного танталового порошка с удельным зарядом 3000-4500 мкКл/г.

Дополнительное легирование фосфором выделенной фракции порошка гидрида тантала до обеспечения его содержания 0,005-0,01% позволяет снизить поверхностную диффузию тантала и получить порошок с удельным зарядом, повышенным на 1000-1500 мкКл/г в зависимости от насыпной плотности выделенной фракции, степени легирования, температуры агломерации и времени выдержки. Это способствует расширению диапазона получаемых классов танталовых порошков.

Вышеуказанные частные признаки изобретения позволяют осуществить способ в оптимальном режиме с точки зрения ускорения гидрирования металлического тантала, снижения содержания в нем примеси углерода, повышения выхода агломерированного порошка с нормированным содержанием водорода, а также расширения диапазона получаемых классов агломерированного танталового порошка.

В общем случае агломерированный танталовый порошок согласно изобретению получают следующим образом. Слитки тантала высокой чистоты гидрируют нагреванием в вакууме или атмосфере водорода до температуры 800°C, после чего охлаждают до комнатной температуры в атмосфере высокочистого водорода при избыточном давлении 20-60 кПа. В интервале температур 800-100°C охлаждение ведут со средней скоростью 5-20°C/мин для ускорения процесса гидрирования. Источником водорода служит нагретый до температуры 700-800°C насыщенный губчатый гидрид титана. Массу губчатого гидрида титана берут в количестве 0,17-0,34 массы металлического тантала согласно зависимости (1).

Полученную крупку гидрида тантала измельчают до обеспечения насыпной плотности порошка 3,8-5,0 г/см3. Затем порошок гидрида тантала классифицируют. При необходимости выделенную фракцию порошка дополнительно легируют фосфором до обеспечения его содержания 0,005-0,015%. После сушки выделенной фракции при температуре 105-120°C порошок подвергают дегидрированию и агломерации путем нагревания в токе аргона высокой чистоты до температуры не более 1650°C и выдержке при максимальной температуре в течение 1-4 часа с получением танталового спека. Нагрев порошка в диапазоне температур 500-800°C ведут со скоростью 3-10°C/мин для снижения содержания в нем углерода. В процессе этого нагрева из порошка гидрида тантала выделяется водород, который поглощается ненасыщенным губчатым гидридом титана, использовавшимся ранее в процессе гидрирования, и служит в дальнейшем источником водорода при гидрировании следующей партии металлического тантала.

Образовавшийся спек охлаждают до комнатной температуры, размалывают до получения крупности агломерированного танталового порошка менее 315 мкм и усредняют путем перемешивания. В агломерированном танталовом порошке определяют содержание примесей. Из полученного порошка изготавливают аноды танталовых конденсаторов. Аноды тестируют по стандартной методике с измерением таких электрических характеристик, как удельный заряд и ток утечки.

Сущность и преимущества предлагаемого изобретения могут быть пояснены следующими примерами конкретного выполнения изобретения.

Пример 1. Осуществляют получение агломерированного конденсаторного порошка из слитков металлического тантала общей массой 3 кг. Слитки нагревают в вакууме при остаточном давлении 6 Па до температуры 800°C, после чего нагрев прекращают. Слитки охлаждают до комнатной температуры в атмосфере водорода при избыточном давлении 20 кПа с использованием в качестве источника водорода губчатого гидрида титана массой 1,02 кг (k=0,34), нагреваемого до температуры 700°C. Охлаждение металлического тантала в интервале температур 800-100°C ведут со средней скоростью 20°C/мин. Общее время гидрирования составило 3,5 часа. Образовавшуюся крупку гидрида тантала размалывают. Получают порошок с насыпной плотностью 5 г/см3, который классифицируют с выделением фракции гидрида тантала более 10 мкм в количестве 2,8 кг. Полученную фракцию порошка гидрида тантала подвергают дегидрированию и агломерации путем нагревания в токе аргона высокой чистоты до температуры 1650°C с выдержкой при этой температуре в течение 4 часов. Нагрев порошка в диапазоне температур 500-800°C ведут со скоростью 5°C/мин. В процессе нагрева из порошка гидрида тантала выделяется водород, который поглощают губчатым гидридом титана, использованным при гидрировании. Образовавшийся спек размалывают с получением агломерированного танталового порошка. Содержание углерода в порошке составило 0,002 мас. %, водорода - менее 0,01 мас. %.

Из полученного агломерированного танталового порошка изготовили партию анодов. Удельный заряд анодов - 3050 мкКл/г, ток утечки - менее 2⋅10-4 мкА/мкКл.

Пример 2. Осуществляют получение агломерированного конденсаторного порошка из слитков металлического тантала общей массой 3 кг. Слитки нагревают до температуры 800°C в атмосфере высокочистого водорода при избыточном давлении 60 кПа с использованием в качестве источника водорода губчатого гидрида титана массой 1,02 кг (k=0,34), нагреваемого до температуры 700°C. Затем слитки охлаждают до комнатной температуры в атмосфере водорода. Охлаждение металлического тантала в интервале температур 800-100°C ведут со средней скоростью 5°C/мин. Общее время гидрирования составило 5,5 часа. Образовавшуюся крупку гидрида тантала размалывают. Получают порошок с насыпной плотностью 3,8 г/см3, который классифицируют с выделением фракции гидрида тантала более 3 мкм в количестве 2,91 кг. Выделенную фракцию легируют фосфором до обеспечения его содержания 0,005% и подвергают дегидрированию и агломерации путем нагревания в токе аргона высокой чистоты до температуры 1300°C с выдержкой при этой температуре в течение 1 часа. Нагрев порошка в диапазоне температур 500-800°C ведут со скоростью 3°C/мин. В процессе нагрева из порошка гидрида тантала выделяется водород, который поглощают губчатым гидридом титана, использованным при гидрировании. Образовавшийся спек размалывают с получением агломерированного танталового порошка. Содержание углерода в порошке составило 0,0014 мас. %, водорода - менее 0,01 мас. %.

Из полученного агломерированного танталового порошка изготовили партию анодов. Удельный заряд анодов - 8000 мкКл/г, ток утечки - 3⋅10-4 мкА/мкКл.

Пример 3. Осуществляют получение агломерированного конденсаторного порошка из слитков металлического тантала общей массой 3 кг. Слитки нагревают в вакууме при остаточном давлении 6 Па до температуры 800°C, после чего нагрев прекращают. Слитки охлаждают до комнатной температуры в атмосфере водорода при избыточном давлении 40 кПа с использованием в качестве источника водорода губчатого гидрида титана массой 0,51 кг (k=0,17), нагреваемого до температуры 700°C. Охлаждение металлического тантала в интервале температур 800-100°C ведут со средней скоростью 10°C/мин. Общее время гидрирования составило 4,5 часа. Образовавшуюся крупку гидрида тантала размалывают. Получают порошок с насыпной плотностью 4,53 г/см3, который классифицируют с выделением фракции гидрида тантала более 5 мкм в количестве 2,89 кг. Выделенную фракцию легируют фосфором до обеспечения его содержания 0,015% и подвергают дегидрированию и агломерации путем нагревания в токе аргона высокой чистоты до температуры 1480°C с выдержкой при этой температуре в течение 2 часов. Нагрев порошка в диапазоне температур 500-800°C ведут со скоростью 10°C/мин. В процессе нагрева из порошка гидрида тантала выделяется водород, который поглощают губчатым гидридом титана, использованным при гидрировании. Образовавшийся спек размалывают с получением агломерированного танталового порошка. Содержание углерода в порошке составило 0,0022 мас. %), водорода - менее 0,01 мас. %.

Из полученного агломерированного танталового порошка изготовили партию анодов. Удельный заряд анодов - 5650 мкКл/г, ток утечки - менее 2⋅10-4 мкА/мкКл.

Пример 4. Осуществляют получение агломерированного конденсаторного порошка из слитков металлического тантала общей массой 3 кг. Слитки нагревают до температуры 800°C в атмосфере высокочистого водорода при избыточном давлении 20 кПа с использованием в качестве источника водорода губчатого гидрида титана массой 0,51 кг (k=0,17), нагреваемого до температуры 700°C. Затем слитки охлаждают до комнатной температуры в атмосфере водорода. Охлаждение металлического тантала в интервале температур 800-100°C ведут со средней скоростью 20°C/мин. Общее время гидрирования составило 3,5 часа. Образовавшуюся крупку гидрида тантала размалывают. Получают порошок с насыпной плотностью 4,12 г/см3, который классифицируют с выделением фракции гидрида тантала более 3 мкм в количестве 2,85 кг. Полученную фракцию порошка гидрида тантала подвергают дегидрированию и агломерации путем нагревания в токе аргона высокой чистоты до температуры 1400°C с выдержкой при этой температуре в течение 1 часа. Нагрев порошка в диапазоне температур 500-800°C ведут со скоростью 8°C/мин. В процессе нагрева из порошка гидрида тантала выделяется водород, который поглощают губчатым гидридом титана, использованным при гидрировании. Образовавшийся спек размалывают с получением агломерированного танталового порошка. Содержание углерода в порошке составило 0,0028 мас. %, водорода - менее 0,01 мас. %.

Из полученного агломерированного танталового порошка изготовили партию анодов. Удельный заряд анодов - 6150 мкКл/г, ток утечки - менее 2,2⋅10-4 мкА/мкКл.

Пример 5. Осуществляют получение агломерированного конденсаторного порошка из слитков металлического тантала общей массой 3 кг. Слитки нагревают в вакууме при остаточном давлении 6 Па до температуры 800°C, после чего нагрев прекращают. Слитки охлаждают до комнатной температуры в атмосфере водорода при избыточном давлении 60 кПа с использованием в качестве источника водорода губчатого гидрида титана массой 0,75 кг (k=0,25), нагреваемого до температуры 700°C. Охлаждение металлического тантала в интервале температур 800-100°C ведут со средней скоростью 5°C/мин. Общее время гидрирования составило 5,5 часа. Образовавшуюся крупку гидрида тантала размалывают. Получают порошок с насыпной плотностью 4,22 г/см3, который классифицируют с выделением фракции гидрида тантала более 5 мкм в количестве 2,9 кг. Полученную фракцию порошка гидрида тантала подвергают дегидрированию и агломерации путем нагревания в токе аргона высокой чистоты до температуры 1420°C с выдержкой при этой температуре в течение 2 часов. Нагрев порошка в диапазоне температур 500-800°C ведут со скоростью 5°C/мин. В процессе нагрева из порошка гидрида тантала выделяется водород, который поглощают губчатым гидридом титана, использованным при гидрировании. Образовавшийся спек размалывают с получением агломерированного танталового порошка. Содержание углерода в порошке составило 0,0026 мас. %, водорода - менее 0,01 мас. %.

Из полученного агломерированного танталового порошка изготовили партию анодов. Удельный заряд анодов - 5100 мкКл/г, ток утечки - менее 2⋅10-4 мкА/мкКл.

Из вышеприведенных Примеров видно, что по сравнению с прототипом предлагаемый способ позволяет на 10-40% сократить длительность операции гидрирования металлического тантала и до 3,5 раз снизить содержание примеси углерода в агломерированном танталовом порошке, что привело к снижению тока утечки. Концентрация примеси водорода во всех партиях полученного порошка не превышала его нормированного содержания. Способ согласно изобретению позволяет производить широкий диапазон классов конденсаторных порошков. Способ относительно прост и может быть реализован с использованием стандартного оборудования.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 34.
10.05.2018
№218.016.3bae

Способ получения фосфата титана

Изобретение может быть использовано при получении сорбента для очистки водно-солевых промышленных стоков от радионуклидов и токсичных катионов металлов. Для получения фосфата титана смешивают твердый титанилсульфат аммония с фосфорной кислотой. Полученную смесь выдерживают с формированием и...
Тип: Изобретение
Номер охранного документа: 0002647304
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.414c

Способ получения порошка вентильного металла

Изобретение относится к получению порошка вентильного металла. Способ включает восстановление порошка оксидного соединения вентильного металла парами магния или кальция при нагреве в инертной атмосфере, термообработку продуктов восстановления при температуре 1000-1500°С в течение 0,5-2 часов,...
Тип: Изобретение
Номер охранного документа: 0002649099
Дата охранного документа: 29.03.2018
10.05.2018
№218.016.431e

Способ переработки эвдиалитового концентрата

Изобретение относится к способам переработки эвдиалитового концентрата и может быть использовано для получения соединений циркония, редкоземельных элементов (РЗЭ) и диоксида кремния. Способ включает разложение концентрата серной кислотой, отделение остатка от цирконийсодержащего раствора, его...
Тип: Изобретение
Номер охранного документа: 0002649606
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.4e68

Способ переработки фторсодержащего апатитового концентрата

Изобретение может быть использовано в химической промышленности для получения фосфорной кислоты, концентрата редкоземельных элементов (РЗЭ), карбонатов щелочноземельных металлов и соединений фтора. Фторсодержащий апатитовый концентрат обрабатывают фосфорнокислым раствором в присутствии...
Тип: Изобретение
Номер охранного документа: 0002650923
Дата охранного документа: 18.04.2018
18.05.2018
№218.016.508e

Способ переработки жидких отходов аэс с борным регулированием

Изобретение относится к комплексной переработке сложных по составу жидких борсодержащих отходов АЭС. Способ переработки жидких отходов АЭС с борным регулированием, содержащих соли натрия и калия, включает введение нитрата кальция в боратный раствор с осаждением бората кальция и его отделением...
Тип: Изобретение
Номер охранного документа: 0002652978
Дата охранного документа: 04.05.2018
29.05.2018
№218.016.57e2

Способ извлечения палладия из кислого медьсодержащего раствора

Изобретение относится к извлечению палладия из кислых медьсодержащих растворов. Проводят обработку исходного раствора экстрагентом оксимного типа в виде 20-40 об. % раствора экстракционного реагента на основе кетоксима, альдоксима или их смеси в разбавителе при рН 0,2-2,5 и отношении O:В=1-5:1....
Тип: Изобретение
Номер охранного документа: 0002654818
Дата охранного документа: 22.05.2018
09.06.2018
№218.016.5a59

Способ получения порошка сплава молибдена и вольфрама

Изобретение относится к получению порошка сплава молибдена и вольфрама. Способ включает металлотермическое восстановление их кислородных соединений с образованием реакционной массы, содержащей порошок сплава молибдена и вольфрама, выделение порошка сплава из реакционной массы и водную промывку...
Тип: Изобретение
Номер охранного документа: 0002655560
Дата охранного документа: 28.05.2018
05.09.2018
№218.016.831b

Способ переработки сфенового концентрата

Изобретение может быть использовано в производстве сорбентов для очистки жидких стоков от тяжелых металлов и радионуклидов, наполнителя для лакокрасочных и строительных материалов. Способ переработки сфенового концентрата включает его измельчение и разложение разбавленной серной кислотой при...
Тип: Изобретение
Номер охранного документа: 0002665759
Дата охранного документа: 04.09.2018
11.10.2018
№218.016.907d

Способ обработки фосфатного концентрата редкоземельных элементов

Изобретение относится к обработке фосфатного концентрата редкоземельных элементов (РЗЭ), получаемого при комплексной переработке апатита, и может быть использовано в химической промышленности для получения нерадиоактивных карбонатного или гидроксидного концентратов РЗЭ. Осуществляют обработку...
Тип: Изобретение
Номер охранного документа: 0002669031
Дата охранного документа: 05.10.2018
16.01.2019
№219.016.b07d

Способ переработки алюминиевых квасцов

Изобретение относится к области химической технологии и может быть использовано для получения γ-оксида алюминия, применяемого в производстве катализаторов, сорбентов, осушителей и т.п. Алюмокалиевые или алюмоаммониевые квасцы обрабатывают газообразным аммиаком, продукт аммонизации выщелачивают...
Тип: Изобретение
Номер охранного документа: 0002677204
Дата охранного документа: 15.01.2019
Показаны записи 1-10 из 12.
27.04.2013
№216.012.3a78

Способ переработки скрапа анодов танталовых оксидно-полупроводниковых конденсаторов

Изобретение относится к области переработки скрапа анодов танталовых оксидно-полупроводниковых конденсаторов. Способ включает очистку кислотной обработкой скрапа с удалением диоксида марганца. Затем ведут раскисление очищенного скрапа, его гидрирование, размол, дегидрирование при повышенной...
Тип: Изобретение
Номер охранного документа: 0002480529
Дата охранного документа: 27.04.2013
20.06.2013
№216.012.4b91

Способ получения порошка ниобия

Изобретение относится к цветной металлургии и может быть использовано при металлотермическом получении нанокристаллических порошков ниобия преимущественно для электролитических конденсаторов. Предложен способ получения порошка ниобия. Проводят восстановление парами магния или кальция оксидного...
Тип: Изобретение
Номер охранного документа: 0002484927
Дата охранного документа: 20.06.2013
10.01.2015
№216.013.1716

Способ получения порошка тантала

Изобретение относится к порошковой металлургии. В герметичный реактор загружают исходную шихту, содержащую кислородное или кислородное и бескислородное соединение тантала и галогенид щелочного металла. В реакторе создают атмосферу инертного газа и нагревают шихту с образованием расплава. В...
Тип: Изобретение
Номер охранного документа: 0002537338
Дата охранного документа: 10.01.2015
10.08.2015
№216.013.6a02

Способ получения порошка вольфрама

Изобретение относится к металлургии тугоплавких металлов, а именно к получению порошка вольфрама В реактор загружают вольфрамат щелочноземельного металла и восстановитель в виде магния или кальция. В реакционном объеме поддерживают температуру Т в интервале значений 0,95Т≤Т≤0,85Т, где Т и Т -...
Тип: Изобретение
Номер охранного документа: 0002558691
Дата охранного документа: 10.08.2015
10.12.2015
№216.013.98b5

Способ получения порошка ниобия

Изобретение относится к получению высокочистых порошков ниобия с большой удельной поверхностью, которые могут быть использованы для производства анодов объемно-пористых конденсаторов. В герметичный реактор загружают исходную шихту, содержащую кислородное или кислородное и бескислородное...
Тип: Изобретение
Номер охранного документа: 0002570713
Дата охранного документа: 10.12.2015
13.01.2017
№217.015.70de

Способ получения порошка молибдена

Изобретение относится к порошковой металлургии, а именно к металлотермическим способам получения нанокристаллических порошков молибдена. В реактор загружают оксидное соединение молибдена в виде молибдата щелочноземельного металла и пространственно отделенный от оксидного соединения...
Тип: Изобретение
Номер охранного документа: 0002596513
Дата охранного документа: 10.09.2016
25.08.2017
№217.015.cbb7

Способ получения порошка металла подгруппы хрома

Изобретение относится к металлотермическому получению дисперсных порошков металлов подгруппы хрома. В реактор загружают тигли с порциями порошка оксидного соединения металла подгруппы хрома, в качестве которого используют по меньшей мере одно соединение, выбранное из группы, включающей CrO, WO,...
Тип: Изобретение
Номер охранного документа: 0002620213
Дата охранного документа: 23.05.2017
20.01.2018
№218.016.121e

Способ получения металлического порошка

Изобретение относится к порошковой металлургии. Способ получения металлического порошка включает выбор исходного сырья и его измельчение с контролем удельной поверхности полученного порошка, при этом определяют удельную поверхность исходного сырья, а выбор сырья и его измельчение производят в...
Тип: Изобретение
Номер охранного документа: 0002634110
Дата охранного документа: 23.10.2017
10.05.2018
№218.016.414c

Способ получения порошка вентильного металла

Изобретение относится к получению порошка вентильного металла. Способ включает восстановление порошка оксидного соединения вентильного металла парами магния или кальция при нагреве в инертной атмосфере, термообработку продуктов восстановления при температуре 1000-1500°С в течение 0,5-2 часов,...
Тип: Изобретение
Номер охранного документа: 0002649099
Дата охранного документа: 29.03.2018
09.06.2018
№218.016.5a59

Способ получения порошка сплава молибдена и вольфрама

Изобретение относится к получению порошка сплава молибдена и вольфрама. Способ включает металлотермическое восстановление их кислородных соединений с образованием реакционной массы, содержащей порошок сплава молибдена и вольфрама, выделение порошка сплава из реакционной массы и водную промывку...
Тип: Изобретение
Номер охранного документа: 0002655560
Дата охранного документа: 28.05.2018
+ добавить свой РИД